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Abstract

We consider the ability of an array of time series models to forecast net interest
margins (NIMs) both for an aggregate of large U.S. banks and for a number
of these banks individually. The forecast models that we consider are those
that in other applications have been found to be near the frontier of forecast
performance. Of the models that we consider that are similar to those used in
the macro-banking literature, the only ones to deliver forecasts that improve
on a random walk—and here only marginally—are those derived from an aver-
age of the forecasts of many simple bi-variate models (that include NIMs and
Treasury-yields of a number of different maturities). A few other models—such
as, those specified in first differences—also improve on a random walk but here
too the improvement is marginal. As a result even our best performing mod-
els have very large forecast errors. Consequently, even stressful interest rate
risk scenarios, such as those used in the Federal Reserve’s 2013 Dodd-Frank
Act stress tests, imply NIM outcomes that are statistically indistinguishable
from those obtained under the stress test’s baseline scenario. This degree of
uncertainty around the paths of key performance metrics for banks may limit
the ability of stress-test results to maintain confidence in the banking sector,
especially during periods of crisis.
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1 Introduction

We examine how well an array of time-series models can forecast net interest mar-

gins (NIMs), the main source of revenue for “traditional” banks. The models and

the techniques that we consider to forecast NIMs—defined as the ratio between net

interest income (NII) and interest earning assets—have, in other applications, been

found to be near the frontier of forecast performance. Our focus in this analysis

is on conditional NIM forecasts, where the variables that we condition on are key

macroeconomic variables. Our motivation for focusing on NIM forecasts that condi-

tion on macro variables is based mainly on two considerations. First, one of the key

practical applications of our analysis is scenario-based stress testing—such as those

required for the largest U.S. bank holding companies by the 2010 Dodd-Frank Act

(DFA) and under the Federal Reserve Board’s 2012 Capital Planning Rule—which

conditions on a set of macroeconomic variables. Second, focusing on conditional

forecasts allows us to separate the task of modeling and forecasting NIMs from that

of forecasting interest rates, which is itself a sizable topic—see Duffee (2012).

Our results are not encouraging for NIM forecasts. Although all the models that

we consider improve on a random walk in-sample, far fewer forecasts improve on

a random walk out-of-sample—and here only marginally. Among the models that

are similar to types of models that have been used in the macro-banking literature

to model NIMs, the only ones that can improve on a random walk out-of-sample

are those derived from an average of the forecasts of many simple bi-variate models

(that include NIMs and Treasury-yields of a number of different maturities). A

few other models—such as, those specified in first differences—also improve on a

random walk, though again only marginally, and ultimately all of these models

yield forecast errors that are very large and on the order of the variability of NIMs

themselves. As a result, even dire scenarios, such as the stressful interest rate risk

scenarios used by the Federal Reserve in the 2013 DFA stress tests, imply NIMs

that are statistically indistinguishable from those obtained under the stress test’s

1



baseline scenario.

As noted one of our key motivations for studying NIMs’ conditional forecast per-

formance is the prominence of macroeconomic stress testing and capital planning

as one of the key post-crisis reforms to U.S. capital regulation. Most significantly,

stress testing and capital planning introduce forward-looking considerations to the

assessment of bank capital adequacy by requiring that so-called pro forma cap-

ital ratios—that is, capital ratios projected to obtain under some future specified

stressful scenarios—also satisfy regulatory minimum capital ratios.1 Assessing bank

capital adequacy based on stressed pro forma capital ratios entails (i) formulating

stressful macroeconomic and financial scenarios upon which pro forma capital ratios

are calculated and (ii) developing econometric models that can translate these stress-

ful scenarios into revenues, losses, and ultimately bank pro forma capital ratios. It

is the second of these tasks that concerns us in this paper and more specifically for

revenues generated from banks’ borrowing and lending activities

There are several reasons for our focus on revenue generation and on net interest

income (NII), its largest component.2 First, of all of the variables that need to

be projected in conducting stress tests, revenue generation is where the state of

modeling is at its earliest stages. Second, while it is typical to think of stressful

scenarios as those in which credit-risk intensifies and large loan losses materialize,

stressful scenarios in which revenue generation plummets or even turns negative as a

result of the configuration of interest rates are equally important. Indeed, depressed

or negative NIMs resulting from inverted yield curves have been a central feature of

a number of banking crises and as such it is important that the revenue generation

models used in stress tests can also capture these types of developments. Third, even

1The consequences of one or more of a bank’s pro forma capital ratios falling below its regu-
latory minimum is that the bank would not be approved to pay dividends or make other capital
distributions.

2In the decade prior to the zero interest-rate environment interest income accounted for about
two-thirds of large banks’ total income and about 40 percent of expenses (excluding provisions).
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for scenarios that are primarily oriented to adverse credit risk outcomes, projections

of bank revenues just as an important in calculating stressed pro forma capital ratios

as are loan charge-offs and loan-loss provision projections. We elaborate on these

motivations below.

As noted, of all of the variables that need to be projected in conducting stress

tests, revenue generation is where the state of modeling is least advanced. Some

of this reflects the fact that projecting credit losses through probability of default

(PD), loss given default (LGD), and exposure at default (EAD) models has had a

much longer tradition both in the industry and in the research literature given the

central role these parameters play in assessing credit risk both for banks’ own risk-

management practices and under that Basel II internal ratings-based approach.

Indeed it is PD, LGD, and, in some cases, EAD models, estimated on loan-level

data, that are used to project charge-offs and loan-loss provisions conditional on the

scenarios in the DFA stress tests, whereas it is more aggregate bank-level income

and expense type models—similar to those used in this paper—that are used to

project revenues.3 To be sure, the recent importance of stress testing has led to

the development of a number of models that link NIMs to macroeconomic variables

and here, for the U.S., Covas, Rump, and Zakrajsek (2012) and Hirtle, Kovner,

and Vickery (2013) are two notable examples. This research, however, has placed

relatively less emphasis on evaluating the conditional forecast performance of these

models, which we consider to be important given these models’ ultimate use for

generating pro forma capital ratios under stressed scenarios.4

While it is typical to think of stressful scenarios as those in which credit risk

3See Saidenberg and Schuermann (2003) for a discussion of PD, EAD, and LGD modeling and
FRB (2014) for a description of the models used to project charge-offs, loan-loss provisions, and
also revenue variables for the DFA stress tests.

4Covas, Rump, and Zakrajsek (2012) do present some forecast evaluation results in order to
demonstrate the benefits of focusing on quantile projections. However, they only report results for
net chargeoffs and pre-provisioning net revenue and their focus is on density forecasts generated
by their quantile regression model.
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intensifies and large loan losses materialize, stressful scenarios in which revenue gen-

eration plummets or even turns negative are equally important and should therefore

be a development that models used for stress testing can capture. To be sure, losses

that arise from this source of risk—called, interest rate risk—did not feature in the

most recent crisis in which bank losses mounted as a result of loan defaults. But

there are ample examples of other earlier banking crises in which adverse develop-

ments in NIMs have played a significant role. The most familiar of these from the

U.S. perspective is the Savings and Loans (S&L) crisis that started in the early

1980s with short-term interest rates rising above long-term interest rates—in part,

as a result of the Volcker disinflation—and resulted in interest expenses rising above

interest income, NII and NIMs turning negative (in the thrift sector), and sizable

losses and ultimately a substantial number of bank failures. Likewise, elevated

short-term interest rates that depressed NII and NIMs contributed to the Nordic

banking crises of the late 1980s and early 1990s (in Finland, Sweden, and Norway),

as well as to the U.K.’s secondary banking crisis of the early 1970s.

Even for scenarios that are primarily oriented to adverse credit risk outcomes,

projections of bank revenues are just as an important part of pro forma capital

estimation as loan charge-offs and loan-loss provision projections. Indeed, in times

of stress, the ability of a bank to remain viable depends just as much on its abil-

ity to generate revenues as it does on its losses on current assets. This is because

bank revenues reflect a bank’s ability to replenish its capital following losses.5 One

way to see this is to consider the magnitudes of the projected losses, revenue, and

net income in the severely adverse scenario of the most recent DFA stress tests.6

In this scenario, cumulatively through 2015:Q4, generated pre-provision net rev-

enue (PPNR) is $316 billion, resulting total losses are $533 billion, and implied net

income before taxes in -$217 billion. Over this period, the aggregate tier one com-

5See Governor Tarullo’s April 2012 speech “Developing Tools for Dynamic Capital Supervision”
for an articulation of this view.

