Financial indicators and density forecasts for US output and inflation

Piergiorgio Alessandri* and Haroon Mumtaz§

*Banca d'Italia and ${}^{\rm S}{\rm Queen}$ Mary, University of London. The presentation does not reflect the official view of Banca d'Italia.

VIII ECB workshop on forecasting techniques European Central Bank 14 June 2014

Questions

- Are financial indicators useful in forecasting output and inflation?
- Does the answer depend on what kind of **events** the forecaster is interested in predicting? (central case/bad scenarios)
- Does the answer depend on what kind of **models** the forecaster relies on? (linear/nonlinear)
- Was the Great Recession predictable on the basis of real-time financial information?

Answers/conjectures

- Yes (with qualifications)
- Yes: financial info might be particularly useful in predicting "tail outcomes" and recessions.
- Yes: nonlinear models account for the fact that the role of financial markets in generating/propagating shocks may change over time.
- In the second second

We cast the analysis as a density prediction problem:

$$pdf^{m}(y_{t+k}|I_{t}) = m(y_{t}, f_{t}, X_{t})$$

- Monthly US data, 1973-2012
- y_t : industrial production growth, CPI inflation.
- f_t : Financial Condition Index (FCI) published by St Louis Fed.
- *m*: linear VAR *versus* Threshold VAR (potentially capturing normal times/crises).

The paper in a nutshell (2) Results

- VAR gives better point forecasts.
- ITAR gives better density forecasts.
- If t improves both, but works best in density space: finance helps in predicting off-equilibrium paths.
- TAR with finance-driven regimes could have anticipated (up to a point...) the Great Recession.

Broader implications:

Non-linearities matter

The paper in a nutshell (2) Results

- VAR gives better point forecasts.
- 2 TAR gives better density forecasts.
- If improves both, but works best in density space: finance helps in predicting off-equilibrium paths.
- TAR with finance-driven regimes could have anticipated (up to a point...) the Great Recession.

Broader implications:

- Non-linearities matter
- Predictive distributions are useful to study the finance-macro nexus

The paper in a nutshell (2) Results

- VAR gives better point forecasts.
- 2 TAR gives better density forecasts.
- If t improves both, but works best in density space: finance helps in predicting off-equilibrium paths.
- TAR with finance-driven regimes could have anticipated (up to a point...) the Great Recession.

Broader implications:

- Non-linearities matter
- Predictive distributions are useful to study the finance-macro nexus
- Given (1, 2), objectives and risk preferences of the forecaster become crucial.

- Forecasting with financial indicators (Stock-Watson 2003, 2012; Gilchrist-Yankov-Zakrajšek 2009, 2012; Ng-Wright, 2013; ...). Emphasis on point forecasts and linear models.
- 2 Density forecasting in macro (eg. Clark, 2011). No specific analysis of the role of financial factors.
- 3 Early warnings and crisis prediction (Borio-Lowe, 2002; Barro-Ursua, 2009; Lo Duca-Peltonen, 2011). Low frequency data and arbitrary/restrictive definition of "crises".

This paper

Contributes to (2), proposes density forecasting as a generalisation of (1) and a link between (1) and (3)

Literature (2)

- 4 GE models with financial shocks (Gertler-Kiyotaki 2010; Jermann-Quadrini 2012; Kiyotaki-Moore 2012; Liu-Wang-Zha 2013; ...). GE models with occasionally binding credit constraints (Bianchi 2012; Bianchi-Mendoza 2011; Guerrieri-Iacoviello 2013).
- 5 Evidence of nonlinear, regime-dependent, transmission of macrofinancial shocks (McCallum 1991; Balke 2004; GI 2013). Emphasis on impulse-response analysis.

Bottomline: financial shocks matter, and may have different implications in good and bad (credit-constrained) times.

This paper

Studies/exploits the nonlinearity modelled in (4) and documented in (5) from a forecasting perspective (see toy P.E. model in the paper)

- Data
- Models
- Simulating and evaluating distributions
- Results
- Conclusions

US data, March 1973 – August 2012.

- y_t : Industrial Production growth
- π_t : CPI inflation
- r_t : Fed Funds rate
- f_t : Financial Conditions Index

FCI is a dynamic factor constructed from an unbalanced panel of 100 mixed-frequency indicators of financial activity (Brave & Butters 2012; Chicago Fed). Real time, very broad coverage (debt and equity markets, financial sector leverage, ...).

