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DFM with time-varying parameters

Summary

Overview of the paper

• Dynamic factor models where all model parameters are considered
time-varying

• Mixture between observation driven and parameter driven
approaches

• Variances are made TV using observation driven approach

• Loadings and VAR coefficients are made TV using parameter driven
approach

• Two algorithms to approximate posterior mode: 1. filtering based,
2. simulation based

• Two applications: 1. macroeconomic forecasting, 2. yield-spread
forecasting

• For the discussion I will focus on algorithm 1 and application 1
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Equations

xt = Λt ft + εt εt ∼ N(0,Vt)

λt = λt−1 + νt νt ∼ N(0,Rt)

ft = Bt ft−1 + ηt ηt ∼ N(0,Qt)

βt = βt−1 + υt υt ∼ N(0,Wt)

Vt = δ1Vt−1 + (1− δ1)diag(ε̂t ε̂
′
t)

Rt = (µ−11 − 1)Cov(λt−1|x1, . . . , xt−1)

Qt = δ2Qt−1 + (1− δ2)η̂t η̂
′
t

Wt = (µ−12 − 1)Cov(βt−1|x1, . . . , xt−1)
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DFM with time-varying parameters

Estimation

Algorithm 1

1 Compute f̂ PCA

2 Compute λ̂t = E(λt |X ; f̂ PCA), for t = 1, . . . ,T

3 Compute β̂t = E(βt |f̂ PCA), for t = 1, . . . ,T

4 Compute f̂t = E(ft |X ; λ̂, β̂), for t = 1, . . . ,T

• Step (2); also gives Vt and Rt

• Step (3); also gives Qt and Wt
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DFM with time-varying parameters

Model

General comments and questions

1 Ambitious paper!!!

2 Consistency of step (1) in algorithm 1? Bates, Plagborg-Moller,
Stock & Watson (2013) give rates for λi,t? In addition Bt will also
require some restrictions.

3 Imposing some structure on the loading matrix? Testing for
parameter instability?

4 If forecasting and computational speed are the goals; why not
entirely observation driven?

5 Reasoning the particular observation driven structure?
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DFM with time-varying parameters

Model

EWMA vs GAS update

• EWMA update per element

Vi,t = δ1Vi,t−1 + (1− δ1)ε̂2i,t

• GAS update per element

Vi,t = δ1Vi,t−1 + (1− δ1)St(−
1

2
F−1i,t +

1

2
ε̂2i,tF

−2
i,t )

• where ε̂i,t = xi,t − λ̂t|t−1 f̃t and f̃t is the current estimate for ft

• and St is a scaling term, Fi,t = f̃ ′t P̂i,t f̃t + Vi,t−1

• Main difference is that GAS update also depends on predictive
variance loadings

• Possible room for improvement see Blasques, Koopman & Lucas
(2014)
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DFM with time-varying parameters

Estimation

Some further questions?

1 Are the variances in step (4) treated as known? if so why?
Re-estimating Vt and Qt is possible? When doing forecasting this
will make a difference.

2 In general: how are the forecasts constructed?

3 Is it possible to estimate model parameters (µ’s and δ’s) in steps (ii)
and (iii) using MLE? Similar as in Eickmeier, Lemke & Marcellino
(2011). Not much work and saves grid-searches?

4 How do you initialize V0 and Q0 in general?
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Illustration
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Illustration

Comments

1 The PCA estimator is based on homoscedastic error-variances
Vt = Inσ. In the macro illustration Vt is initialized with V0 = IN .
When δ1 < 1 two things change: (1) the variances become
heteroskedastic and (2) the variances become time-varying. The
improvement in forecasting is entirely attributed to the
time-variation in the paper. A comparison with standard MLE
would give more insight into the role for heterogeneous variances;
see also Bai & Li (2012).

2 In the simulation study there is also a comparison w.r.t. two-step
estimator of Doz, Giannone & Reichlin (2011), which shows that
4-steps improves two-step when time-variation in the loadings is
large. Given that the loadings and factor coefficients are not
time-varying in this application a comparison with two-step would
be insightful.
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Conclusions

Final remarks

• I enjoyed reading the paper.

• Thank you!
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