6See page 27 of FRB (2014) for the figures that follow.
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mon ratio drops from 11.5 percent at the start of the stress test simulation period

(2013:Q3) and to its lowest point of 7.6 percent, which since risk-weighted assets

are $8,374 billion at the start of the simulation period and $8,656 billion at the end,

means that tier one common equity drops from $963 billion to $658 billion. This

$305 billion drop in tier one common equity, we interpret to equal net income losses

combined with taxes, the phased-in effects of other comprehensive income losses,

and the DFA stress tests’ assumed path of dividend payments. Roughly speaking,

a 0.22 p.p. higher or lower NIM—which is approximately the standard deviation of

NIMs over the sample period we consider in this paper and is substantially less than

many of our forecast models’ root mean-squared (forecast) errors—implies a 6.6 per-

cent higher or lower level of net interest income, a 10 percent higher or lower level

of PPNR, and—assuming the same loan losses, taxes, and dividend payments—a

0.4 p.p. higher or lower pro forma capital ratio. This 0.4 p.p. capital ratio differ-

ence is roughly on the same order of magnitude as what CCAR 2012 BHC proposed

capital distributions implied for bank capital, indicating that the magnitude of our

forecast errors are large.7

Ultimately—and from a microprudential perspective—one of the key purposes

of including forward-looking and stressed pro forma capital ratios as part of the reg-

ulatory capital regime is to demonstrate to bank creditors and counterparties that

the banks with which they are transacting are able to withstand a severe macroeco-

nomic outcome and, in this environment, continue to meet their obligations.8 The

7The Fed has not published the implications of BHCs undertaking proposed capital distributions
versus no capital distributions since CCAR 2012, so for this reason we can only compare our
forecast-error magnitudes with these results. In brief, in CCAR 2012, the aggregate tier one
common ratio dropped from 10.1 percent at the start of the stress test simulation period (2011:Q3)
and to its lowest point of 6.2 percent, when firms undertook their proposed capital distributions,
and to 6.8 percent, when firms undertook no capital distributions. See page 23 of FRB (2012) for
these figures.

8From a macroprudential perspective, the purpose is also to demonstrate that the banking sector
is able to withstand a severe macroeconomic outcome and, in this environment, is continue to serve
its key credit-intermediation function in the macroeconomy, thereby not creating any additional
source of drag to the weak economy.
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results of such programs can, however, only be effective in maintaining creditor

and counterparty confidence in banks if observers are convinced of the ability of

supervisors to assess the consequences to bank capital ratios of their scenarios. It

is therefore important to consider the ability of forecast methods at the frontier

of efficiency to disentangle the implications of baseline and stress scenarios, since

their not being able to do so dramatically detracts from the ability of stress-test

programs to maintain confidence in the banking system.9

To consider this the paper proceeds as follows. Section 2 provides a review of the

literature on NIMs with an eye to cataloging variables that have been found useful

to explain the evolution of NIMs. Section 3 turns to the models that we develop

to forecast NIMs and the approaches that we will use to evaluate and understand

relative forecast performance. Section 4 describes the data used to estimate the

forecast models and Section 5 reports our forecast results. We document that of

the models that are similar to those used in the macro-banking literature, the only

forecasts that improve on the random walk are those that average the forecasts

of many simple (NIM and Treasury-yield) bi-variate models and here they do so

only marginally. Models specified in first differences also improve on a random

walk but again only marginally. As such, our out-of-sample our forecasts errors

are large, especially relative to the variability of NIMs. Section 6 uses two of the

paper’s models to consider the path of NIMs under the scenarios published by

the Federal Reserve as part of the 2013 Dodd Frank Act stress tests. We find

that because our forecast errors are so large, the NIM outcomes that we obtain

under the stress scenarios are are statistically indistinguishable from those obtained

under the baseline and argue that this degree of uncertainty around the paths of

key BHC variables may compromise one of the key goals of stress testing and its

9Note that this type of stress test program is not limited to the U.S., where bank stress testing
has been undertaken annually since 2011 as well as during the financial crisis in early 2009: Stress
testing of banks based on scenarios was undertaken during the Nordic banking crises to shore up
confidence in the ability of banks to withstand the crisis and more recently and more extensively
by the European Banking Authority for the European Union in 2009, 2010, and 2011.
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associated capital planning, which is to maintain the confidence of bank credits

and counterparties including in periods of severe financial sector stress. Section 7

concludes.

2 Related literature and variable selection

There are two strands in the literature on modeling NIMs. The first strand empha-

sizes the link between interest rates of various maturities and NIMs and lies more in

the macro-banking tradition, while the second strand focuses on the optimal margin

set by banks and lies more in the micro-banking tradition. Our paper lies in the

first strand of the literature and so we focus our discussion here.

Covas, Rump, and Zakrajsek (2012) and Hirtle, Kovner, and Vickery (2013) are

two recent papers in the macro-banking tradition that both link the level of NIMs

to the level of the slope of the yield curve and the level of a short-term interest rate.

This choice of variables reflects the two key services supplied by banks that their

earnings from interest income reflect; specifically, maturity transformation services

and deposit transactions services. The slope of the yield curve reflects the return to

banks from maturity transformation and is thus is expected to enter NIM models

with a positive sign. The short-term market interest rate in NIM models reflect the

fact that bank deposit rates, while typically lower than market rates (since they

provide transactions services), are constrained by the zero lower bound. As such,

the short rate places an upper limit on what banks can earn from the provision

of their transactions services. As a result, the short rate is expected to enter the

model, also, with a positive sign.

Both Covas, Rump, and Zakrajsek (2012) and Hirtle, Kovner, and Vickery

(2013) measure the slope of the yield curve in their respective NIM models with

the 10-year to 3-month Treasury term spread and short-term market rates with the

3-month Treasury bill rate, as too do English (2002), English, den Heuvel, and Za-
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krajsek (2012), and Alessandri and Nelson (2012)—other papers in this tradition.

All of these papers estimate NIM models with slightly different purposes in mind

but all use essentially the same interest-rate variables to summarize the slope and

the level of the yield curve.

The NIM models of Covas, Rump, and Zakrajsek (2012) and Hirtle, Kovner,

and Vickery (2013) are developed for stress testing and are part of much larger

aggregative models of a number of components of banks’ financial statements. These

models are both estimated on panel data with the most notable difference between

these models being the estimation techniques they employ: Least squares regression

in the case of Hirtle, Kovner, and Vickery (2013) and quantile regression in the case

of Covas, Rump, and Zakrajsek (2012).

Like our paper, English (2002) focuses exclusively on NIMs, although he does

so for a number of countries (that is, all G-7 countries except for France, and for

Australia, Norway, Sweden, and Switzerland), and, additionally, he considers asset

yields and liability yields separately—the two measures that when differenced imply

NIMs. The main focus of English (2002) is understanding how well the aggregate

banking sectors in the countries that he studies appear to have managed the interest

rate risk that they face on their earnings, as such he uses aggregate data (rather

than firm-level data) and does not focus on the conditional forecasting performance

of his model.

English, den Heuvel, and Zakrajsek (2012) consider the relationship between

NIMs and the slope of the yield curve and short-term rates for a panel of banks,

however, in contrast to the other studies they allow for the specific coefficients

estimated for each bank to vary as linear functions of bank balance sheet ratios that

one a priori might think would be relevant to net interest income. In particular,

these ratios include the maturity gap between bank assets and liabilities, the deposit

share of liabilities, and the loan share of assets. Again, since English, den Heuvel,

and Zakrajsek (2012) are focused on understanding the determinants of NIMs they
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do not consider conditional forecast performance. Alessandri and Nelson (2012),

who use data for the U.K., also considers the relationship between NIMs and the

slope of the yield curve and short-term rates for a panel of banks, with an ultimate

interest in investigating the possibility of hedging between banks’ income generation

from their lending and deposit-taking activities and their trading book activities,

which they document to be respond to interest rates in the opposite direction to

NIMs. Here too, however, the authors do not consider forecast performance.

The macro-banking papers that we have just discussed rely on two summary

measures of the yield curve to model NIMs—in particular, the level and slope of the

yield curve—and all focus on modeling the level of NIMs. The literature modeling

the yield curve also considers curvature as a key summary measure of the yield

curve, and so to the extent that yields at more than just the 3-month and 10-year

points on the yield curve are relevant for banks’ net interest income, we also consider

yield-curve curvature.

