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Abstract

We contribute to the literature on exchange rate modelling and forecasting in two distinct ways. First, we

show that the interval and density forecasts of three major exchange rates vis-a-vis the US dollar can be im-

proved by assuming time variation in the coefficients of the data generating process. Secondly, we show that the

relationship between exchange rates and a set of macroeconomic and financial fundamentals can be unravelled

through the modelling of parameter time variation. In particular, we find that controlling for macroeconomic

predictors tends to deliver higher one-year ahead predictive likelihoods during economic recessions. A sim-

ple trading strategy further reveals that financial and monetary predictors are important from an economic

perspective after the 2008 financial crisis.
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1 Introduction

Exchange rates have an impact on the production decision of firms, on portfolio allocation, on a a country’s prices,

and more generally on its competitiveness. Hence, the need of having reliable models to track the current evolution

of exchange rates and predict their future behaviour, especially in times of uncertainty and financial stress. In fact,

exchange rate volatility has changed over the years. It has fallen after the price shocks and inflationary pressures

of the 1970s, and it has increased again in the last decade, possibly as a consequence of the quantitative easing

measures enacted by central banks around the world1.

So far, a vast literature has been devoted to the construction and evaluation of the point forecasts of exchange

rates. It has established, with few exceptions2, that the best forecasting model is a simple random walk. This is

surprising, given the relationship between exchange rates and a wide set of macroeconomic fundamentals posited by

economic theory. This puzzle, originated by the seminal work of Meese and Rogoff [1983], has not yet been solved.

A possible explanation lies in the instability over time of the link between exchange rates and fundamentals, as

suggested by Bacchetta and van Wincoop [2009]. Alternatively, Engel and West [2005] have shown that an asset-

pricing model where at least one of the fundamentals has a unit root, and the discount factor is close to unity, is

able to generate exchange rate unpredictability. In addition, competing models have so far been evaluated mainly

on the basis of their point forecasts. Though the latter are clearly of interest, for the decision making of economic

agents and for the pricing of financial assets, interval and density forecasts of exchange rate are also relevant. On

this the literature is more limited. Significant exceptions are Yongmiao et al. [2007] and Balke et al. [2013], who

both show that the density forecasts of a random walk can be improved upon either with non-linear models, or

with univariate Taylor-rule models with semiparametric confidence intervals.

Our contribution to the literature is twofold. First, we examine whether and to what extent the point, interval

and density forecasts of three major exchange rates vis-a-vis the US dollar can be improved by assuming time

variation in the coefficients of the data generating process. The exchange rates analysed are the monthly averages

of the British Pound, the Japanese Yen, and the German Mark3, used as a proxy for the Euro, over the period

1971m1 to 2013m6. As it can be seen in figure 1, the volatility of these three currencies has changed over time:

a constant-volatility model could therefore lead to the incorrect estimation of forecast intervals, underestimating

them in periods of high volatility and overestimating them otherwise. To model time variation, we experiment

with two methods recently proposed in the literature: the time-varying parameter Bayesian vector autoregression

with stochastic volatility developed by Cogley and Sargent [2005] and Primiceri [2005], and its approximation

1See Warwick-Ching, L. (2013, March 25). Currency wars: Volatility provides profit opportunity. The Financial Times. Retrieved
from www.ft.com

2Exceptions include forecasts from error correction models (univariate, multivariate and panel), though these results are sensitive
to the forecast horizon and to the sample used, as documented in Rossi [2013]. Carriero et al. [2009] show that a Bayesian vector
autoregression with a large set of exchange rates beats the random walk in mean squared forecast errors. Moreover, linear models tend
to perform better than non-linear ones, while the evidence on time-varying parameter models is mixed. For a comprehensive review
see, e.g. Rossi [2013]. Recently, Dal Bianco et al. [2012] have used a mixed-frequency dynamic factor model with four weekly exchange
rates and lower-frequency macroeconomic fundamentals. Their model delivers significantly smaller mean squared forecast errors than
a random walk, and macroeconomic variables play a significant role.

3After the introduction of the euro, the currency refers to the contribution of the German mark to the euro, calculated using the
conversion rate fixed on 1 January 1999.
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proposed by Koop and Korobilis [2013], based on forgetting factors and on an exponentially weighted moving

average estimator of the shocks’ covariance matrix. The performance of these models is compared to that of

two benchmarks, a Bayesian vector autoregression and a random walk (with and without GARCH innovations),

by juxtaposing the respective point, interval and density forecasts. The analysis reveals that, though the point

forecasts are similar, the time-varying models, and in particular the forgetting-factor one, deliver sharper and more

accurately calibrated density forecasts, thus correctly estimating forecast uncertainty.