Financial Condition Index

- 一司

- Data
- Models
- Simulating and evaluating distributions
- Results
- Conclusions

Financial information and non-linearities on a 2×2 grid:

	NO FINANCE	FINANCE
LINEAR	VAR [§]	VAR
Nonlinear	(MSVAR)	TAR

• $VAR^{\S} = \text{linear VAR}$ without f_t

< ∃ > <

Financial information and non-linearities on a 2x2 grid:

	NO FINANCE	FINANCE
LINEAR	VAR [§]	VAR
Nonlinear	(MSVAR)	TAR

- VAR^{\S} = linear VAR without f_t
- VAR = linear VAR with f_t

Financial information and non-linearities on a 2x2 grid:

	NO FINANCE	FINANCE
LINEAR	VAR [§]	VAR
Nonlinear	(MSVAR)	TAR

- VAR^{\S} = linear VAR without f_t
- VAR = linear VAR with f_t
- TAR = two-state Threshold VAR with regime switches caused by f_t

Financial information and non-linearities on a 2x2 grid:

	NO FINANCE	FINANCE
LINEAR	VAR [§]	VAR
Nonlinear	(MSVAR)	TAR

- $VAR^{\S} = \text{linear VAR without } f_t$
- VAR = linear VAR with f_t
- TAR = two-state Threshold VAR with regime switches caused by f_t
- (*MSVAR* = Markov-switching VAR, not shown for brevity)

$$Y_t = c + \sum_{j=1}^{P} B_j Y_{t-j} + \Omega^{1/2} e_t, \quad e_t \sim N(0, I)$$
 (1)

We set P = 13 and study two specifications

•
$$VAR^{\S}$$
: $Y_t = (y_t, \pi_t, r_t)$

• VAR: $Y_t = (y_t, \pi_t, r_t, f_t)$

Natural conjugate prior (N, IW) as in e.g. Banbura-Giannone-Reichlin (JAE, 2010). All variables treated as independent AR(1) processes:

$$\begin{array}{l} Y_t = c + \Gamma Y_{t-1} + \Sigma e_t \\ \Gamma = \textit{diag}(\gamma_1,..,\gamma_N) \\ \Sigma = \textit{diag}(\sigma_1,...,\sigma_N) \end{array}$$

$$Y_t = c_{S_t} + \sum_{j=1}^{P} B_{S_t,j} Y_{t-j} + \Omega_{S_t}^{1/2} e_t, \quad e_t \sim N(0, I)$$
(2)

$$S_t = \{0,1\} \tag{3}$$

$$S_t = 1 \iff f_{t-d} \le f^*$$
 (4)

where $Y_t = (y_t, \pi_t, r_t, f_t)$. Note f_t impacts (y_t, π_t, r_t) through $B_{S_t,j}$ and drives the transitions across regimes.

Symmetric natural conjugate prior for the two regimes, plus agnostic prior for (f^*, d) :

$$f^* \sim N\left(\frac{\Sigma_t f_t}{T}, \bar{k}\right)$$
$$d \sim U\{1, ..., 13\}$$

Note: the priors are uninformative and a-theoretical. One could use theory to impose structure on the differences between regimes.

- Bayesian approach
- VAR posterior is known analytically (Banbura et al, 2010).
- TAR and MSVAR posteriors can be simulated by Gibbs sampling (Chen & Lee, 1995; Amisano & Fagan, 2010)
- For each estimation we use 20,000 Gibbs sampling draws and discard the first 15,000

Estimation results (1)

Financial regimes.

Estimation results

A one standard deviation financial shock (recursive identification)

Alessandri & Mumtaz

Density forecasts with financial information

14.6.2014 17 / 49

- Data
- Models

• Simulating and evaluating distributions

- Results
- Conclusions

Collect model's *m* parameters into Θ_t . The *k*-periods ahead PD is:

$$p_t^m \equiv p^m (Y_{t+k} | Y_t)$$

= $\int p(Y_{t+K} | Y_t, \Theta_{t+k}) p(\Theta_{t+k} | Y_t, \Theta_t) p(\Theta_t | Y_t) d\Theta$

Simulating the PD:

- draw Θ_t from the posterior (3rd term)
- Isimulate forward any time-varying parameters (2nd term)
- **③** use Θ_{t+k} to simulate paths for Y_{t+k} (1st term).