A separate strand of the NIM modeling literature comes from the micro-banking

tradition, which focuses on the determinants of the loan rates and deposit rates

that banks set as implied by the maximization of their profits. Papers in this

tradition—such as, Ho and Saunders (1981), Angbazo (1994), and Saunders and

Schumacher (2000)—emphasize a very different set of variables for modeling NIMs;

in particular, the degree of competition facing banks in deposit and loan markets,

banks’ degree of risk aversion to finding themselves with deposit supply without

corresponding loan demand or loan demand without corresponding deposit supply,

and the volatility of interest rates. We intend (in future drafts) to add some of these

variables from the micro-banking literature to our forecasting models for robustness

analysis, especially since the current draft leaves us with the unanswered question

of what—at the macro level—does forecast NIMs, given that interest rates do not

seem to do so.
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3 Data

We perform our forecast evaluation analysis of aggregate NIMs over two sample

periods 2000q1 to 2008q2 and 2000q1 to 2013q4. We use the sample that ends in

2008q2 as our baseline (and preferred) sample period due the complications posed

by the last half decade of data. The most notable of these is, of course, the zero

interest rate environment, which poses significant challenges for many models of

interest rates. Additionally, the full repeal of Reg. Q in the DFA, which now allows

interest to be paid on business checking accounts, could also be a complication,

although perhaps less so to date given the low interest rate environment. We do,

however, extend our analysis to 2013q4 for robustness analysis and to compare (in

future drafts) our model forecasts with those of equity analysis, which only exist

from 2008 onwards.

3.1 Net interest margins

3.1.1 Aggregate net interest margins

For our forecast analysis of aggregate NIMs we use data from the quarterly Con-

solidated Reports of Condition and Income (Call Report) that every national, state

member, and insured nonmember bank is required to file on the last day of each

quarter by the Federal Financial Institutions Examination Council (FFIEC). The

Call Report data used in this analysis are adjusted for bank mergers and acquisi-

tions, using structure data from the National Information Clearinghouse (NIC) on

mergers and acquisitions. Foreign entities are excluded and domestic subsidiaries

are aggregated up to the parent, bank-holding-company (BHC), level.10 To get an

aggregate banking sector measure of NIMs, we aggregate NIMs for the top 25 BHCs,

as ranked by total assets, where this is assessed quarterly.

10NIM data are adjusted for mergers between commercial banks by comparing balance sheet
values of interest income, interest expenses, and interest-earning assets at the end of the quarter
with those at the beginning of the quarter, accounting for amounts acquired or lost during the
period because of mergers – see the appendix in English and Nelson (1998).
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The top panel of figure 1 shows the historical time series of NIMs while the mid-

dle panel shows the two series—Interest Income divided by Interest Earning Assets

and Interest Expenses divided by Interest Earning Assets—that when differenced

imply NIMs. The historical time series of NIMs shows a very large and peculiar

spike in 1988q4. This large spike stems from late payments from Brazil during the

Latin American debt crisis and it is for this reason that our baseline sample starts

in 1989q1 (rather than at the start of the series).

In the latter part of the sample period that we consider in this paper there were

two banking-sector structural changes that have implications for measured NIMs.

The first change was the Fed starting to pay, in the fourth quarter of 2008, interest on

excess reserves. This change meant that excess reserves, which were previously not

part of interest earning assets, became part of interest earning assets, so increasing

the denominator of NIMs. As the same time the value interest income also increased,

although, only by a small amount given the very low interest rate paid on excess

reserves. As such, the overall effect on NIMs of the Fed paying interest on excess

reserves, is to push it down. The amount by which this structural change pushes

down NIMs can be seen by comparing the black solid and black dashed lines in the

top panel of figure 1. We also show in the middle panel how the interest income and

expense components of NIMs change as a result of making this adjustment. The

second change was Financial Accounting Statements (FAS) 166/167 coming into

effect at the beginning of 2010. These new standards resulted in banks needing to

bring nearly $362 billion in assets and liabilities back onto their balance sheets of

which nearly 90 percent were consumer loans.11 Of these consumer loans a sizable

fraction were credit cards, which have much higher interest margins than other types

of loans. Thus as a result of FAS 166/167 NIMs jumped notably in the first quarter

of 2010, as can be seen by comparing the black solid and black dotted lines in the

11See “A jump in consumer loans,” Economic Synopses 2010-18, by Hoda El-Ghazaly and Yadav
Gopalan, St Louis Fed.
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top panel of figure 1. We also show in the middle panel how the interest income

and expense components of NIMs change as a result of making this adjustment.

The NIM series that we use when we extend our analysis our to the end of 2013

combines the two adjustments shown in the top panel of figure ??.

3.1.2 Firm-level net interest margins

For the firm-level analysis (which we plan to undertaken in future drafts) the data

that we use is from the quarterly Consolidated Financial Statements for bank hold-

ing companies, called the Y-9-C. For each BHC in our sample—which is roughly

the 30 BHCs that will be in the 2014 DFA stress tests—mergers are accounted for

using a so-called pro forma approach. That is, a historical time series for each BHC

is constructed assuming that all of the institutions that are now part of the BHC

always were part of the BHC. Our current data set starts in 1996q1, which is when

the pro forma Y-9-C data that we use for this analysis starts. Y-9-C data, however,

does extend back to 1991, so our sample period for the firm-level analysis should be

able to be extended back to then as well.

3.2 Treasury yields

The yields data are derived using a smoothing technique from Gurkaynak, et al.

(2007), based on Nelson and Siegel (1987) and Svensson (1994), which allows for

daily measures of an off-the-run Treasury yield curve. We use quarterly yields for

twelve maturities in our models: 3-month, 6-month, 9-month, 1-year, 2-year, 3-

year, 5-year, 7-year, 10-year, 15-year, 20-year, and 30-year.12 The yields, which are

plotted in the lower panel of figure 1, are quarterly averages of daily yields.

12Daily yields are published with a two-day lag under the base mnemonic SVENY at
www.federalreserve.gov/econresdata/researchdata/feds200628 1.html.
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3.3 Variables suggested by the micro banking literature

The two variables from the micro-banking literature that we (plan to) add to our

forecasting models are the degree of competition facing banks in deposit and loan

markets and the volatility of interest rates. The degree of competition that banks

face is captured by the relative size of the shadow banking industry. This is mea-

sured by the volume of assets in the shadow banking industry relative to the size of

the total banking industry, that is, both traditional and shadow banking (as mea-

sured by the combined assets of these these two industries). We prefer to use the

size of the traditional banking industry as our measure competition—rather than

measures of competition within the banking sector itself, like Herfindahl Hirschman

indices—for the reason that competition from the shadow banking sector has been

the main source of increased competition faced by the traditional banking sector

that has over time compressed interest margins. Importantly, competition from the

shadow banking sector adversely affects both sides of traditional banks’ balance

sheets; that is, it puts upward pressure on the deposit rate that traditional banks

must pay to attract deposits—since the shadow banking sector offers alternatives to

deposits like money market mutual funds—and it puts downward pressure on the

lending rate that traditional banks can earn—since the shadow banking sector offers

alternatives to bank loans like loans from finance companies. The relative size of the

shadow banking industry can be easily calculated from the U.S. Financial Accounts

(previously known as the Flow of Funds Accounts), where the traditional banking

sector consists of commercial banks, savings institutions, and credit unions and the

shadow banking sector consists of broker-dealers, ABS issuers, finance companies,

mortgage pools, and funding corporations. This series is plotted in the top panel of

figure 2.

We capture the volatility of interest rates by the Merrill Lynch Option Volatility

Estimate (MOVE) index, which is a market-based estimate of future Treasury bond

yield volatility. The MOVE Index reports the average implied volatility across a

13



wide range of outstanding options (with expiry dates of approximately one month)

on two-year, five-year, 10-year, and 30-year U.S. Treasury securities. This series is

plotted in the middle panel of figure 2.

3.4 Bank equity-analysis forecasts and Blue Chip Treasury rate

forecasts

The last two pieces of data that we mention are bank equity-analyst forecasts of

individual BHC NIMs, which we will use for comparison against our model-based

BHC-specific NIM forecasts, and Blue Chip (Financial) Treasury rate forecasts,

which we will use (in future drafts) to condition our model-based BHC-specific

NIM forecasts. The financial-information firm SNL Financial LC has since 2007q4

collected bank equity analysts’ forecasts for a number of key variables in BHC

financial statements. For any quarter SNL begins collecting forecasts about two

years in advance, however, at this horizon only a very small number of analysts

report forecasts. Forecasts are more widely reported by analysts a year in advance

of the quarter, which is what we use for our analysis.

The BHCs for which (in future drafts) we consider analyst forecasts are as

close as possible to the 30 BHCs that were included in the 2014 DFA stress tests.