Our second contribution is to verify whether exchange rate predictability by fundamentals can be unravelled

through a modelling of time variation. To answer this question we employ the forgetting factor methodology and

consider the alternative inclusion of a wide set of macroeconomic and financial predictors. We find that models

enriched with macroeconomic differentials tend to deliver higher predictive likelihoods at long horizons and in

periods of economic recessions. In addition, simple trading strategies based on the competing forecast models

reveal that controlling for monetary and financial fundamentals would have yielded positive returns to a US-based

investor in the period of the 2008 financial crisis.

To our knowledge this comprehensive evaluation is the first of its kind in the empirical literature on exchange

rate forecasting, not only for the methodology used but also for the emphasis on interval and density forecasts.

Two works are closely related to this paper. Canova [1993] finds that a time-varying coefficient Bayesian model

with exchange rates and short-term interest rates has a higher predictive ability than a random walk. More

recently, the one-month ahead predictive ability of macroeconomic fundamentals in a time-varying setting has

been evaluated by Della Corte et al. [2009]. Their findings support a time-varying treatment of volatility, in

particular stochastic-volatility, as well as the use of forward premium models, which outperforms both the random

walk and models with monetary fundamentals4. In contrast to our approach, Della Corte et al. [2009] do not

allow for dynamic interrelationships across variables and countries, nor do they model time variation in the slope

parameters. Though using the same currencies and frequencies, our sample size is longer and includes the 2008

financial crisis. Moreover, we focus on forecast horizons greater than one month, as well as on other statistical

measure of predictive accuracy such as coverage rates. On the basis of these consideration, we can say that our

approaches complement each other.

The paper is organised as follows. In the next Section we review the main exchange-rate determination models,

as well as the empirical strategies that have been shown to improve on a simple random walk forecast model. Section

3 describes the two time-varying parameter models used in the modelling and forecasting exercises. Section 4 is

dedicated to the evaluation and comparison of the results delivered by the different models. The assessment of the

role of the macroeconomic and financial predictors is presented in Section 5. Section 6 discusses the results of a

simple trading strategy based on the competing forecast models, and Section 7 concludes.

4Their evaluation criteria are both statistical, relative mean squared errors and log-likelihoods, as well as economical, based on
the utility function of investors. In addition, the economic criterion supports an optimal combination of the model forecasts through
Bayesian model averaging.
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2 The role of macroeconomic and financial predictors

In this Section we briefly outline the theoretical and empirical relationships that link exchange rates to the set

of macroeconomic and financial fundamentals used in this work. After introducing the main theoretical models

of exchange-rate determination, we provide an overview of the methodologies used in the exchange-rate forecast-

ing literature that have been shown to improve on the point forecasts of the random walk model, established as

the benchmark forecast model since the seminal work of Meese and Rogoff [1983]. Lastly, we review two possi-

ble explanations for the random walk behaviour of exchange rates and the consequent low predictive ability of

macroeconomic fundamentals that have been proposed in the literature.

2.1 Theoretical links between exchange rates and fundamentals

Several variables qualify as potential predictors of future exchange rates. The purchasing power parity theory

(PPP), first developed by Cassel [1918], postulates that the nominal exchange rate (st) should be equal to the

sum of the real exchange rate (qt), and the difference in the general price level between the foreign and the home

country (p∗t − pt):

st = p∗t − pt + qt , (1)

where, following the notation used in the empirical application, st is defined as the number of currency units per

US dollar, while small case letters denote the logarithms of the variables, unless stated otherwise. Moreover, the

uncovered interest rate parity (UIRP) condition suggests that exchange rate movements compensate differentials

in the nominal interest rate levels (i∗t − it):

Etst+1 − st = i∗t − it + ρt . (2)

This condition is based on rational expectation and risk neutrality, and ρt can be interpreted either as a forward

premium or as an expectational error5. Empirical evidence on these models is mixed. Among others, Cheung et al.

[2005] show that while the mean squared errors from PPP models are lower than those of a random walk for longer

horizons, UIRP models do not significantly improve on the random walk at any horizon. On the contrary, both

models are found to outperform the random walk by Della Corte and Tsiakas [2013], on the basis of statistical and

economic criteria.

