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1 Introduction

Over the last years, network analysis has become increasingly popular in economics and

finance. In a nutshell, network analysis aims at representing the interconnections of a

large multivariate system as a graph, and the graph representation is then used to study

the properties of the system. In finance, these methods have been applied to study inter-

connections among financial institutions in order to identify channels of contagion. Ap-

plications in this area have gauged considerable interest in the aftermath of the 2007-2009

financial crisis. Example of contributions on network analysis in the literature include,

inter alia, Billio, Getmansky, Lo, and Pellizzon (2012), Diebold and Yilmaz (2013) and

Hautsch, Schaumburg, and Schienle (2012, 2013).

In this work we propose a novel network analysis technique to represent the cross–

sectional conditional dependence structure of a high–dimensional multivariate time series.

This entails two tasks. We first introduce a measure of cross–sectional conditional depen-

dence for time series that is going to be used to define the network. We then develop an

estimation approach that allows to estimate the dependence measure from the data.

The standard network dependence measure used in the statistics and graphical mod-

elling literature is partial correlation (see e.g. Dempster, 1972; Meinshausen and Bühlmann,

2006). The partial correlation network is defined as an undirected weighted graph where

vertices denote the components of the process and the presence of an edge between the

i-th and j-th vertices indicates that the i-th and j-th components are partially correlated

given all other components. The network edges are then associated with the value of the

partial correlation between the vertices they connect to express the weight of the link.

Partial correlation networks are typically motivated by the analysis of i.i.d. Gaussian data.

In this setting, absence of partial correlation implies conditional independence, thus the

partial correlation network exhaustively characterizes cross–sectional dependence. This

definition however has limitations in the analysis of time series processes exhibiting serial

dependence. Partial correlation only captures contemporaneous cross–sectional depen-

dence, while in a time series setting cross–sectional dependence can arise at different
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leads or lags. In fact, in the the time series network literature Billio et al. (2012) and

Diebold and Yilmaz (2013) have proposed network definitions that take into account the

dynamic properties of the data.

In this work we propose a network definition based on long run partial correlation,

a dependence measure constructed from the long run covariance matrix of the process.

The Long Run Partial Correlation network is defined analogously to the (simple) partial

correlation network by using the long run partial correlation as a measure of dependence

between two time series. Long run partial correlation is a comprehensive and model–

free measure of cross–sectional conditional dependence. It captures contemporaneous

correlation as well as lead/lag effects. Moreover, it is model–free in the sense that it does

not hinge on specific modelling assumptions on the process. These are appealing features

for economic and financial applications where dependence across series is not necessarily

only contemporaneous and correct model specification is often a concern. Long run partial

correlation can also be interpreted as a special case of partial spectral coherence, a cross–

sectional conditional dependence measure based on the spectral density matrix used in

frequency domain analysis (see Brillinger, 1981; Dahlhaus, 2000; Eichler, 2007).

In order to estimate the Long Run Partial Correlation network from the data, we pro-

pose an estimation approach that combines ideas from the high–dimensional sparse graph

estimation literature in statistics (see Meinshausen and Bühlmann, 2006; Peng, Wang,

Zhou, and Zhu, 2009) and the heteroskedastic and autocorrelation consistent (hac) co-

variance estimation literature in econometrics (see White, 1984; Gallant, 1987; Newey and

West, 1987; Andrews and Monahan, 1992; Den Haan and Levin, 1994). Following Mein-

shausen and Bühlmann (2006) and Peng et al. (2009), we are concerned with the case in

which the network is sparse and the main inferential problem of interest consists of select-

ing and estimating the non–zero long run partial correlations of the system. Graphically

this corresponds to detecting the network linkages and estimating their weight. It can be

shown that long run partial correlations are a function of the inverse of the long run co-

variance matrix (i.e. the long run concentration matrix). Moreover, the long run (i, j)-th

partial correlation is zero if and only if the (i, j)-th element of the long run concentration

3



matrix is zero. This implies that network estimation can be formulated as a sparse long

run concentration matrix estimation problem. A sufficiently regular multivariate time

series can be represented as a Vector Autoregression (var) of infinite order and the long

run covariance matrix of such representation is equal to the long run covariance of the

original process. Furthermore, the long run covariance is available in closed form and

its inverse is a “sandwich” form made up of two components: (i) a matrix that depends

on the var parameters that summarises the long run Granger causality structure of the

process (which we name Granger component) and (ii) the concentration matrix of the

var innovations that synthesises contemporaneous dependence conditionally on the past

information (contemporaneous component). These two components can be further asso-

ciated to two networks representing predictive and contemporaneous association among

series. From a graphical perspective such representation is appealing in that the long

run partial correlation linkages can be interpreted as a (nontrivial) combination of the

Granger and contemporaneous links.

We propose a natural regression procedure based on the var representation of the data

generating process to estimate the long run correlation network. The algorithm consists

of estimating the var parameters and the concentration matrix of the var residuals using

lasso regressions. The outputs of the procedure are the Long Run Partial Correlation

network as well as the Granger and Contemporaneous networks. We name this procedure

nets (Network Estimator for Time Series). The properties of this estimation strategy

are established under the assumption that the var representation is sparse. The spar-

sity of the var representation determines in turn the sparsity structure of the Granger,

Contemporaneous, and Long Run Partial Correlation networks. We establish conditions

for consistent selection of the network edges and consistent estimation of edges’ weights.

An important highlight of the theory developed in this work is that results are derived

in a high–dimensional settings that allows for the number of series and order of the var

to increase with the sample size. This implies that the number of possible linkages is al-

lowed to be larger than the number of observations available. The theory is developed for

a zero–mean, purely–nondeterministic, weakly stationary process. Standard results from
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the hac literature (see Den Haan and Levin, 1994) lead us to conjecture that the result

should also hold for more general classes of process that allow, among other features, for

heteroskedasticity.

We illustrate this technique with an application to financial network analysis based

on a panel of financial monthly equity returns for a set of 41 bluechips across different

industry groups between 1990 and 2010. Building up on standard models used in empirical

finance, we model the returns using a capm type one factor model: the returns of each

firm are a linear function of the market return and an idiosyncratic shock. We then

use nets to analyse the network structure of the idiosyncratic shocks. We find that

the market accounts on average for 25% of the variation of returns while links of the

idiosyncratic network account on average for another 15%. Moreover, a number of network

analysis indices are used to summarises the properties of the network and we find that

the idiosyncratic risk network shares several of the empirical regularities found in social

network analysis.