- $m = VAR^{\$}$, VAR, TAR
- Recursive exercise: we start from 1973.03–1983.04 and reestimate all models adding one observation at a time.
- For each estimation sample $\{Y_{1,..,T}\}$ we simulate the models up to K = 12 months ahead.
- This gives us a set of 354 out-of-sample density forecasts $p^m(Y_{T+k} | Y_T)$ per model.

1. Calibration

Is any of the models "right"?

Probability integral transforms (PIT), probability coverage ratios (PCR)

Intuition: the data should fall evenly across model-generated percentiles.

2. Accuracy

How to compare a pair of (potentially misspecified) models? Log-scores **(LS)**, predictive Bayes factors **(BFs)**

Intuition: higher LS for models attaching higher likelihood to the events that actually occurred.

- Data
- Models
- Simulating and evaluating distributions
- Results
- Conclusions

• For y_t , f_t improves both RMSE and LS. The LS gain is significant around the Great Recession.

∃ ▶ ∢

- For y_t , f_t improves both RMSE and LS. The LS gain is significant around the Great Recession.
- For π_t and r_t , f_t does not affect RMSE but leads again to large improvements in LS.

- For y_t , f_t improves both RMSE and LS. The LS gain is significant around the Great Recession.
- For π_t and r_t, f_t does not affect RMSE but leads again to large improvements in LS.
- RMSE and LS rank the models in a very different way:

 $\begin{array}{rcl} \textit{RMSE} & : & \textit{VAR}^{\$}, \textit{VAR} \succ \textit{TAR} \\ \textit{LS} & : & \textit{VAR}^{\$}, \textit{VAR} \prec \textit{TAR} \end{array}$

- For y_t , f_t improves both RMSE and LS. The LS gain is significant around the Great Recession.
- For π_t and r_t, f_t does not affect RMSE but leads again to large improvements in LS.
- RMSE and LS rank the models in a very different way:

 $\begin{array}{rcl} \textit{RMSE} & : & \textit{VAR}^{\$}, \textit{VAR} \succ \textit{TAR} \\ \textit{LS} & : & \textit{VAR}^{\$}, \textit{VAR} \prec \textit{TAR} \end{array}$

• Most of these differences are predictable to some extent.

		RMSE			LS				
		1M	3M	6M	12M	1M	3M	6M	12M
VAR§	у	5.604	6.465	6.804	7.019	-3.674	-3.338	-3.418	-3.948
	r	0.167*	0.357	0.598	0.985	-0.675	-1.380	-1.754	-2.118
	π	2.078	2.607*	2.812*	3.077*	-2.584	-2.658	-2.266	-2.137
	f	-	-	-	-	-	-	-	-
VAR	у	5.446*	6.166*	6.558*	6.912*	-3.553	-3.156	-3.032	-2.964
	r	0.177	0.365	0.602	0.989	-0.645	-1.357	-1.723	-2.101
	π	2.067*	2.620	2.839	3.115	-2.583	-2.550	-2.339	-2.171
	f	0.102*	0.197	0.289	0.386	0.135	-0.649	-0.957	-1.130
TAR	у	5.491	6.187	6.594	6.934	-3.491*	-3.152*	-3.005*	-2.885*
	r	0.167	0.338*	0.555*	0.943*	0.022*	-0.778*	-1.364*	-1.999*
	π	2.115	2.667	2.864	3.116	-2.503*	-2.415*	-2.195*	-2.080*
	f	0.104	0.190*	0.271*	0.367*	0.496*	-0.122*	-0.431*	-0.717*

* denotes best model for each criterion/variable/horizon

Image: A match a ma

Log-Scores (1)

14.6.2014 25 / 49

-

Log-Scores (2)

★ ■ ▶ ■ の Q G 14.6.2014 26 / 49

.

Log-Bayes Factors (1)

Marginal distributions

14.6.2014 27 / 49

Log-Bayes Factors (2) Joint distribution of IP and CPI

14.6.2014 28 / 49
Is the discrepancy between models itself predictable?