Ultimately, this ends up being 19 BHCs (though, not the same BHCs that were part

of the original SCAP and original CCAR stress tests). The BHCs that we cannot

make comparison with are either those for which we do not have historical BHC

data on which to estimate our bank-specific NIM models (such as, Ally, American

Express, Discover, Goldman Sachs, HSBC North America, Morgan Stanley, and

Santander/Sovereign) and those for which we do not have SNL forecasts (such as,

BBVA, BMO, RBS, and UnionBanCal). In all cases we use only the average across

all analysts for the BHC for the quarter since this was all that was available to us.

For all of our BHCs we have about 20 different equity analysts forecasts per BHC,

although for several BHCs we have notably more, particularly for the larger BHCs,
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where we typically have close to 30.

Importantly, equity analysts do not have realized interest rates available to them

in forming their forecasts, which is something that in all of our other model-based

NIM forecast evaluation analysis we take as being available. So as not to give our

model-based NIM forecasts an unfair advantage in this forecast comparison exercise

we generate our model-based NIM forecasts conditional on Blue Chip (Financial)

Treasury-rate forecasts and, more specifically, the rate on the 3-month, 6-month,

and 1-year Treasury bills, the rate on 2-year, 5-year, and 10-year Treasury notes,

and 30-year Treasury bonds. Blue Chip releases these forecasts on the first day of

each month. We therefore generate all of our NIM-model forecasts—conditional on

Blue Chip Treasury rate forecasts—as if we were doing so on the first day of the

quarter; that is, January 1, April 1, July 1, and October 1. Given this timing of

our NIM-model forecasts, the SNL forecasts that we use for comparison are those

that were recorded on January 4, April 4, July 4, and October 4 (or the earliest

day thereafter). Choosing these dates for the SNL forecasts means that the equity

analysis have as much information as we have about interest rates in generating

their forecasts.

4 Models for forecasting NIMs and methods for com-

paring performance

4.1 Models for forecasting NIMs

We construct forecasts from a wide array of standard methods taken from the

forecasting literature. We use data with quarterly frequency and consider a fore-

cast horizon up to ten quarters long. For all but our benchmark model, we forecast

NIMs conditional on Treasury yields or conditional on some constructed variables—

that is, yield-curve factors—that summarizes yields. We denote the variables upon

which we condition our forecast by I and denote our s-step ahead NIM forecast
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conditional on I by NIMt+s/I . When we compare (as we will in future drafts) our

BHC-specific model-based forecasts with SNL forecasts, we do—as just described—

condition on Blue Chip (Financial) Treasury-rate forecasts. When we perform sce-

nario simulations—as we do in section 6—the variables that we use to condition our

forecasts are the paths of Treasury yields or implied factors given in the scenarios.

Under our preferred specification Treasury yields or yield-curve factors enter our

forecasting models with one or more lags. We decided not to use contemporaneous

Treasury yields or yield-curve factors to condition our forecasts because doing so

raises questions the about exogeneity of our regressors and using these terms instead

does not improve forecast performance (likely reflecting the fact that interest rates

on securities do not reprice, while those, even on floating-rate loans and on all forms

of non-market funding reprice with some lag).

All of our forecast models, with the exception of the benchmark model, are

autoregressive in NIMs, which means that forecasts two or more periods ahead can

be generated either iteratively and directly. We consider both of these ways.

We also consider versions of our models specified with both NIMs and yields (or

yield-curve factors) in levels and with both NIMs and yields (or yield-curve factors)

in first differences. In the former case our models always contain at least one lag

of NIMs and one additional lag of yields (or yield-curve factors). Specifying the

model in this way is important given the possibility of unit roots in both NIMs

and yields and so if we are to specify our models in levels we must—as one of the

standard approaches for addressing the possibility of spurious regressions—include

lags of both our dependent and explanatory variables. Of course, another standard

approach for dealing with the possibility of spurious regressions is to estimate the

model in first differences and this we do as well. Our first model, however, which

serves as our benchmark model, is the same throughout.

1. No-change forecast. This model, which forecasts NIMs as a random walk
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without a drift at all horizons s, is given simply by: NIMt+s/t = NIMt.

4.1.1 Iterative levels models

Our first three iterative models—specifically, observed factors with forecast combi-

nation, dynamic factor model with forecast combination, and principal component

analysis (PCA) factors with forecast combination—represent NIMs as a function

of one lag of itself and two lags of the three factors that are typically viewed to

summarize the yield curve; that is, the level, L, slope, S, and curvature, C, of the

yield curve.13 All that differs between these three factor-based forecast-combination

models is how we obtain these factors, as we will describe below. What is identical

between these three approaches is our general approach, which is (i) to regress NIMs

in three separate equations on its own first lag and on the lags of each one of the

three factors F ∈ {L, S,C}:

NIMt = cf + ρfNIMt−1 +
2∑
j=1

γf,jFt−j + ηf,t, (1)

(ii) to produce three different forecasts of NIMs extending out s quarters and each

conditional on one of the three factors F ∈ {L, S,C} through period t+s−1, denoted

by NIMf,t+s/f , and (iii) to combine these three forecasts with equal weights—that

is, average them—so as to obtain:

NIMt+s/{L,S,C} =
∑

f∈{L,S,C}

NIMf,t+s/f

3
.

Clearly, a variant to the above approach would be to include all three factors in

a single NIM equation, which we have tried but invariably found to imply poorer

forecast performance.

2. Observed factors with forecast combination. In this model the three

factors used in equation 1 are calculated as simple (additive) functions of a small

13Experimentation with longer lag structures led to no improvement in the forecast results re-
ported below.
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number of interest rates of different maturities. In particular, the level factor Lt

is set equal to the average of the 3-month, 2-year and 10-year Treasury yields, the

slope factor St is the difference between the 10-year and the 3-month yields, and

the curvature factor Ct is given by 2 times the 2-year yield minus the the sum of the

3-month and 10-year yields. These factors follow the “observed factor” definitions

used by Diebold and Li (2006).

3. Dynamic factor model with forecast combination. In this model the

three factors used in equation 1 are obtained following Diebold and Li (2006). The

dynamic factor model that we consider takes the form:
Lt+1 − µL

St+1 − µS

Ct+1 − µC

 =


a11 a12 a13

a21 a22 a23

a31 a32 a33




Lt − µL

St − µS

Ct − µC

+


ηLt

ηSt

ηCt



r(τ) =
(

1 1−e−λτ

λτ
1−e−λτ

λτ − e−λτ
)

Lt − µL

St − µS

Ct − µC

+ e(τ)t,

We use the smoothed estimates of the factors Lt, St, and Ct from this model, which

we estimate and condition on all information up until period T.

4. Principal component analysis (PCA) factors with forecast combina-

tion. In this model the three factors used in equation 1 are obtained from principal

component analysis of our twelve different yields.

5. Single partial least squares (PLS). This model is similar to the PCA factor

model in that it represents NIMs as a function of one lag of itself and lags of

three factors. What is different is that while PCA selects factors that explain the

largest fraction of the variance of Treasury yields, PLS selects factors as those that

explain the largest fraction of the covariance between NIMs and Treasury yields. We

calculate our PLS factors following the approach laid out by Groen and Kapetanios
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(2009) for when the equation being estimated includes lagged dependent variables.

In particular, we need to control for the effect of lagged values of the dependent

variable on the covariances between NIMs and lagged Treasury yields before we

calculate the PLS factors. We first regress demeaned NIMs and each lagged Treasury

yield individually on lagged demeaned NIMs. We then take the residuals from each

of these regressions and using the algorithm described by Groen and Kapetanios

(2009) calculate our PLS factors. Unlike the other factor models we do not use

forecast combination methods. Lagged demeaned NIMs and the PLS factors are

all, by construction, orthogonal to each other, so estimating the model with all

variables in the same equation will not give different answers to taking the forecast

combination approach.

6. Treasury yields with forecast combination. This model, which like the

first three iterative models follows a forecast combination approach, (i) regresses

NIMs in twelve separate equations on its own first lag and lags of each Treasury

yield rτ,t−1 where τ ∈ {0.25, 0.5, · · · , 30}:

NIMt = cτ + ρτNIMt−1 +

2∑
j=1

γτ,jrτ,t−j + ητ,t, (2)

(ii) produces twelve different forecasts of NIMs extending out s quarters and each

conditional on one of the twelve Treasury yields through period t+ s− 1, denoted

by NIMτ,t+s/τ , and (iii) combines these twelve forecasts with equal weights—that

is, average them—so as to obtain:

NIMt+s/{0.25,0.5,··· ,30} =
∑
τ

NIMτ,t+s/τ

12
.