Our work relates to different strands of literature. This paper is inspired and motivated

by the econometric literature on the analysis of financial networks that has developed in

the aftermath of the 2007–2009 financial crisis. Contributions in this area include Billio

et al. (2012), Diebold and Yilmaz (2013), Hautsch et al. (2012, 2013), Dungey, Luciani,

and Veredas (2012). Our contribution builds up on the statistical literature on networks

and graphical models (see Lauritzen, 1996). In particular, the relation between partial

correlation and the inverse of the covariance matrix was first put forward in Dempster

(1972). Recently research in the area was boosted by a number of contributions developing

techniques for high–dimensional partial correlation network estimation for independent

data using the lasso, inter alia Meinshausen and Bühlmann (2006), Friedman, Hastie,

and Tibshirani (2008), Peng et al. (2009). See also, for instance, Peterson, Vannucci,

Karakas, Choi, Ma, and Maletić-Savatić (2013) for a contribution on graph modelling

from a Bayesian perspective. Also, our work relates to the research of De Mol, Gian-

none, and Reichlin (2008), Song and Bickel (2011), Jarociński and Maćkowiak (2011),

Davis, Zang, and Zheng (2012), Kock (2012), Kock and Callot (2012), and Medeiros
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and Mendes (2012) on sparse estimation for large var models. The estimation approach

developed in this paper is inspired by the hac covariance estimation literature, which

includes contributes by White (1984), Gallant (1987), Newey and West (1987), Andrews

and Monahan (1992), Den Haan and Levin (1994). The estimation approach developed in

this work is high–dimensional, in the sense that we allow for the number of parameters to

be estimated to be larger than the number of observations available. Contributions and

surveys in the high–dimensional literature include Belloni, Chernozhukov, and Hansen

(2011) and Bühlmann and van de Geer (2011) among others. This research also relates to

the literature on regularized covariance estimation by Bickel and Levina (2008), Lam and

Fan (2009), Ledoit and Wolf (2004), Pourahmadi (2011), Fan, Liao, and Mincheva (2011,

2013), and Bai and Liao (2012). Finally, theoretical research on networks in economics

and finance, also in relation to the financial crisis, was put forward by Allen and Gale

(2000) and Xavier, Parigi, and Rochet (2000). More recent influential contributions in-

clude Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) and Acemoglu, Ozdaglar,

and Tahbaz-Salehi (2013).

The paper is structured as follows. Section 2 introduces the definition of network for

time series and Section 3 presents the estimation approach. Section 4 presents simulation

results. Section 5 describes the empirical application to a panel of equity returns for a

panel of U.S. bluechips. Concluding remarks follow in Section 6.

2 Networks for Time Series

We are concerned in using a graphical model to represent the cross–sectional conditional

dependence structure of a n–dimensional multivariate time series

yt = (yt 1, . . . , yt n)′.
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2.1 Partial Correlation Network

First let us assume that yt is a white noise process. The standard network definition com-

monly used in the statistics literature is the partial correlation network, (see Dempster,

1972; Meinshausen and Bühlmann, 2006). The process yt is represented as an undirected

weighted graph N = (V , E) where V is the set of vertices and E is the set of edges. The

set of vertices V is {1, ..., n} where each element corresponds to a component of yt. The

set of edges E is a subset of V × V such that the pair (i, j) is in E if and only if the

components i and j are partially correlated conditionally on all other components of the

process. Partial correlation is a linear measure of cross–sectional conditional dependence

and it is defined as the correlation between yt i and yt j conditionally on all other variables

in the system, that is

ρij = Cor(yt i, yt j|{yt k : k 6= i, j}).

The set of edges of the partial correlation network can then be expressed as

E =
{

(i, j) ∈ V × V : ρij 6= 0
}
,

and ρij is the weight associated with the edge between i and j. It is typically assumed

that the partial correlation structure of the process is sparse (see e.g. Meinshausen and

Bühlmann, 2006; Peng et al., 2009). The objective of network estimation is to use a real-

ization of the process to detect which edges are present and to estimate the corresponding

partial correlations.

It is useful to recall a number of properties of partial correlation. First, if the white

noise is also Gaussian, then absence of partial correlation implies conditional indepen-

dence. Second, partial correlation is related to linear regression. Consider the linear

regression model where variable i is regressed on all other remaining variables in the

system, that is

yt i = c+ β1iyt 1 + . . .+ β(i−1)iyt i−1 + β(i+1)iyt i+1 + . . .+ βniyt n + et i
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where E(et i) = 0, Var(et i) = σ2
i and E(yt jet i) = 0 for all j 6= i. It can be shown that, for

any j 6= i, the ρij partial correlation is different from zero if and only if βij is different from

zero. In other words, partial correlation signals that yt j has additional information for

predicting yt i after conditioning on all the other variables in the system (and vice versa).

Partial correlation is also related to (simple) correlation. If in the partial correlation

network there exists a path between the two vertices, then the two vertices are correlated

(and vice versa). Finally, partial correlation can be expressed as a function of the inverse

of the covariance matrix of the process. Let Σ = Cov(yt,yt) and let K ≡ Σ−1, which is

also commonly referred to as the concentration matrix. Let kij denote the (i, j)-th entry

of K. Then, the (i, j)-th partial correlation can be expressed as

ρij =
−kij√
kiikjj

. (1)

This relation implies that the structure of the partial correlation network is fully char-

acterized by the concentration matrix of the process. This property is important for

estimation, in that network estimation is typically reformulated as a sparse concentration

matrix estimation problem.

Example 1. Let yt be a zero mean Gaussian white noise process with n = 5 and with

concentration matrix

K ≡ Σ−1 =



1.0 -0.2 0.0 0.0 0.0

-0.2 1.0 0.5 -0.3 0.0

0.0 0.5 1.0 0.0 0.0

0.0 -0.3 0.0 1.0 -0.7

0.0 0.0 0.0 -0.7 1.0


.

The partial correlation network associated with this process is plotted in Figure 1.

2.2 Long Run Partial Correlation Network

Partial correlation is an exhaustive measure of conditional dependence for white noise pro-

cesses. However, this measure has limitations when considering more general time series
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processes. The main shortcoming is that partial correlation captures only contemporane-

ous dependence between the variables in the system. In a time series context, however,

cross–sectional dependence is not necessarily just contemporaneous.

In this work we propose a network definition for time series that attempts to overcome

the limitations of partial correlations. The network definition we adopt is based on long

run partial correlation, a measure of cross–sectional conditional dependence constructed

from the long run covariance matrix of the process. The long run covariance matrix of

the process yt can be defined as

ΣL ≡ lim
M→∞

1

M
Cov

(
M∑
t=1

yt,
M∑
t=1

yt

)
, (2)

assuming the limit exists. The main highlight of the definition in equation (2) is that the

rescaled limiting covariance of the aggregated process summarises cross–sectional depen-

dences at any lead/lag. Also, our definition simplifies to the standard definition of partial

correlation network in case the time series process is a white noise. Clearly, our measure

of dependence in (2) only captures linear dependence, and it does not capture other types

of cross–sectional dependence.

We present a stylized example for a 2–dimensional process in order to point out the

differences between the (simple) covariance and the long run covariance matrix.