Following Giacomini-White (E 2006), we study the persistence of the *difference in performance* between pairs of models:

Model selection criterion:

Use TAR
$$\iff E_t \Delta Loss_{t+\tau} > 0 \iff (\hat{\alpha} + \hat{\delta} \Delta Loss_t) > 0$$

Giacomini-White decision criteria VAR versus TAR

Blue (red) line = $E_t \Delta Loss_{t+12}$ for Loss = RMSE (-LS). Positives implies that TAR dominates VAR.

Predictive densities and early warnings

Ex-ante recession probability: $prob_t (\Sigma_{h=1}^{12} y_{t+h} < 0)$

VAR/TAR virtually identical: all that matters is the presence of FCI

Alessandri & Mumtaz

14.6.2014 31 / 49

Predictive densities and early warnings

Ex-ante "great recession" probability: $prob_t \left(\sum_{h=1}^{12} y_{t+h} < -20\% \right)$

... But TAR anticipates a more severe downturn.

Alessandri & Mumtaz

Density forecasts with financial information

14.6.2014 32 / 49

- Data: "excess bond premium" (Gilchrist and Zakrajšek, 2012) instead of Financial Condition Index.
 - \rightarrow Similar qualitative results.
- Models: rolling VAR, Markov-switching VAR with transition probabilities that depend on FCI.

 \rightarrow Both dominated by TAR. TAR appears to capture the "right" kind of time variation in parameters.

- Data
- Models
- Simulating and evaluating distributions
- Results
- Conclusions

Method. Predictive distributions are a better tool than point forecasts to study the predictive power of financial indicators.

- Method. Predictive distributions are a better tool than point forecasts to study the predictive power of financial indicators.
- Financial indicators improve both, but the improvement is more significant/stable for the densities.

- Method. Predictive distributions are a better tool than point forecasts to study the predictive power of financial indicators.
- Financial indicators improve both, but the improvement is more significant/stable for the densities.
- Oddels: VAR is better (worse) than TAR for point (density) forecasting. With imperfect models, the risk preferences of the forecaster become crucial.

- Method. Predictive distributions are a better tool than point forecasts to study the predictive power of financial indicators.
- Financial indicators improve both, but the improvement is more significant/stable for the densities.
- Oddels: VAR is better (worse) than TAR for point (density) forecasting. With imperfect models, the risk preferences of the forecaster become crucial.
- Great Recession: essentially unpredictable but less so for a TAR with finance-driven regimes.

- Work out distributional implications of credit constraints in a (more) general equilibrium model.
- Think formally about risk preferences and model selection.
- Refine priors on good/bad regimes
- More robustness (sample, prior hyperparameters, ...)

Thanks!

Reserve slides

・ロト ・ 日 ト ・ 目 ト ・

Endowment economy with random income and consumption/saving decision subject to borrowing constraint:

$$\max_{(c_t, a_t)_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \left(\mathcal{U}(c_t) + \mathcal{P}(a_t + \theta_t y) \right)$$
(5)

$$c_t + \frac{a_t}{1+r} = a_{t-1} + y_t$$
 (6)

$$y_t = e^{z_t}, \ z_t \sim N(0, \sigma_z) \tag{7}$$

$$\theta_{t} = \theta(1 - \rho_{\theta}) + \rho_{\theta}\theta_{t-1} + \epsilon_{t}, \quad \epsilon_{t} \sim N(0, \sigma_{\varepsilon})$$
(8)

• Penalty function: $\mathcal{P}(a_t + \theta_t y) = \phi \log(a_t + \theta_t y)$. Borrowing $(a_t < 0)$ causes disutility, with $\mathcal{P} \to -\infty$ as $a_t \to -\theta_t y$. A trick to approximate an occasionally binding constraint:

$$\mathcal{P}(\mathbf{a}_t + \mathbf{\theta}_t \mathbf{y}) \simeq \mathbf{a}_t \geq -\mathbf{\theta}_t \mathbf{y}$$

 Financial shock ε_t: shifts the borrowing limit for a given income level. A proxy for collateral value or strength of lender's balance sheet.

Obviously a toy model, with exogenous income and interest rate, but useful to think about (linear/nonlinear) and (central/density) forecasting issue.