7. 3-month and 10-year Treasury yields with forecast combination. This

model is identical to the one described immediately above with the exception that

it only uses two yields—the 3-month yield and the 10-year yield—so that τ ∈

{0.25, 10}. As such, this approach averages only over two models.
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8. VAR with 3-month and 10-year Treasury yields. The VAR includes NIMs

and the 3-month and 10-year Treasury yields. Forecasts conditional on the factors

are obtained using the Kalman filter, as in Clarida and Coyle (1984). We take as

conditional forecasts the filtered (that is, one-sided) estimates of NIMs conditional

on the pseudo-out-of-sample observations of the remaining variables in the VAR.

This procedure efficiently considers the covariance between reduced-form residuals

in the VAR.

4.1.2 Direct levels models

As noted earlier generating forecasts directly means specifying and estimating sep-

arate equations for each step-ahead forecast. Note that whereas the lag of the

dependent variable changes in the equation specified for each step-ahead forecast,

the timing of the yields or factors upon which we condition the forecast do not

change.

2. Observed factors with forecast combination, 3. Dynamic factor model

with forecast combination, and 4. Principal component analysis (PCA)

factors with forecast combination. For our three factor-based forecast-combination

models generating direct forecasts means specifying the following ten different ver-

sions of equation 1 for each factor F ∈ {L, S,C}:

NIMt = cf,1 + ρf,1NIMt−1 +
2∑
j=1

γ1,f,jFt−j + ηf,t, for the one step-ahead forecast

NIMt = cf,2 + ρf,2NIMt−2 +

2∑
j=1

γ2,f,jFt−j + ηf,t, for the two step-ahead forecast

· · ·

· · ·

NIMt = cf,10 + ρf,10NIMt−10 +

2∑
j=1

γ10,f,jFt−j + ηf,t, for the ten step-ahead forecast

All other steps for generating forecasts from these models—such as, calculating the
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factors and combining the forecasts implied by each factor—are the same as for the

iterative forecasts.

5. Single partial least squares (PLS). This model also requires specifying

the ten different versions of our PLS NIM equations. Note that the PLS factors

calculated for each forecast horizon will be different, since in each equation we need

to control for the effect of a different lagged value of the dependent variable on the

covariances between NIMs and lagged Treasury yields before calculating the PLS

factors.

6. Treasury yields with forecast combination, and 7. 3-month and 10-

year Treasury yields with forecast combination. Similar to what we do for

the three factor-based forecast-combination models, generating direct forecasts for

the Treasury yields combination models requires specifying ten different versions

of equation 2 for each yield τ ∈ {0.25, 0.5, · · · , 30} for model 6 and τ ∈ {0.25, 10}

for model 7. All other steps for generating forecasts from these models—such as,

combining the forecasts implied by each factor—are the same as for the generating

the iterative forecasts.

Finally, note that we do not have a direct forecasting counterpart for the VAR

with 3-month and 10-year Treasury yields.

4.1.3 Iterative first differences models

Our iterative changes models are the same as those given in subsection 4.1.1 with

the exception that first differences of NIMs, first differences of factors, and first

differences of yields are used in place of their level counterparts. Note also that in

the first differences models we have no lags of the first difference of NIMs and only

one lag of the first difference of factors or the first difference of yields.
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4.2 Methods for comparing performance

We use root mean squared (forecast) errors (RMSEs) to gauge a model’s out-of-

sample forecast performance and we use the Diebold-Mariano-West (DMW) test to

determine the statistical significance of differences in forecast performance across

models. Comparing forecast errors across models tells us whether one model fore-

casts NIMs better or worse than another out-of-sample but does not tell us why.

There are two main reasons why a model may forecast better or worse out-of-

sample. One is that the model that forecasts better out-of-sample captures the

data over history better and thereby has better in-sample predictive content. The

other is that the model that forecasts better out-of-sample has been less overfit

in-sample. We can get some sense of the relative importance of these explana-

tions by simple ocular comparisons of relative in-sample forecast performance across

models with relative out-of-sample forecast performance, although doing so is im-

precise. A more rigorous approach to considering this issue is by following the

methodology developed by Rossi and Sekhposyan (2011). This approach decom-

poses the out-of-sample loss differential of the DMW test into three independent

and interpretable components: marginal predictive content, over-fitting, and time-

variation. To explain how this is done (in loose terms), let ε2out,m,t+h|t,t+h−1 denote

the squared h-step ahead conditional forecast error for model m, which is esti-

mated on data extending out to quarter t and for which the forecast is conditional

on NIM data out to quarter t and yields data out to quarter t + h − 1, and let

δout,X,Y,t+h|t,t+h−1 = ε2out,X,t+h|t,t+h−1 − ε2out,Y,t+h|t,t+h−1 denote the time series of

the out-of-sample h-period ahead conditional forecast loss differential for models X

and Y .

Employing the same estimated models as were used to generate each t + h-

step ahead NIM forecast (from which we then calculated εout,m,t+h|t,t+h−1) we can

generate in-sample forecasts, also h periods ahead. We can then calculate the

squared h-period ahead conditional forecast error for the very last h-quarters of
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the estimation period—that is, ε2in,m,t|t−h,t−1—and from this we calculate a time-

series of in-sample h-step ahead loss differentials: δin,X,Y,t|t−h,t−1 = ε2in,X,t|t−h,t−1 −

ε2in,Y,t|t−h,t−1.

One part of Rossi and Sekhposyan (2011) decomposition involves (in loose

terms) regressing δout,X,Y,t+h|t,t+h−1 on δin,X,Y,t|t−h,t−1, saving the estimated co-

efficient, β, from the regression, and then decomposing the full evaluation pe-

riod out-of-sample loss differential of the DMW test, E[δout,X,Y,t+h|t,t+h−1], into

B = β · E[δin,X,Y,t|t−h,t−1] and U = E[δout,X,Y,t+h|t,t+h−1] − β ·E[δin,X,Y,t|t−h,t−1],

which they show are independent. They also develop test statistics for these two

terms—denoted Γ
(B)
P and Γ

(U)
P —that examine these terms’ statistical significance.

Importantly, these two terms allow one to understand two possible reasons why one

model forecasts better or worse than the other. In particular, if the B term is posi-

tive and significant it means that the model that forecasts better out-of-sample also

does so in-sample. Consequently, we can attribute the reason for that model’s better

out-of-sample forecast performance to better in-sample predictive content.14 If the

U term is significant it means that the model that forecasts better out-of-sample

does so because the other model is over-fit in-sample.

Rossi and Sekhposyan (2011) also consider the time-variation in the out-of sam-

ple loss differentials, δout,X,Y,t+h|t,t+h−1. That is, rather than just focusing on the

average of δout,X,Y,t+h|t,t+h−1 over the full out-of-sample evaluation period, they

look at averages of δout,X,Y,t+h|t,t+h−1 over rolling windows in the evaluation period

and—through the test statistic Γ
(A)
P that they formulate—provide a method to test

the significance any observed time variation in these rolling-window averages. This

component of the decomposition is then informative as to whether time variation

accounts for relative forecast performance.

In summing up this discussion one important qualification is needed for the

14Note that it is possible for the B term to be negative and significant, which means that
relative in-sample forecasting performance is predictive but misleading about out-of-sample forecast
performance.
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Rossi-Sekhposyan decomposition and this is that it can only be used to compare

the relative forecasting performance across direct forecasting models—that is, the

models in subsection 4.1.2—it can not be used to the relative forecasting perfor-

mance across iterative forecasting models—that is, the models in subsections 4.1.1

and 4.1.3. For iterative models getting a sense of my one model forecasts better than

another still requires an ocular comparison of in-sample and out-of-sample relative

forecast performance. We would also note that the Rossi-Sekhposyan decomposition

can be used when forecast models are estimated both over expanding windows and

over rolling windows. That being said, the decomposition is more straightforward

when models are estimated over rolling windows and for this reason we focus on

results from models estimated over rolling window.

5 Forecasting results

5.1 Aggregate results

To compare the performance of the aggregate NIM models, we consider out-of-

sample forecasts and we present our results that use 10-year rolling windows for

estimation. (We have also generated the same results for recursive or expanding

windows with broadly similar results.) The first 10-year window spans 1989q4 to

1999q4 and the assessment window spans 2000q1 to 2008q3. We focus on forecasts

that go out to 10 steps ahead for the reason that the DFA Stress Tests extend

out 9 quarters. In constructing the out-of-sample forecasts, we condition on the

observation of the right-hand-side variables in each model, with the exception of

lagged NIMs. That is, we condition on the observed value of Treasury yields or

factors based on the Treasury yield curve. If lagged NIMs are required, as they

are for forecast two or more steps ahead in our iterative forecast models, we use

the NIM forecasts for preceding periods. This set-up means that when we say that

forecasts are some given number of steps ahead we are referring to the NIM term.
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We also generate in-sample forecasts to help understand relative out-of-sample

forecast performance. Note also that the way we generate RSMEs for our in-sample

forecast errors is the same way that Rossi and Sekhposyan (2011) do to perform

their decomposition. That is, for each rolling window model for which we generate

an out-of-sample forecast of some horizon and an associated out-of-sample forecast

error, we also generate an in-sample forecast for that same horizon and an associated

in-sample forecast error that is right at the end of the sample.