Example 2. Let yt be a vma process defined as

 yt 1

yt 2

 =

 εt 1

εt 2

+

 0 ψ

0 0


 εt−1 1

εt−1 2


with  εt 1

εt 2

 ∼ N

 0

0

 ,
 σ2 0

0 σ2


 ,

and Cov(εt j, εt−h i) = 0, for any i, j and h 6= 0. The contemporaneous correlation between
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the two components is zero

Cor (yt 1, yt 2) = 0.

The correlation of the aggregated process over M = 12 periods is

Cor
(∑12

t=1 yt 1,
∑12

t=1 yt 2

)
=

(
11

12

)
ψ√

1 + ψ2
,

where it is trivial to see that the correlation is increasing in the absolute value of the

spillover parameter ψ. The long run correlation between the two processes is

lim
M→∞

Cor
(∑M

t=1 yt 1,
∑M

t=1 yt 2

)
= lim

M→∞

M − 1

M

ψ√
1 + ψ2

=
ψ√

1 + ψ2
. (3)

This example highlights a number of important properties. The (simple) covariance

does not exhaustively characterize cross–sectional dependence in a dynamic setting. On

the other hand, the covariance of the aggregated process provides more comprehensive

description of the conditional dependence structure. Also, the example shows that if the

memory of the process has a sufficiently fast rate of decay, then the convergence of the

long run covariance to its limit is fast. The bottom line of the example is that in a

serially dependent multivariate system the cross–sectional dependence structure can be

richer than what is measured by the covariance.

Our network definition has a general interpretation in terms of spectral density matrix

of a covariance stationary vector process, which is defined as

sy(ω) =
1

2π

+∞∑
h=−∞

Γy h e
−ihω, ω ∈ [−π, π],

where Γy h = Cov(yt,yt−h) and i =
√
−1. As it is well known, the spectral density

is related to the long run covariance in that the spectrum evaluated at zero frequency

corresponds to the long run covariance:

ΣL = 2π sy(0) =
+∞∑

h=−∞

Γy h,
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which highlights how ΣL contains the linear dependences of yt at every lead and lag.

Example 3. For the vma defined in the previous example we have:

Γy 0 =

 σ2(1 + ψ2) 0

0 σ2

 , Γy 1 =

 0 ψσ2

0 0

 , Γy−1 = Γ′y 1,

and Γy h = 0 for |h| > 1. The spectral density matrix is, for ω ∈ [−π, π],

2π sy(ω) = Γy 0 + Γy 1e
−iω + Γy−1e

iω.

which can also be computed as

2π sy(ω) =

I +

 0 ψ

0 0

 e−iω

 σ2 0

0 σ2


I +

 0 0

ψ 0

 eiω
 .

In both cases we have

ΣL = 2π sy(0) =

 σ2(1 + ψ2) σ2ψ

σ2ψ σ2

 ,
and the long run correlation in (3) follows.

As for contemporaneous partial correlations, it is possible to characterize the network

on the basis of the inverse of the long run covariance matrix. Let long run concentration

matrix be defined as

KL ≡ Σ−1
L ,

and let kL ij denote its (i, j)-th entry. We can then express long run partial correlation

coefficient for series i and j as

ρijL =
−kL ij√
kL iikL jj

. (4)

The Long Run Partial Correlation network is defined as a weighted undirected network
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NL = (V ,K) where the set of edges K is defined as

K =
{

(i, j) ∈ V × V : ρijL 6= 0
}
, (5)

and ρijL is the weight associated with the edge between i and j.

In this work we develop an estimation approach for KL which is inspired by the

literature on hac covariance estimators (Newey and West, 1987; Andrews and Monahan,

1992; Den Haan and Levin, 1994). Under appropriate assumptions on the data generating

process, we can approximate yt with an infinite order var:

yt =
∞∑
k=1

Akyt−k + εt, εt ∼ w.n.(0,Γε), (6)

where Ak are n× n matrices such that the process is stable. The spectral density matrix

of representation (6) is

sy(ω) =
1

2π

(
I−

∞∑
k=1

Ake
−ikω

)−1

Γε

(
I−

∞∑
k=1

A′ke
ikω

)−1

, ω ∈ [−π, π]. (7)

Therefore, the long run covariance and the long run concentration matrix are given by

ΣL =

(
I−

∞∑
k=1

Ak

)−1

Γε

(
I−

∞∑
k=1

A′k

)−1

,

KL ≡ Σ−1
L =

(
I−

∞∑
k=1

A′k

)
Γ−1
ε

(
I−

∞∑
k=1

Ak

)
. (8)

This expression has an appealing interpretation in that it factorizes the long run concen-

tration in a sandwich form determined by the term I−
∑∞

k=1 Ak, which captures long run

dynamic relations of the system, and the term Γ−1
ε , which accounts for the contempora-

neous dependence of the system innovations. For ease of notation we express (8) more

compactly as

KL = (I−G)′C (I−G), (9)
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where G ≡
∑∞

k=1 Ak and C ≡ Γ−1
ε , and we are going to refer to the two matrices respec-

tively as the Granger and Contemporaneous components of the long run concentration

matrix.

The formula in (9) has an appealing graphical interpretation. In order to better appre-

ciate this, let us first introduce the Granger and Contemporaneous networks associated

with the var representation of equation (6). We define gij as the (i, j)-th entry of G,

and cij as the (i, j)-th entry of C. Notice also that in general gij 6= gji while cij = cji.

The Granger network is defined as a weighted directed network NG = (V ,G) where the

presence of an edge from i to j denotes that i Granger causes j in the long run, that is

G = {(i, j) ∈ V × V : gji 6= 0} , (10)

and gji is the weight associated with the edge from i to j. The contemporaneous network

is defined as the partial correlation network of the var innovations. It is a weighted

undirected network NC = (V , C) where an edge between i and j denotes that i is partially

correlated to j conditionally on the past, that is

C =
{

(i, j) ∈ V × V : ρij 6= 0
}
, (11)

where ρij = −cij/
√
ciicjj is the weight associated with the edge between i and j. The

Long Run Partial Correlation network can be interpreted as a combination of the Granger

and Contemporaneous networks.

Building on Meinshausen and Bühlmann (2006) in this work we are concerned in

the case in which the Long Run Partial Correlation network is sparse. However, in this

work we do not formulate sparsity assumptions on the KL matrix directly. Instead, we

formulate sparsity assumptions on the approximating var model. Precise details on the

sparsity assumptions are given in the theoretical analysis in Section 3 and the Appendix.

Under such assumptions, the sparsity of the var model determines the sparsity structure

of the G and C components and of the long run concentration matrix KL. Due to the
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sandwich form of KL its sparsity structure is not trivial. The generic (i, j)-th element of

KL is given by

kLij =
n∑
h=1

n∑
k=1

gihchkgjk, i, j = 1, . . . n.