β	r	θ	σ_z	σ_{ε}	ρ_{θ}	φ
0.90	0.03	1	0.1	0.01	0.5	0.05

Made up. Low β guarantees that agents borrow in equilibrium: $-\theta y < a < 0$

	â _{t-1}	$\hat{\theta}_{t-1}$	z _t	ε _t	$\hat{a}_{t-1}\hat{ heta}_{t-1}$	$\hat{a}_{t-1}z_t$	$\hat{a}_{t-1}\varepsilon_t$	$\hat{\theta}_{t-1} z_t$	$\hat{\theta}_{t-1}\varepsilon_t$
\hat{c}_t	0.264	0.058	0.263	0.116	-0.068	-0.127	-0.135	-0.067	-0.085
ât	0.758	-0.060	0.754	-0.119	0.069	0.130	0.139	0.070	0.088

 A negative financial shock ε_t < 0 depresses c and increases a, i.e. it leads to a cut in debt relative to equilibrium

	\hat{a}_{t-1}	$\hat{\theta}_{t-1}$	z _t	ε _t	$\hat{a}_{t-1}\hat{ heta}_{t-1}$	$\hat{a}_{t-1}z_t$	$\hat{a}_{t-1}\varepsilon_t$	$\hat{\theta}_{t-1} z_t$	$\hat{\theta}_{t-1}\varepsilon_t$
\hat{c}_t	0.264	0.058	0.263	0.116	-0.068	-0.127	-0.135	-0.067	-0.085
â _t	0.758	-0.060	0.754	-0.119	0.069	0.130	0.139	0.070	0.088

- A negative financial shock ε_t < 0 depresses c and increases a, i.e. it leads to a cut in debt relative to equilibrium
- Its impact is stronger when debt is already high $(\hat{a}_{t-1} < 0)$ and/or borrowing conditions are tight $(\hat{\theta}_{t-1} < 0)$

	â _{t-1}	$\hat{\theta}_{t-1}$	z _t	ε _t	$\hat{a}_{t-1}\hat{ heta}_{t-1}$	$\hat{a}_{t-1}z_t$	$\hat{a}_{t-1}\varepsilon_t$	$\hat{\theta}_{t-1} z_t$	$\hat{\theta}_{t-1}\varepsilon_t$
\hat{c}_t	0.264	0.058	0.263	0.116	-0.068	-0.127	-0.135	-0.067	-0.085
ât	0.758	-0.060	0.754	-0.119	0.069	0.130	0.139	0.070	0.088

Assume c_t , a_t , θ_t are observed. Then:

• Any prediction from a linear model ignores $a\theta$, az, $a\varepsilon$, θz , $\theta\varepsilon$

	â _{t-1}	$\hat{\theta}_{t-1}$	z _t	ε _t	$\hat{a}_{t-1}\hat{ heta}_{t-1}$	$\hat{a}_{t-1}z_t$	$\hat{a}_{t-1}\varepsilon_t$	$\hat{\theta}_{t-1} z_t$	$\hat{\theta}_{t-1}\varepsilon_t$
\hat{c}_t	0.264	0.058	0.263	0.116	-0.068	-0.127	-0.135	-0.067	-0.085
ât	0.758	-0.060	0.754	-0.119	0.069	0.130	0.139	0.070	0.088

Assume c_t , a_t , θ_t are observed. Then:

- Any prediction from a linear model ignores $a\theta$, az, $a\varepsilon$, θz , $\theta\varepsilon$
- CFs $(E_t c_{t+1})$ from a nonlinear model leave out $a\varepsilon$, θz , $\theta \varepsilon$

	â _{t-1}	$\hat{\theta}_{t-1}$	z _t	ε _t	$\hat{a}_{t-1}\hat{ heta}_{t-1}$	$\hat{a}_{t-1}z_t$	$\hat{a}_{t-1}\varepsilon_t$	$\hat{\theta}_{t-1} z_t$	$\hat{\theta}_{t-1}\varepsilon_t$
\hat{c}_t	0.264	0.058	0.263	0.116	-0.068	-0.127	-0.135	-0.067	-0.085
ât	0.758	-0.060	0.754	-0.119	0.069	0.130	0.139	0.070	0.088

Assume c_t , a_t , θ_t are observed. Then:

- Any prediction from a linear model ignores $a\theta$, az, $a\varepsilon$, θz , $\theta\varepsilon$
- CFs $(E_t c_{t+1})$ from a nonlinear model leave out $a\varepsilon$, θz , $\theta \varepsilon$
- PDs $(p_t(c_{t+1}))$ from a nonlinear model capture all terms.