Figure 3 shows root mean squared errors (RMSE) for in-sample forecasts and

out-of-sample forecasts for our iterative forecasting models specified in levels. Ta-

ble 1 reports the numbers underlying these results along with the VAR model. (The

VAR model has been dropped from the figure given how large its forecast errors are

relative to all the other forecast methods.) As is evident from the in-sample results,

all of the iterative levels models (with the exception of the VAR model), have lower

RMSEs across all forecast horizons than Model 1—the no change forecast. Note also

that the standard deviation of NIMs over the forecast evaluation period (currently

not shown in the figures) is 0.23. This means that at most horizons and for most

models the RMSE for NIMs are smaller than the standard deviation of NIMs, which

suggests that the in-sample forecasts of NIMs are helpful in predicting future values

of NIMs. These results do not for the most part translate to the out-of-sample

forecast errors. Out-of-sample, only Model 6—yields with forecast combination—

has a lower RMSEs than Model 1—the no change forecast. Moreover, beyond the

one year horizon very few models have RMSEs that are smaller than the standard

deviation of NIMs. These findings are notable given that most models of NIMs in

the macro-banking literature—including those oriented to stress testing—use levels

relationships between NIMs and interest rates.

Figure 4 shows RMSE for in-sample forecasts and out-of-sample forecasts for

our direct forecasting models specified in levels and table 2 reports the numbers

for these charts. For the most part these results are qualitatively very similar
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to those obtained for the iterative forecasting models. Indeed, out-of-sample the

relative forecasting performance of the different direct forecasting models is practi-

cally the same as those obtained for the iterative forecasting models. Forecasting

performance, unsurprisingly, also deteriorates in going between the in-sample and

out-of-sample results, although for the direct forecasting models the deterioration

is not so pronounced.

The Rossi-Sekhposyan decomposition of relative forecast performance can be

used to compare the forecasts implied by these direct forecasting models and tables 3

show the results for these comparisons. Note that here the model that we are

comparing all the others against is Model 6—yields with forecast combination—

and not Model 1—the no change forecast. We use Model 6 to compare all our other

models against because it is the model that yields the lowest RMSEs, moreover it

puts our comparison of models on a more equal footing given that Model 1 really

only uses information up until period t − h, whereas Model 6 and all of the other

models use information up until period t− 1.

For all models with the exception of Model 5—the PLS model—Model 6 forecasts

significantly better out-of-sample at the 8 step-ahead and 10 step-ahead horizons.

In all of the cases for the 10-step ahead horizon and in all but one case for the

8-step ahead horizon, Model 6 forecasts better than the other four models for the

reason that it suffers from less in-sample overfitting. At the 8-step ahead horizon

Model 6 forecasts better than Model 4—PCR with forecast combination—for the

reason that the former has better in-sample predictive content. At the 6-step ahead

horizon Model 6 forecasts significantly better than only two models, Model 2—

observed factors with forecast combination—and Model 7—3-month and 10-year

yields with forecast combination—and as was the case with most of the 8 step-

ahead and 10 step-ahead horizon results this is because Model 6 suffers from less

in-sample overfitting.

Interestingly, Model 6 also forecasts significantly better than Model 7 at the
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2-step ahead and 4 step-ahead horizons, which is perhaps not what one would im-

mediately expect from a comparison of these two model’s RMSEs in figure 4. This

is particularly puzzling given that other models that have notably larger RMSEs

at the 2 step-ahead and 4 step-ahead horizons, such as Model 2—Observed fac-

tors with forecast combination—are not found to have significantly poorer forecast

performance than Model 6. What ultimately accounts for Model 6 forecasting signif-

icantly better than Model 7—despite the relatively small differences in RMSEs—is

that quarter-by-quarter the difference in squared errors between models is very sta-

ble and this implies quite a high DMW test statistic. In contrast, other models,

such as Model 2, that have larger average differences in forecast errors, have more

reversals in terms of which model forecasts better. Note that this feature can also

be seem from the relative magnitudes of Γ
(A)
P for Models 2 and 7 in table 3. In

brief, although Γ
(A)
P , which measures forecast performance stability, is insignificant

for both models at the 2 step-ahead and 4 step-ahead horizons, it is notably higher

for Model 2. In summing up our discussion of the Rossi-Sekhposyan decomposition

we would note that for the most part Model 6—yields with forecast combination—

forecasts better than the other models for the reason that it suffers less from in-

sample overfitting. The only model for which this is not the case is Model 4—PCR

with forecast combination—since in this case Model 6 forecasts better because it

has better in sample predictive content.

Figure 5 shows RMSE for in-sample forecasts and out-of-sample forecasts for

our iterative forecasting models specified in changes. These results do differ some-

what from those that we obtained from our models specified in levels. Although,

the in-sample finding that all models forecast better than the no-change forecast

at all horizons carries through, with the changes models, the improvement is (ad-

mittedly unsurprisingly) smaller. Out-of-sample, however, all models continue to

forecast better than the no change model, which is, clearly, not what we found

for the majority of the levels models. This finding is the same result that Camp-
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bell and Perron (1991) documented, which is that even when it is inconclusive as

to whether a unit root is present in model series, assuming one and using a first-

difference specification typically leads to better forecast performance. Among the

changes models, Model 6—yields with forecast combination—no longer has the best

forecast performance. Indeed, while out-of-sample it forecasts better than the no

change forecast, of all the models we consider, it has the largest RMSEs. The other

models are virtually indistinguishable from each other. The PLS and DFM model

are marginally the best performing models over up until the 6 step-ahead forecast

horizon. After that, however, the DFM model performs slightly better.

Figure 6 is similar to figure 3, the key difference being that the analysis extends

from 2000 to 2012:Q3. [Currently we are not using the NIM series with adjustments

for IOER and FAS 166/167.] As is evident our results do switch around a bit when

we extend the sample to 2012:Q3. Now, no single model consistently performs

better than the no change forecast: Model 4—PCR with forecast combination—

forecasts better than the no change forecast up until the 5 step-ahead horizon, no

model forecasts better between the 6 step-ahead and 8 step-ahead horizon, and

Model 6—yields with forecast combination—forecasts better at the 9 and 10 step-

ahead horizons. These differences are, however, minuscule. These poorer results

may reflect the challenges for some of the approaches that we use for extracting

factors from a large number of interest rates in the zero lower bound environment.

[Though it might also reflect the fact that we a not using a NIM series that adjusts

for some fairly significant structural changes at the end of the sample, so we will

return to this issue once we have addressed that.]

5.2 BHC-level results

• To be completed.
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6 Scenario analysis

We return now to our aggregate analysis and consider what our best-performing

forecast models would imply for the paths of NIMs under the different 2013 Dodd

Frank Act stress test scenarios.15 We focus on last year’s scenarios (rather than

the 2014 DFA stress test scenarios) for the reason that both the 2013 scenarios

featured developments in interest rates that on balance seems more stressful to

banks net interest income.16 These scenarios are shown in figure 7. As can be seen

from the figure, the severely adverse scenario—which also featured a severe global

recession—implies a downward shift in the profile of the yield curve (which at its

largest is about 175 b.p. relative to baseline) accompanied by a modest flattening.

The adverse scenario—which was motivated by a sudden jump in inflation that

accompanies a moderate recession—implies a sizable upward shift of the yield curve

(which at its maximum is on the order of about 250 b.p. relative to baseline) as

well as a flattening in the slope of the yield curve (which at its maximum implies a

yield curve that is about 100 b.p. flatter than baseline). In terms of changes in the

yield curve, these two scenarios capture vastly different configurations.

In considering the effects of the scenarios on NIMs we focus on two models:

Model 6—yields with forecast combinations—for the iterative levels models and

Model 5—PLS—for the iterative changes models. We choose these models because

relative to the other models that use similar set-ups, these models are the best

performing. The published DFA stress test scenarios only contain two Treasury

yields—specifically, the 3-month and the 10-year yields—whereas our forecast mod-

15See, “2013 Supervisory Scenarios for Annual Stress Tests Required un-
der the DFA Stress Testing Rules and the Capital Plan Rule” available at
http://www.federalreserve.gov/bankinforeg/bcreg20121115a1.pdf.