In order to see which relations are mapped into an edge of the Long Run Partial Corre-

lation network, we decompose, in the case that i 6= j, the previous sums as follows

kLij =
n∑
h=1

n∑
k=1

gihchkgjk =

= gii

n∑
`=1

ci`gj` + gjj

n∑
h=1

gihchj(1− δhi) +
n∑
h=1

n∑
k=1

gihchkgjk (1− δhi)(1− δkj)

= giicijgjj + giiciigji + gijcjjgjj

+gii

n∑
`=1

ci`gj` (1− δ`i)(1− δ`j) + gjj

n∑
`=1

gi`c`j(1− δ`i)(1− δ`j)

+
n∑
h=1

n∑
k=1

gihchkgjk (1− δhi)(1− δkj)(1− δhk)

+
n∑
`=1

gi`c``gj`(1− δ`i)(1− δ`j),

where δij = 0 if i 6= j and δii = 1. Using this formula we see that there is an edge between

nodes i and j, i.e. kLij 6= 0 if

1. i and j are contemporaneously partially correlated, i.e. cij = cji 6= 0;

2. i Granger causes j in the long run, i.e. gji 6= 0;

3. j Granger causes i in the long run, i.e. gij 6= 0;

4. there exists another node k such that gik 6= 0 and ckj 6= 0 or gjk 6= 0 and cki 6= 0.

Being linked in the Granger and Contemporaneous networks is a sufficient condition to

be linked in the long run but it is not necessary. The last condition shows that the set of

links of the Long Run Partial Correlation network is larger than the union of the links of

the Granger and Contemporaneous networks.

Notice that, by looking at the formula of the spectral density matrix of a var process

(see equation (7)) it is clear that with our method we can estimate not only the Long Run
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Partial Correlation network but also the inverse of the spectrum at different frequencies.

The sparsity structure will be the same at all frequencies but the weights attached to the

edges will change with the frequency.

We conclude this Section with two examples showing the sparseness of the Long Run

Partial Correlation network as a combination of the two components.

Example 4. Consider a case with n = 3 and g11 6= 0, g23 6= 0 and c13 = c31 6= 0, while

g13 = g31 = g12 = g21 = c12 = c21 = c23 = c32 = 0 and we can show that still kL12 6= 0.

Indeed:

kL12 = g11c12g22 + g11c11g21 + g12c22g22 + g11c13g23 + g13c32g22

+g12c21g21 + g12c23g23 + g13c31g21 + g13c33g23 = g11c13g23

The intuition is that, since 1 and 3 are contemporaneously partially correlated (c13 =

c31 6= 0), and 3 Granger causes 2 in the long run (g23 6= 0), then, because 1 has serial

dependence (g11 6= 0), we have also that 1 indirectly Granger causes series 2 in the long

run, therefore 1 and 2 are partially correlated in the long run given 3. The resulting Long

Run Partial Correlation netowrk is shown graphically in Figure 2.

Example 5. Consider a var(1) with n = 6

yt = A1yt−1 + εt εt ∼ N (0,Γε)

where

A1 =



0.7 0.0 0.0 0.0 0.0 0.2

0.0 0.6 0.0 0.0 0.0 0.0

0.0 0.0 0.1 0.0 0.0 0.0

0.0 0.0 0.4 0.2 -0.3 0.0

0.0 0.0 0.0 0.0 0.3 0.0

0.0 0.0 0.0 0.0 0.0 0.4


,
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and

Γ−1
ε =



1.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 -0.2 0.0 -0.3

0.0 0.0 -0.2 1.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 -0.3 0.0 0.0 1.0


.

Then, the long run concentration matrix is

KL =



0.1 0.0 0.0 0.0 0.0 -0.1

0.0 0.2 0.0 0.0 0.0 0.0

0.0 0.0 1.1 -0.5 -0.2 -0.2

0.0 0.0 -0.5 0.6 0.2 0.0

0.0 0.0 -0.2 0.2 0.6 0.0

-0.1 0.0 -0.2 0.0 0.0 0.4


.

Figure 3 displays the Long Run Partial Correlation network, as well as the Granger and

Contemporaneous networks. Note that vertices 3 and 5 are not connected nor in the

Contemporaneous or in the Granger network, however they are connected in the Long Run

Partial Correlation network. Notice that the strength of the Long Run Partial Correlation

network links differs from the strength of the Granger and Contemporaneous network links.

3 Network Estimation

3.1 LASSO Estimation

We obtain sparse estimators using the lasso (Least Absolute Shrinkage and Selection

Operator), an estimation technique introduced in the statistics literature by Tibshirani

(1996). Consider a general linear regression model

Yi = ϑ′0Xi + ei, i = 1, . . . , T,
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with Xi and ϑ0 being P -dimensional vectors, and ei ∼ i.i.d.(0, s2). The lasso estimator of

this model is defined as the minimizer of the `1–penalised least squares objective function

ϑ̂T,L = arg min
ϑ

1

T

T∑
i=1

(Yi − ϑ′Xi)2
+
λT
T

P∑
j=1

|ϑj|, (12)

where λT ≥ 0 is a tuning parameter that determines the degree of the penalization

and ϑj is the j–th component of the parameters vector ϑ. The lasso is a shrinkage

type estimation procedure that shrinks the ols estimate towards zero. The amount of

shrinkage is determined by the value of the penalty λT : the greater the λT the greater the

shrinkage effect. An important feature of the `1–penalty is that the solution of equation

(12) delivers estimates of the parameter vector that contain exact zeros, i.e. a “sparse”

solution. Under appropriate conditions on the model and the degree of penalization, it

can be shown that if the true parameter vector ϑ0 is sparse, then the lasso consistently

estimates the non–zero parameters while the others are shrunk to exact zero. Another

advantage of the lasso (which is also shared by other shrinkage estimators) is the fact

that the estimator can be well defined even when the number of parameters P is larger

than the number of observations T (see Fan and Peng, 2004). This property is crucial in

high–dimensional modelling problems where this is indeed the case.

Several variants of the lasso have been proposed in the literature in order to consider

the case of dependent data. In particular, in this work we make use of the Adaptive

lasso estimator proposed by Zou (2006), and defined as

ϑ̂T,AL = arg min
ϑ

1

T

T∑
i=1

(Yi − ϑ′Xi)2
+
λT
T

P∑
j=1

wj|ϑj|,

where the wj is a weight on the penalty for ϑj and is typically chosen as the reciprocal

of the absolute value of a pre-estimator of ϑj. Among the possible choices of the pre-

estimator the most popular are the ols estimator or the ridge estimator when P is larger

than T .
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3.2 NETS

The var approximation has two appealing features in this setting. The expression of the

long run concentration matrix in (8) lends itself to relatively straightforward estimation.

Moreover, estimators based on this representation deliver consistent estimates of the long

run concentration matrix for quite general classes of time series processes, including, for

instance, heteroskedastic processes.