For instance, the model should predict an increase in the *volatility* of c_t when θ_{t-1} or a_{t-1} are low (tight markets/high debt).

$$Y_t = c_{S_t} + \sum_{j=1}^{P} B_{j,S_t} Y_{t-j} + \Omega_{S_t}^{1/2} e_t, \quad e_t \sim N(0, I)$$
(9)

$$S_t = \{0, 1\}$$
 (10)

$$S_t = 1 \iff x_t^* \ge 0$$
 (11)

$$x_t^* = \lambda_0 + \gamma_1 f_{t-1} + \lambda_1 S_{t-1} + \nu_t, \nu_t \sim N(0, 1)$$
 (12)

where $Y_t = (y_t, \pi_t, r_t)$ and x_t^* is an unobserved state.

Symmetric n.c. prior for the two regimes and agnostic prior for (λ_i, γ) :

$$\begin{bmatrix} \lambda_0 & \lambda_1 & \gamma_1 \end{bmatrix}' \sim N\left(\begin{bmatrix} -2 & 4 & 0 \end{bmatrix}', \bar{k}I\right)$$

・ 回 ト ・ 三 ト ・

The MS-VAR incorporates a more flexible/possibly weaker role for finance:

- f_t does not have a direct impact on (y_t, π_t) through $B_{S_{t,j}}$
- $f_t may/may$ not influence the transitions between regimes:

 $\gamma_1 < 0 \Rightarrow ~{\rm high}~f_t$ increases the prob of entering/being stuck in S_0 $\gamma_1 = 0 \Rightarrow$ fixed, exogenous transition probabilities

Different story:

here financial distress does not cause recessions, but can bring about a state with e.g. lower average output growth and/or different transmission channels for non-financial (monetary, AS, AD) shocks.

$$Y_{t} = c_{S_{t}} + \sum_{j=1}^{P} B_{j,S_{t}} Y_{t-j} + \Omega_{S,t}^{1/2} e_{t}$$

$$\begin{bmatrix} \Pr(0|0) & \Pr(0|1) \\ \Pr(1|0) & \Pr(1|1) \end{bmatrix} = \begin{bmatrix} P(f_{t-1}) & 1 - Q(f_{t-1}) \\ 1 - P(f_{t-1}) & Q(f_{t-1}) \end{bmatrix}$$
(14)

where $e_t \sim N(0, I)$, $Y_t = (y_t, \pi_t, r_t)$, and (P, Q) are Probit models:

$$P(f_{t-1}) = 1 - \Phi(\lambda_0 + \gamma_1 f_{t-1})$$
(15)

$$Q(f_{t-1}) = \Phi(\lambda_0 + \lambda_1 + \gamma_1 f_{t-1})$$
(16)

< ≥ ► <

Estimation results, FCI specification MSVAR regimes

Grey area = median estimate of $Pr(\hat{S}_t = 0)$ based on full-sample information. Continuous values in [0, 1]

Alessandri & Mumtaz

14.6.2014 46 / 49

Estimation results, FCI specification MSVAR posterior

- $\gamma_1 <$ 0: financial instability increases the likelihood of entering the bad state
- The BS indicator delivers $\gamma_1 \simeq$ 0, and EBP a counterintuitive $\gamma_1 >$ 0.

PITs Specifications based on the Financial Condition Index

14.6.2014 48 / 49

Amisano-Giacomini weighted LS test

		Left	: tail		Both tails					
	У	r	π	f	У	r	π	f		
Weighted log-scores:										
\$ VAR	-1.881	-0.513	-1.846	_	-0.924	-0.220	-0.914	_		
VAR	-1.761	-0.491	-1.848	0.249	-0.816	-0.211	-0.927	-0.075		
TAR	-1.698*	0.032	-1.779	0.479*	-0.753*	0.029	-0.866*	0.149*		
MSVAR	-2.006	0.066*	-1.732*	-	-1.129	0.055*	-0.887	-		
P-values:										
§ VAR ,VAR	0.050	0.000	0.230	_	0.139	0.021	0.181	_		
TAR, VAR	0.370	0.000	0.674	0.000	0.401	0.000	0.801	0.000		
MSVAR, VAR	0.517	0.000	0.425	-	0.025	0.000	0.334	-		
MSVAR, TAR	0.101	0.228	0.098	-	0.535	0.026	0.333	-		

(*) denotes the best model for each variable and weighting function