16The interest rate developments in the 2014 DFA stress test severely adverse scenario are rea-
sonably similar to those of the 2013 severely adverse scenario, although because long rates at the
scenario’s jumping off point were so much higher, the 2014 scenario did feature a larger flattening.
The 2014 DFA stress test adverse scenario was very different to 2013 adverse scenario since it
featured a large steepening in the yield curve. Such a scenario while stressful for banks’ unrealized
capital gains on securities, would not be stressful for their net interest income.
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els require many more. Christensen and Lopez (2014) have developed a model for

obtaining a full Treasury yield curve (and other corporate yield curves as well) from

the relatively small number of interest rate variables included in the published DFA

stress test scenarios and so for the other rates that we need for our forecast models

we used the Treasury yields that they have constructed using their model. (We can

do something similar with the dynamic factor model that we described in section

4.1.1, which, just for internal consistency with the rest of the paper, we will likely

do this in future drafts.)

Figure 8 plot the paths of NIMs under the three DFA stress tests scenarios

given the two models that we use. The paths of NIMs in the baseline and severely

adverse scenarios are shown to the left and the paths of NIMs in the baseline and

adverse scenarios are shown to the right. The implications of the point forecasts

appear sensible. The severely adverse scenario is unambiguously unfavorable to

NIMs, since the yield curve is flatter—albeit only by a small amount—which reduces

banks’ returns from maturity transformation, and the yield curve is lower, which

reduces banks’ returns from the provision of transactions services. This outcome is

very evident from from the left-hand panels of figure 8, which for both models show

a lower path of NIMs under the severely adverse scenario.

The adverse scenario has more ambiguous implications for NIMs, since the yield

curve is flatter, which reduces banks’ returns from maturity transformation, but is

also higher, which boosts banks’ returns from the provision of transactions services,

since now banks have greater scope to pay deposit rates below that of short-term

market rates. The right-hand panels of figure 8 do seem to suggest forces pulling in

different directions. For the iterative levels version of Model 6—yields with forecast

combinations—the path of NIMs in the adverse scenario is marginally higher than

the baseline over the first year of the scenario and marginally lower over the second

year. For the iterative changes version of Model 5—PLS—the path of NIMs is

higher throughout the scenario, indicating that the positive impact on NIMs from
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the provision of transactions services outweighs the negative impact from maturity

transformation.

Figure 8 also consider the uncertainty of the forecasts. In addition, to showing

point estimates of the paths of NIMs, the figure also shows bands surrounding

the central forecast, which are constructed by adding and subtracting to the point

forecast the RMSEs for the forecast combination model. Strikingly, the size of the

uncertainty bands dwarfs the variation implied by the scenarios for NIMs and as

such the two severe scenarios are statistically indistinguishable from the baseline and

from each other. This degree of uncertainty around the paths of key BHC variables

could compromise one of the key goals of stress tests, which is to maintain the

confidence of bank creditors and counterparties in periods of financial sector stress

by generating forward-looking estimates of bank capital under stressful economic

conditions.

7 Conclusion

Over the evaluation period 2000q1 to 2008q3, a few models outperform the no

change model in forecasting NIMs. These include—among the levels models that

we consider—the yields with forecast combination model, and—among the changes

versions of the models that we consider—the DFM with forecast combinations model

and the PLS model. Over the evaluation period 2000q1 to 2012q3, the models that

outperform the no change model are (depending on the horizon) PCR with forecast

combination model and the yields with forecast combination model. But these

victories are only small, as the variance of the forecast error is large, especially

when compared to the observed variation of NIMs. Accordingly, even stress test

scenarios that have vastly different implications for the configuration of interest rates

contain relatively little information to forecast NIMs. This degree of uncertainty

around the paths of key BHC variables could compromise one of the key goals of
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stress tests, which is to maintain the confidence of bank creditors and counterparties

in periods of financial sector stress by generating forward-looking estimates of bank

capital under stressful economic conditions.

Our findings have implications beyond the study of net interest margins. Scenario-

based stress tests have been used widely to maintain confidence in the capital ad-

equacy of banks, including in periods of crises. Yet, they are predicated on the

assumption that the unfavorable macro scenarios used in the stress tests capture

the unfavorable outcomes that could materialize for key balance sheet variables. An

array of time series methods found by others to be near the frontier of forecast per-

formance produce projections conditional on radically different scenarios for yields

that are statistically indistinguishable.

Going forward we plan to investigate whether other macro variables may be

relevant for forecasting NIMs and may be able to stress NIMs more effectively. For

example, we plan to consider some of the variables emphasized by the micro-banking

literature in explaining NIMs, such as, the degree of competition and the degree of

volatility of interest rates. We also plan to consider other macro variables such

as those included, in addition to Treasury yields, in the DFA stress test scenarios,

to see whether stressful outcomes for these variables might also imply stresses for

NIMs. Clearly, if we find that these other possible macro variables do not provide

any way to stress NIMs, it may suggest the need to consider other ways to introduce

stresses to NIMs. Being able to obtain stressful outcomes for NIMs is necessary if

stress-test results are to leave bank creditors and counterparties confident that when

banks balance sheets come under stress, banks will be able to continue to meet their

obligations.
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Table 1: RMSEs – Iterative Forecasts, Regressions of Levels on Levels, and 2000q1 to 2008q3 Evaluation Window

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

In-Sample RMSEs

1. No-Change Forecast 0.11 0.14 0.15 0.18 0.20 0.22 0.23 0.23 0.25 0.27

2. Observed Factors with F. Combination 0.10 0.12 0.12 0.13 0.15 0.16 0.16 0.16 0.16 0.16

3. DFM with F. Combination 0.09 0.11 0.12 0.12 0.14 0.15 0.15 0.15 0.15 0.15

4. PCR with F. Combination 0.10 0.14 0.15 0.17 0.19 0.20 0.20 0.20 0.20 0.20

5. PLS 0.12 0.15 0.17 0.19 0.21 0.21 0.21 0.22 0.21 0.20

6. Yields with F. Combination 0.09 0.11 0.12 0.13 0.14 0.15 0.15 0.15 0.14 0.14

7. 3M and 10Y with F. Combination 0.09 0.11 0.12 0.12 0.14 0.14 0.14 0.14 0.13 0.13

8. VAR on 3M and 10Y Yields 0.17 0.27 0.35 0.38 0.43 0.46 0.47 0.49 0.50 0.50

Out-of-Sample RMSEs

1. No-Change Forecast 0.11 0.14 0.15 0.18 0.20 0.22 0.24 0.24 0.27 0.29

2. Observed Factors with F. Combination 0.12 0.16 0.19 0.25 0.30 0.35 0.40* 0.44* 0.50* 0.55*

3. DFM with F. Combination 0.11 0.16 0.19 0.23 0.27 0.31 0.35 0.38* 0.42* 0.46*

4. PCR with F. Combination 0.11 0.14 0.17 0.20 0.23 0.27 0.30 0.32 0.36* 0.39*

5. PLS 0.12 0.15 0.18 0.21 0.23 0.25 0.27 0.28 0.30 0.32

6. Yields with F. Combination 0.11 0.14 0.14 0.16 0.18 0.20 0.21 0.21 0.22 0.23

7. 3M and 10Y with F. Combination 0.11* 0.14 0.17* 0.20 0.23 0.25 0.28 0.29 0.32 0.34

8. VAR on 3M and 10Y Yields 0.17* 0.24* 0.29* 0.30* 0.30* 0.31* 0.33 0.36 0.39 0.42

’*’ denotes significance at the 95% level of the difference in RMSEs relative to the no-change forecast.
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Table 2: RMSEs – Direct Forecasts, Regressions of Levels on Levels, and 2000q1 to 2008q3 Evaluation Window

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

In-Sample RMSEs

1. No-Change Forecast 0.11 0.14 0.16 0.18 0.20 0.22 0.23 0.23 0.25 0.27

2. Observed Factors with F. Combination 0.10 0.12 0.13 0.15 0.18 0.20 0.20 0.19 0.19 0.18

3. DFM with F. Combination 0.10 0.11 0.12 0.13 0.15 0.17 0.18 0.17 0.16 0.16

4. PCR with F. Combination 0.11 0.14 0.16 0.18 0.20 0.21 0.22 0.22 0.22 0.22

5. PLS 0.10 0.12 0.15 0.18 0.21 0.24 0.27 0.28 0.25 0.20

6. Yields with F. Combination 0.10 0.12 0.13 0.14 0.17 0.18 0.19 0.18 0.19 0.19

7. 3M and 10Y with F. Combination 0.10 0.12 0.13 0.14 0.16 0.18 0.19 0.18 0.18 0.18