In this Section we propose an algorithm called nets (Network Estimator for Time

Series) to estimate sparse Long Run Partial Correlation networks. The nets procedure

consists of reformulating the estimation of the long run concentration matrix of the var

representation of the process in (9) in two lasso regression problems. Our strategy con-

sists of estimating the two components G and C of the network and to then combine the

two to obtain an estimator of KL. In the rest of this Section we describe the estimation

procedure and provide its large sample properties. In particular, the method we propose

delivers not only an estimate of the Long Run Partial Correlation network but also consis-

tent estimates of its two components: (i) the Granger network that summarises the long

run Granger causality structure of the process and (ii) the Contemporaneous network of

the var innovations that synthesises contemporaneous dependence conditionally on the

past information. Depending on the data at hand both components may contain interest-

ing information and it might be worth to consider them separately. Detailed assumptions

and proofs of the results of this Section are in Appendix.

In what follows we assume that a sample of T observations is available for the yt

process. Assumptions 1, 2, 3 and 4 part (a) characterize the process. More in detail,

assumption 1 states that yt is a zero mean, purely stochastic process belonging to the

class of weakly dependent processes. This is a general class of processes introduced by

Doukhan and Louhichi (1999) which nests several types of mixing processes as well as

covariance stationary processes. Indeed, in assumption 2 we assume to have covariance

stationary process whose spectral density and covariance matrices are positive definite.

This assumption is in turn used to establish the existence of a var(∞) representation in
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the same way as in Den Haan and Levin (1994). In particular, assumption 3 specifies the

rate of decay of the autocovariances which allows us to compute the asymptotic bias due

to the truncation error when estimating a var(p).

Finally, assumption 4 part (a) contains assumptions on the rates of the growth of

the dimension of the model with respect to the sample size. More specifically, the rate of

growth of the number of series is n = O(T ζ1) where ζ1 > 0. The data is then approximated

by a finite p-th order var

yt =

p∑
k=1

Akyt−k + εt, εt ∼ w.n.(0,Γε), t = 1, . . . , T. (13)

where the order of the autoregression is allowed to grow with the sample size at the rate

p = O(T ζ2) where ζ2 > 0. Notice that due the truncation at lag p the var is biased and the

bias depends on the number of series n, the lag p and rate of decay of the autocovariance.

Assumption 4 part (a.iii) gives the relation between the relative rates of n and p in order

to have a truncation error which is asymptotically negligible. In particular, for a given

rate of decay of the autocovariances, the larger is n the larger must be p.

Hereafter, we adopt the following conventions. Although both n and p depend on

T we omit this dependence for notational convenience while we keep the dependence on

T for the estimated quantities, the penalization constant, and the number of non–zero

parameters to be introduced below. We use the index 0 to denote the true values of the

parameters and we use ̂ to denote estimated quantities.

Granger Network Estimator. The Granger component matrix G0 with generic ele-

ments g0 ij is estimated by estimating a p-th of order var model via the Adaptive lasso.

As in least squares, estimation of var can be decomposed in n separate regressions each

with T observations and np variables, which is typically more convenient for the numerical

implementation. For each of the n equations αi = (a1i1 . . . a1in . . . api1 . . . apin)′, where ak ij
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is the (i, j)-th element of Ak. The Adaptive lasso estimator of αi is then defined as

α̂T i = arg min
α

1

T

T∑
t=1

(yt i −α′izt)2 +
λG
T

T

n p∑
j=1

∣∣∣∣ αijα̃T i j

∣∣∣∣ , i = 1, . . . , n, (14)

where α̃T i is a pre-estimator. We denote the set of non–zero coefficients of one var

equation as Ai which has qGT i elements. In assumption 4 part (b) we require for any i

qGT i = o

(√
T

log T

)
,

λG
T

T

√
qGT i = o(1), and

λG
T

T

√
T

log T
→∞.

The following theorem establishes the large sample properties of the Adaptive lasso

estimator (14).

Theorem 1. Under assumptions 1, 2, 3, 4 parts (a) and (b), 5, and condition 1 in

Appendix, the following propositions are true for any i = 1, . . . , n.

(a) (Consistent Estimation of the Restricted Problem) Consider the constrained mini-

mizer α̂AiT i of (14) with α̂AiT i j = 0 for j ∈ Aci . Then for T large enough and for any

η > 0 the estimator exists and there exists a constant κG such that

∣∣∣∣α̂AiT i −α0i

∣∣∣∣
2
≤ κG

λG
T

T

√
qGT i,

and, for any j ∈ Ai, sign(α̂AiTi j) = sign(α0i j) with at least probability 1−O(T−η).

(b) (Consistent Selection of the Unrestricted Problem) Consider the minimizer α̂T i of

(14). Then for T large enough and for any η > 0

α̂T i j = 0 for j ∈ Aci ,

with at least probability 1−O(T−η).

(c) (Oracle) Consider the minimizer α̂T i of (14). Then for T large enough and for any

η > 0

||α̂T i −α0i||2 ≤ κG
λG
T

T

√
qGT i,

20



and, for any j, sign(α̂T i j) = sign(α0i j), with at least probability 1−O(T−η).

The first statement of the theorem says that the Adaptive lasso estimator, when re-

stricted to the non–zero coefficients, is consistent (as
λG
T

T

√
qGT i = o(1)) and their sign is also

estimated consistently. The second statement says that the unrestricted lasso estimator

correctly selects the non–zero coefficients asymptotically. Finally, the last statement says

that the unrestricted estimator is also consistent.

The strategy adopted to prove the previous theorem follows the literature of lasso

estimation of large dimensional linear time series models (see e.g. Fan and Peng, 2004;

Meinshausen and Bühlmann, 2006; Peng et al., 2009). We are contributing to the existing

results in two ways. First we consider a large dimensional panel of time series which

requires Adaptive lasso estimation. Second we address the var(∞) case and the bias

due to truncation at lag p. Such bias is of order O(n2/pβ), where β is the rate of decay of

the autocovariances and by assumption 4 part (a.iii) it can be controlled for. While the

first contribution is similar to the ones by Kock (2012); Kock and Callot (2012); Medeiros

and Mendes (2012), the second contribution, to our knowledge, is new to the literature.

The estimator of the var matrices constructed from α̂T i is denoted by ÂTk and we

have

ĜT =

p∑
k=1

ÂTk,

with generic entries ĝT ij. The estimator of the set of the Granger network edges, G as

defined in (10), is

ĜT = {(i, j) ∈ V × V : ĝT ij 6= 0}.

Under the additional assumptions on the structure of the coefficients a0k ij of the var

approximation, we are able to establish consistency of the estimated Granger network. In

particular, assumption 7 imposes that (i) if for each lag k < p we have a0k ij = 0, then

for each k > p we require a0k ij = 0; and that (ii) if for any lag k, a0k ij 6= 0, then, for any

h, we have that
∑h

k=1 a0k ij 6= 0. These are reasonable assumptions that respectively rule

out the cases of (i) zero coefficients followed by non–zero ones and (ii) exact cancellations

of non–zero coefficients. We then have the result on the Granger network estimation.
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Corollary 1. Under assumptions 1, 2, 3, 4 parts (a), (b), 5, 7 and condition 1 in

Appendix, for any η > 0 and for T large enough

ĜT = G,

with probability at least 1−O(T−η). Moreover, for each i, j = 1, . . . , n

p– lim
T→∞

ĝT ij = g0 ij.

Contemporaneous Network Estimator. The contemporaneous component matrix

C0 which has generic elements c0 ij is estimated using a strategy put forward in Peng

et al. (2009). It consists of estimating the concentration matrix of the innovation term in

the var representation (6). Define for any var equation ε̂t i = (yt i − α̂′iTzt). Then, the

entries of the inverse correlation matrix are ρij0 = −c0 ij/
√
c0 iic0 jj are the coefficients of

the regression

ε̂t i =
n∑
j 6=i

ρij0

√
ĉT ii
ĉT jj

ε̂t j + ut i, i = 1, . . . , n. (15)

where ĉii T are pre-estimators of c0 ii. This estimation problem is a regression of n variables

on n(n−1)
2

explanatory variables. Given sparsity of C0, we estimate the n equations as (15)

contemporaneously by means of the lasso estimator

ρ̂T = arg min
ρ

1

T

T∑
t=1

n∑
i=1

(
ε̂t i −

n∑
j 6=i

ρij

√
ĉT ii
ĉT jj

ε̂t j

)2

+
λCT
T

n∑
i=2

i−1∑
j=1

|ρij|. (16)

The estimator of the set of the Contemporaneous network edges, C as defined in (11), is

ĈT = {(i, j) ∈ V × V : ρ̂ ijT 6= 0},

while the estimator of the matrix C0 is denoted as ĈT and has generic entries ĉT ij =

−ρ̂ ijT
√
ĉT iiĉT jj. Finally, the pre–estimators ĉT ii must satisfy condition 2 in Appendix
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and are given by

ĉT ii =

[
1

T − 1

T∑
t=1

û2
t i

]−1

(17)

where ût i are the residuals of regression (15). Estimation is achieved by iterating between

(16) and (17).

If we denote the total number of non–zero parameters, i.e. the number of elements of

C, by qCT , then in assumption 4 part (c) we require

qCT = o

(√
T

log T

)
,

λC
T

T

√
qCT = o(1), and

λC
T

T

√
T

log T
→∞.

The following theorem establishes the large sample properties of the lasso estimator

(16).

Theorem 2. Under assumptions 1, 2, 3, 4 parts (a), (b), (c), and (d), 5, 6, and conditions

1, 2 in Appendix, the following propositions are true

(a) (Consistent Estimation of the Restricted Problem) Consider the constrained mini-

mizer ρ̂CT of (A-5) with ρ̂ ij CT = 0 for (i, j) ∈ Cc. Then for T large enough and for

any η > 0 the estimator exists and there exists a constant κC such that

∣∣∣∣ρ̂CT C − ρ0 C
∣∣∣∣

2
≤ κC

λC
T

T

√
qCT ,

and, for any (i, j) ∈ C, sign(ρ̂ ij CT ij) = sign(ρij0 ), with at least probability 1−O(T−η).

(b) (Consistent Selection of the Unrestricted Problem) Consider the minimizer ρ̂T of

(A-5). Then for T large enough and for any η > 0

ρ̂ ijT = 0 for (i, j) ∈ Cc,

with at least probability 1−O(T−η).

(c) (Oracle) Consider the minimizer ρ̂T of (A-5). Then for T large enough and for any
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η > 0

||ρ̂T − ρ0||2 ≤ κC
λC
T

T

√
qCT ,

and, for any (i, j), sign(ρ̂ ijT ) = sign(ρij0 ), with at least probability 1−O(T−η).

The first statement of the theorem says that the lasso estimator, when restricted to

the non–zero coefficients, is consistent (as
λC
T

T

√
qCT i = o(1)) and their sign is also estimated

consistently. The second statement says that the unrestricted lasso estimator correctly

selects the non–zero coefficients asymptotically. Finally, the last statement says that the

unrestricted estimator is also consistent.

In the proof, analogous to the one of theorem 1, we have also to take into account both

the truncation bias term due to the var(p) approximation, which as explained before is

controlled by assumption 4 part (a), and the bias due to the first step estimation which is

of order O(n
√
qGT iλ

G
T /T ) and can be controlled by assumption 4 part (d). In particular,

as also explained in remark 1 in Appendix, this last assumption implies that if we want a

consistent estimator of both network components we must have a tradeoff relation between

the number of non–zero parameters in the var and the total number of series n. The

higher is the first the smaller must be the second (and viceversa). To our knowledge,

the analysis of the consistency of the high–dimensional sparse partial correlation network

estimator when the data is subject to this type of measurement error is novel in the

literature.

Finally, the following corollary is a straightforward consequence of theorem 2.

Corollary 2. Under assumptions 1, 2, 3, 4 parts (a), (b), (c), and (d), 5, 6, 7, and

conditions 1, 2 in Appendix, for any η > 0 and for T large enough

ĈT = C,

with probability at least 1−O(T−η). Moreover, for each i, j = 1, . . . , n

p– lim
T→∞

ρ̂ ijT = ρij0 .
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Long Run Partial Correlation Network Estimator. Finally, we can estimate the

long run concentration matrix KL0 with generic entries kL0 ij, by combining the sparse

estimators of the Granger and Contemporaneous networks

K̂LT = (I− ĜT )′ ĈT (I− ĜT ),

which has generic entries k̂LT ij. Then the generic entries of the Long Run Partial Corre-

lation network and their estimators are respectively

ρijL0 = − kL0 ij√
kL0 iikL0 jj

and ρ̂ ijL T = − k̂LT ij√
k̂LT iik̂LT jj

.

Finally, the estimator of the set of the Long Run Partial Correlation network edges, K as

defined in (5), is

K̂T = {(i, j) ∈ V × V : ρ̂ ijL T 6= 0},

and we have the final result on network estimation.

Corollary 3. Under assumptions 1, 2, 3, 4 parts (a), (b), (c), and (d), 5, 6, 7, and

conditions 1, 2 in Appendix, for any η > 0 and for T large enough

K̂T = K,

with probability at least 1−O(T−η). Moreover, for each i, j = 1, . . . , nT

p– lim
T→∞

ρ̂ ijLT = ρijL0.

4 Simulation

In this Section we provide a simple illustration of our estimation algorithm using simulated

data. The exercise consists of simulating a multivariate time series process and using the

nets algorithm to detect the linkages of the Long Run Partial Correlation network. We
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replicate the experiment for 1000 times and report the Monte Carlo estimates of the roc

curves of the procedure to assess the performance of the edge detection algorithm.