Out-of-Sample RMSEs

1. No-Change Forecast 0.11 0.14 0.15 0.18 0.21 0.23 0.24 0.25 0.27 0.29

2. Observed Factors with F. Combination 0.12 0.16 0.20 0.25 0.30* 0.34* 0.35* 0.36* 0.39* 0.41*

3. DFM with F. Combination 0.11 0.16 0.20* 0.23 0.26 0.29 0.30 0.31 0.34* 0.37

4. PCR with F. Combination 0.11 0.14 0.17 0.20 0.23 0.26 0.28 0.28 0.31* 0.34

5. PLS 0.11 0.16 0.18 0.20 0.23 0.25 0.26 0.26 0.26 0.27

6. Yields with F. Combination 0.11 0.13 0.15 0.17 0.19 0.20 0.21 0.21 0.22 0.23

7. 3M and 10Y with F. Combination 0.11 0.15 0.18* 0.20 0.24 0.26 0.27 0.27 0.29 0.31

’*’ denotes significance at the 95% level of the difference in RMSEs relative to the no-change forecast.
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Table 3: Rossi-Sekhposyan Decomposition and Tests Against Model 6, Yields with

Forecast Combination

Model 2. Model 3. Model 4. Model 5. Model 7.

Obs. Factors† DFM† PCR† PLS 3M & 10Y†

2 step ahead DMW 1.208 1.816 0.895 0.914 2.216*

Γ
(A)
P 7.306 5.515 6.353 5.752 6.128

Γ
(B)
P 0.421 -0.517 3.662* 0.297 -0.976

Γ
(U)
P 1.186 1.857 0.339 0.881 2.370*

4 steps ahead DMW 1.777 1.677 1.036 0.816 2.948*

Γ
(A)
P 7.095 4.765 6.471 6.125 5.086

Γ
(B)
P -0.266 -0.647 3.632* 1.349 1.642

Γ
(U)
P 1.851 1.692 0.302 0.770 2.453*

6 steps ahead DMW 2.976* 1.816 1.772 1.013 3.366*

Γ
(A)
P 5.402 5.948 5.653 6.625 6.619

Γ
(B)
P 1.229 -0.793 3.573* 1.764 1.028

Γ
(U)
P 2.887* 2.033* 1.729 0.344 3.228*

8 steps ahead DMW 3.410* 2.924* 2.193* 0.886 2.929*

Γ
(A)
P 6.617 5.516 6.488 6.851 5.623

Γ
(B)
P 0.482 -0.556 3.074* 1.800 -0.788

Γ
(U)
P 3.399* 3.690* 1.631 0.303 3.335*

10 steps ahead DMW 3.342* 5.785* 3.646* 0.610 3.563*

Γ
(A)
P 4.646 5.932 5.268 5.037 4.783

Γ
(B)
P 0.100 0.681 1.907 -0.535 -0.936

Γ
(U)
P 4.458* 6.287* 3.283* 0.687 3.727*

’*’ denotes significance at the 95% level of the difference in RMSEs relative to the no-change
forecast. † Models employ forecast combination
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Table 4: RMSEs Iterative Forecasts, Regressions of Level on Levels, 2000q1 to 2012q3 Assessment Window

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

1. No-Change Forecast 0.11 0.15 0.17 0.20 0.22 0.24 0.26 0.26 0.27 0.28

2. Observed Factors with F. Combination 0.10 0.12 0.13 0.14 0.14 0.15 0.15 0.15 0.16 0.16

3. DFM with F. Combination 0.10 0.11 0.12 0.13 0.13 0.14 0.15 0.14 0.15 0.15

4. PCR with F. Combination 0.11 0.14 0.15 0.17 0.18 0.19 0.19 0.19 0.19 0.20

5. PLS 0.12 0.15 0.16 0.18 0.19 0.19 0.20 0.20 0.20 0.20

6. Yields with F. Combination 0.10 0.12 0.13 0.14 0.14 0.15 0.16 0.15 0.15 0.15

7. 3M and 10Y with F. Combination 0.10 0.12 0.13 0.14 0.14 0.15 0.15 0.15 0.15 0.14

8. VAR on 3M and 10Y Yields 0.18 0.25 0.31 0.34 0.38 0.40 0.41 0.42 0.43 0.43

Out-of-Sample RMSEs

1. No-Change Forecast 0.11 0.15 0.17 0.20 0.22 0.25 0.27 0.28 0.29 0.31

2. Observed Factors with F. Combination 0.12 0.16 0.19 0.23 0.27 0.32 0.36 0.39 0.43 0.46

3. DFM with F. Combination 0.12 0.16 0.19 0.22 0.26 0.30 0.32 0.35 0.38 0.41

4. PCR with F. Combination 0.12 0.14 0.16 0.19 0.22 0.26 0.28 0.29 0.32 0.34

5. PLS 0.12 0.16 0.18 0.21 0.23 0.26 0.28 0.29 0.30 0.31

6. Yields with F. Combination 0.12 0.16 0.20 0.23 0.26 0.28 0.29 0.29 0.29 0.29

7. 3M and 10Y with F. Combination 0.12* 0.15 0.19* 0.21 0.25 0.27 0.30 0.30 0.33 0.34

8. VAR on 3M and 10Y Yields 0.18* 0.24* 0.29* 0.29* 0.29* 0.29 0.30 0.31 0.33 0.35
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Table 5: Out-of-Sample RMSE for the 1-Step Ahead Forecast: Bank-Specific Models and 2007q4 to 2013q1 Evaluation

Window

Recursive Rolling

1. F. Comb 4. PCR 4. PLS 1. F. Comb 3. PCR 4. PLS 7. No Change SNL

JPMORGAN CHASE & CO 0.17 0.18 0.18 0.18 0.18 0.17 0.15 0.37

BANK OF AMER CORP 0.24 0.24 0.25 0.25 0.24 0.30 0.26 0.29

CITIGROUP 0.22 0.24 0.23 0.29 0.24 0.30 0.21 0.46

WELLS FARGO & CO 0.14 0.14 0.16 0.15 0.14 0.12 0.12 0.54

U S BC 0.10 0.13 0.12 0.11 0.13 0.12 0.10 0.10

PNC FNCL SVC GROUP 0.21 0.22 0.22 0.21 0.22 0.20 0.18 0.17

BB&T CORP 0.14 0.18 0.16 0.14 0.18 0.12 0.13 0.15

SUNTRUST BK 0.25 0.21 0.16 0.14 0.21 0.13 0.10 0.17

CAPITAL ONE FC 1.06 0.90 0.91 1.13 0.90 1.08 0.53 0.91

REGIONS FC 0.16 0.19 0.14 0.16 0.19 0.14 0.12 0.11

FIFTH THIRD BC 0.30 0.32 0.32 0.30 0.32 0.29 0.34 0.22

KEYCORP 0.47 0.44 0.45 0.50 0.44 0.48 0.49 0.44

M&T BK CORP 0.11 0.14 0.15 0.12 0.14 0.13 0.12 0.11

COMERICA 0.16 0.20 0.17 0.17 0.20 0.19 0.17 0.09

HUNTINGTON BSHRS 0.23 0.13 0.10 0.27 0.13 0.18 0.11 0.10

ZIONS BC 0.23 0.19 0.22 0.22 0.19 0.21 0.20 0.21

BANK OF NY MELLON CORP 0.32 0.31 0.32 0.33 0.31 0.29 0.37 0.27

STATE STREET CORP 0.22 0.26 0.25 0.22 0.26 0.26 0.20 0.18

NORTHERN TR CORP 0.11 0.10 0.12 0.11 0.10 0.13 0.12 0.15
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Figure 1: Interest Income, Interest Expenses and Short-term Treasury Rates
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Figure 2: Variables from the Micro-banking Literature
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Figure 3: Root Mean Squared Errors of Iterative Forecasts: 2000q1 to 2008q3
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Figure 4: Root Mean Squared Errors of Direct Forecasts: 2000q1 to 2008q3
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Figure 5: Root Mean Squared Errors of Iterative Forecasts – Alternative Specifica-

tion (changes on changes): 2000q1 to 2008q3
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Figure 6: Root Mean Squared Errors of Iterative Forecasts: 2000q1 to 2012q3
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Figure 7: Three-month and Ten-year yields in the 2013 DFA Stress Test Scenarios
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Figure 8: Forecast for NIMs Conditional on the 2013 DFA Stress Test Scenarios
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