In line with our empirical application, we simulate a 40 dimensional system. Recall

that the number of possible links in a 40 dimensional system is 780. We assume that the

system is generated by a var(1). The sparsity structure the Granger and Contempora-

neous networks is determined by the Erdős-Rényi random graph model. The parameters

of the var(1) are set as

A1 = 0.3 ιG and Γ−1
ε = I− 0.2 ιC ,

where ιG and ιC are adjacency matrices obtained by the Erdős-Rényi random graph

model. The networks are kept fixed across simulations and in the simulation results we

report below the number of Granger links is 78 and the number of contemporaneous links

is 44. For each replication we run the nets algorithm over a range of pairs of λG
T and

λC
T values. The series of pairs is such that both λG

T and λC
T simultaneously increases. We

perform the experiment for different sample sizes T = 250, 500, 750, 2500.

We replicate the simulation 1000 times for each sample size and in each replication we

compute the proportion of type 1 and type 2 errors. The simulation results are used to

compute the roc curve, that is the plot of the true positive rate (tpr) versus the false

positive rate (fpr). Note that the penalization coefficient determines the true positive

rate and the false positive rate. When λG
T and λC

T are small (large), the proportion of

type 1 errors is high (low) while the proportion of type 2 errors is low (high). Unfor-

tunately, besides special cases, the mapping between the penalization constants and the

true positive rate and false positive rate is unknown.

Figure 4 reports the roc curves for the different sample sizes. The curves show that as

the sample size T increases the performance of the classifier, which is measure by the area

underneath the roc curves, increases rapidly. Overall, the simulation results convey that

the estimation algorithm performs satisfactorily in a sparse high–dimensional setting.
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5 Empirical Application

We illustrate the methodology proposed in this paper with an application to financial

risk networks. The application is motivated by the 2007/2009 financial crisis and is

connected to the strand of literature concerned with the development of quantitative

techniques for the measurement of systemic risk in the economy (see also Adrian and

Brunnermeier, 2009; Brownlees and Engle, 2012; Bisias, Flood, Lo, and Valavanis, 2012;

Brunnermeier and Oehmke, 2012). One of the lessons learnt from the crisis is that high

levels of interconnectedness between companies can be damaging for the entire economy.

When the degree of codependence is high, a large individual shock to a small set of firms

can have potentially vast rippling effects to all other interconnected institutions.

We use stock returns to construct a market based estimate of the network of intercon-

nections for a panel of companies. The application is inspired by the recent contributions

of Billio et al. (2012) and Diebold and Yilmaz (2013). Billio et al. (2012) use a network

definition based on bivariate Granger causality and, similarly to this application, analyse

the network of interconnections among firms using monthly returns. On the other hand,

Diebold and Yilmaz (2013) use a network definition based on variance decompositions

and analyse the network of interconnections among volatilities using volatility measures.

We consider a panel of U.S. bluechips across different industry sectors. The list of

company names and industry groups is provided in Table 6. We work with compound

monthly returns in between January 1990 to December 2010, which correspond to a

sample size of 251 observations. Classical asset pricing theory models like the capm

or apt imply that the unexpected return of these risky assets can be expressed as a

linear function of a few common factors and an idiosyncratic component. The presence of

common factors is however in contrast with the assumption of sparsity. Common factors

represent systematic components through which all asset returns are correlated. Thus in

order to estimate the Long Run Partial Correlation network from the data we first have

to control for common sources of variation. We consider here the case when factors are
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observable and in particular we rely on a simple one factor model, that is

rt i = βirtm + zt i, (18)

where rt i is the rate of return for firm i, rtm is the return of the market factor and zt i is the

idiosyncratic shock of firm i. The objective is then to estimate the network structure of

the idiosyncratic shocks zt i. As it is commonly assumed in empirical finance, the market

factor is treated as observed and here we use the monthly rate of return on the S&P 500

index. In this setting, our asymptotic results will also depend on the estimation error of

βi which can be easily accounted for. In some cases, the common factors are unobservable

and need to be estimated (see e.g. Forni, Hallin, Lippi, and Reichlin, 2000; Stock and

Watson, 2002; Bai, 2003). However, in this case estimation of the network will depend

also on the estimation error of the unobservable factors. We plan to address this issue in

future research.

The idiosyncratic risk network is estimated as follows. For each asset in the panel,

we first estimate the βi coefficient of equation (18) by least squares and construct the

series of residuals. We then run nets on the panel of residuals. The order of the var

approximation p is set to one. The lasso penalties λG
T and λC

T are determined on the

basis of the bic information criterion by searching over a grid of possible values.

The nets algorithm estimate of the idiosyncratic risk network contains 57 edges out of

820 possible ones. The estimated long run covariance matrix associated with the network

is also positive definite. Approximately 88% of the edges come from the Contemporaneous

network component. The vast majority of the partial correlations are positive and the

ones that are negative have small magnitudes from an economic perspective. Interestingly,

the linkages detected in the idiosyncratic risk network account for a significant portion

of the overall variation in stock returns. While the variability explained by the market

factor is 25% on average, the detected linkages account for an extra 15% on average.

The estimated idiosyncratic risk network is reported in Figure 5. In the figure, the

vertex diameter is proportional to the size of the firm the vertex color denotes the industry
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group. We can group vertices in two categories: vertices that belong to a connected com-

ponent and vertices that are not connected to any other company. The vertices that are

not interconnected can be associated with industry groups that can be considered as more

peripheral from an idiosyncratic risk perspective. In fact, all Consumer Discretionary like

Disney (DIS), McDonalds (MCD) and Home Depot (HD) are disconnected. Figure 6

shows the subnetwork of the connected component. In this subgraph many of the links

are within the same industry group, a phenomenon that in the social network analysis

is called similarity: similar firms tend to be connected. Besides the intra–industry link-

ages, the network gives insights on the inter–industry linkages and shows how Financial

and Technology company are the industries that are more interconnected with the other

groups.

Network plots can be visually rich and it is sometimes challenging to grasp all the

information encoded in these graphs. To this end, it is useful to use techniques introduced

in the network literature to decode and synthesise the information in the graph. In

particular, in this analysis we focus on centrality and clustering.

The objective of centrality analysis is to determine which vertices are more central in

the network. Notions of centrality have been associated with systemic risk: a shock to a

node that is very central can potentially have vast rippling effects. This is put forward

in Dungey et al. (2012). Several centrality indices have been proposed in the literature.

Among other proposals, a simple measure of centrality is the number of edges of a node:

the higher the number of edges, the more interconnected and central a node is. Another

popular measure of centrality is the measure of eigenvector centrality, which is at the basis

of the PageRank algorithm used by Google to rank search results (Dungey et al., 2012). In

Figure 7, we report another plot of connected component of the idiosyncratic risk network.

In this plot however, we set the diameter of the vertices proportional to the number

of edges. Interestingly, the plot shows how Financial companies and some Technology

companies are central in the networks: AIG (AIG), Bank of America (BAC), Citigroup

(C) and Apple (AAPL). In order to get further insights on the drivers of centrality, we

regress firm network characteristics on firm characteristics, that is we regress the number
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of vertices of each firm on industry dummies and (log) size. The results are reported in

Table 6. Results show that the only significant effects are the Financial, Material and

Technology Fixed Effects. Interestingly, results show that size does not matter. This

might be driven by the fact that size is not comparable across different industries. Also,

we acknowledge that regression results should be interpreted with caution given the small

sample size of 41 firms. Lastly, Figure 8 reports the Lorentz curve associated with the

number of edges in the network. The plot shows that there is a moderate degree of

“network inequality”, in the sense the top 20% vertices in terms of number of edges

account for more than 50% of the interconnections in the network.

Another interesting network characteristic that is often encountered in social networks

is clustering. Clustering refers to the fact that neighbouring vertices tend to be connected

to a similar set of neighbours: A is connected to C and B is connected to C, then it is

likely that A and B are also connected. Again, different types of indices can be used to

measure clustering. Here we use a local measure of clustering: for each pair of vertices,

we compute the proportion of common neighbour of the two vertices. We compute this

index for the idiosyncratic risk network. Out of 802 pairs, 172 have a clustering index

greater than zero (approximately 20%). We report the histogram of the index in Figure

9 (conditioning on the pairs with positive clustering). The histograms shows that the

density of ties in the network can be quite high. For those pairs whose clustering index

is greater than zero, the average proportion of common neighbours is 0.246. High degree

of clustering implies that the network has “small–world” characteristics: if clustering is

large then the number of edges connecting any two vertices is going to be small. From

a risk perspective, ceteris paribus, higher clustering implies that a shock to an individual

node is going to have larger effects in the network.

Overall, the results show that the idiosyncratic risk network estimated by the nets

algorithm provides interesting insights on the conditional dependence structure of id-

iosyncratic shocks in the panel. The network exhibits several of the empirical regularities

typically encountered in social networks.
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6 Conclusions

In this work we have introduced novel network techniques for the analysis of high–

dimensional multivariate time series data. We provide a network definition that is specif-

ically tailored for multivariate time series based on long run partial correlations. We pro-

pose a simple estimation procedure based on the lasso that we name nets to estimate

Long Run Partial Correlation networks. The large sample properties of the procedure

are analysed and we provide conditions for consistent estimation of the sparse high–

dimensional networks. Finally, we illustrate the methodology with a financial network

analysis application.
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Meinshausen, N. and Bühlmann, P. (2006). High Dimensional Graphs and Variable Selection
with the Lasso. The Annals of Statistics, 34, 1436–1462.

Newey, W. K. and West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and
autocorrelation consistent covariance matrix. Econometrica, 55, 703–708.

Peng, J., Wang, P., Zhou, N., and Zhu, J. (2009). Partial Correlation Estimation by Joint Sparse
Regression Models. Journal of the American Statistical Association, 104, 735–746.

Peterson, C., Vannucci, M., Karakas, C., Choi, W., Ma, L., and Maletić-Savatić, M. (2013). In-
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Table 1: U.S. Bluechips

ID Tick Name Sector

1 BRK Berkshire Hathaway B Financial
2 C Citigroup Inc. Financial
3 BAC Bank of America Corp. Financial
4 AXP American Express Co. Financial
5 AIG American International Group Inc. Financial
6 MCD McDonalds Corp. Consumer Discretionary
7 DIS Walt Disney Co. Consumer Discretionary
8 HD Home Depot Inc. Consumer Discretionary
9 PG Procter & Gamble Co. Consumer Staples
10 KO Coca-Cola Co. Consumer Staples
11 WMT Wal-Mart Stores Inc. Consumer Staples
12 PEP PepsiCo Inc. Consumer Staples
13 SLB Schlumberger Ltd. Energy
14 OXY Occidental Petroleum Corp. Energy
15 PFE Pfizer Inc. Healthcare
16 JNJ Johnson & Johnson Healthcare
17 MRK Merck & Co. Inc. Healthcare
18 ABT Abbott Laboratories Healthcare
19 AMGN Amgen Inc. Healthcare
20 GE General Electric Co. Industrials
21 UTX United Technologies Corp. Industrials
22 UNP Union Pacific Corp. Industrials
23 MMM 3M Co. Industrials
24 CAT Caterpillar Inc. Industrials
25 BA Boeing Co. Industrials
26 DD E.I. DuPont de Nemours & Co. Materials
27 FCX Freeport-McMoRan Copper & Gold Inc. Materials
28 DOW Dow Chemical Co. Materials
29 NEM Newmont Mining Corp. Materials
30 PPG PPG Industries Inc. Materials
31 AAPL Apple Inc. Technology
32 IBM International Business Machines Corp. Technology
33 MSFT Microsoft Corp. Technology
34 T AT&T Inc. Technology
35 ORCL Oracle Corp. Technology
36 CSCO Cisco Systems Inc. Technology
37 INTC Intel Corp. Technology
38 DUK Duke Energy Corp. Utilities
39 SO Southern Co. Utilities
40 D Dominion Resources Inc. (Virginia) Utilities
41 AEP American Electric Power Co. Inc. Utilities

List of company names and sectors.

Table 2: Network Regression

Variable Estimate

Consumer Staples FE 0.62
Energy FE 1.15
Financial FE 5.66**
Healthcare FE 2.05
Industrials FE 1.33
Materials FE 4.91*
Technology FE 2.76*
Utilities FE 1.23
(Log) Size 0.06
R2 0.40

Number of Node Degree and Firm Characteristics.
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Figure 1: Partial Correlation Network Example.
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The figure displays the partial correlation network associated with Example 1.

Figure 2: Long Run Partial Correlation Network Example.
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The figure displays the Granger (top), Contemporaneous (middle), and Long Run Partial Correlation
(bottom) networks associated with Example 4.
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Figure 3: Long Run Partial Correlation Network Example.
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The figure displays the Granger (top), Contemporaneous (middle), and Long Run Partial Correlation
(bottom) networks associated with Example 5.
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Figure 4: Monte Carlo Evidence

T=250 T=500

T=750 T=2500
The figure displays the roc curves associated with the Monte Carlo experiment of Section 4. The set of

penalization constants is λ = {l 0.1T : l = 1, ..., 20} for both lasso regressions.
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Figure 5: Idiosyncratic Risk Network.

Plot of the full idiosyncratic risk network.
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Figure 8: Edge Concentration.

The figure shows the Lorentz curve of the edge concentration.

Figure 9: Clustering

The figure shows the histogram of the number of common neighbours for all the nodes pairs with at
least one neighbour in common.
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