A richer relationship between exchange rates and fundamentals is posited by monetary models. By equating

the money demand equations for the home and the foreign country, and assuming 1 and 2 to hold, the flexible

price monetary model links the exchange rate to differentials in money, output and nominal interest rate through

5See, i.e. Engel and West [2005]. In-sample estimates of the UIRP model usually lead to opposite results from the theoretical
relationship: i.e. that the currency of high-interest rate countries appreciates. See, for instance, the discussion in Della Corte and
Tsiakas [2013].
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the following reduced-form equation6:

st = β0(m∗t −mt) + β1(y∗t − yt) + β3qt + β4(v∗t − vt) + β5ρt + β6Etst+1 , (3)

where vt and v∗t are shocks to the domestic and foreign money demand equations, and the parameters β =

(β0, . . . , β6) are functions of the underlying structural parameters. Equation 3 is typically estimated using as

regressors either just money or output differentials, or a combination of the two, m∗t−mt− (y∗t −yt). The remaining

variables are assumed to enter a generic error term. Alternatively, the sticky-price version of the monetary model

3, due to Dornbusch [1976], adds nominal interest rate differentials to the list of potential regressors. Empirical

works have shown that the fundamentals proposed by the flexible monetary model have no predictive ability in

the short run, see for instance Della Corte et al. [2009], but display comovements with the exchange rates at long

horizons7.

A relatively recent branch of exchange-rate prediction models is based on Taylor rules. These models build

upon open economy frameworks, and assume that the policy rule followed by the central bank targets the country’s

exchange rate, as well as output and inflation. Equating the modified Taylor rules for the home and the foreign

country yields a relationship between the exchange rate and differentials in output, inflation and interest rates.

The good performance of Taylor rule models has been documented, among others, by Molodtsova and Papell [2009]

and Inoue and Rossi [2012], while it has been questioned by Rogoff and Stavrakeva [2008].

Finally, increasing attention is being paid to financial predictors of exchange rates. Molodtsova and Papell

[2012] find that the performance of their proposed Taylor rule models can be improved, in some cases, when they

are augmented with credit spreads or measures of financial conditions. In addition, Shin et al. [2010] have shown

how US credit aggregates, taken as proxies for the risk appetite of financial intermediaries, can help forecasting a

wide set of exchange rates.

Other variables qualify as potential exchange rate predictors, including commodity and oil prices, trade balance

differentials and productivity measures. We shall not however review the models behind them, as the focus of this

paper lies on the most commonly used macroeconomic predictors, as well as on measures of financial market risk

and liquidity.

2.2 A brief review of the empirical strategies used in the exchange-rate literature

A wide variety of methods has been used in the empirical literature on exchange-rate forecasting. The consensus

has emerged that the toughest benchmark to beat, in terms of the accuracy of point forecasts, is the random

walk model. Among the methodologies that have been shown to deliver lower mean squared forecast errors than

a random walk8 stand error-correction models, univariate, multivariate and panel. Carriero et al. [2009] reach a

6See, for instance, the derivations in Frankel [1984] and Engel and West [2005].
7On this, see Mark and Sul [2001], and the more recent results of Engel et al. [2008]. Both works find, using panel error-correction

models, that monetary fundamentals have predictive ability at long horizons.
8These results appear however to be sensitive to the forecast horizon and to the sample used, as documented in Rossi [2013].
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similar conclusion by relying on a Bayesian vector autoregression with a large set of exchange rates. Recently,

Dal Bianco et al. [2012] have estimated a mixed-frequency dynamic factor model with four weekly exchange rates

and lower-frequency macroeconomic fundamentals. Their model delivers significantly smaller mean squared forecast

errors than a random walk, and macroeconomic variables play a significant role. Mumtaz and Sunder-Plassmann

[2013] use a time-varying stochastic volatility vector autoregression to study the impact of asymmetric supply and

demand shocks on the real exchange rate in four small open economies. The time-varying parameter model is

found to outperform its constant-parameter counterpart on the basis of the mean squared forecast error and of the

Bayesian deviance information criterion. A time-varying modelling of volatility is supported also by Della Corte

et al. [2009], who show that univariate stochastic-volatility models based on forward premia deliver lower mean

squared forecast errors than both the random walk and monetary models. For a recent and more comprehensive

review of past works on exchange-rate forecasting, we refer to Rossi [2013].

2.3 Reconciling the exchange-rate disconnect puzzle

Contrarily to what exchange-rate determination models posit, macroeconomic fundamentals do not appear to

be good predictors of future exchange rates. A possible explanation for this puzzle lies in the instability of the

relationship that links exchange rates to their fundamentals. This instability has been documented, among others,

by Rossi [2006] through a series of instability tests. Using survey data, Cheung and Chinn [2001] have explained

that instability might result from the behaviour of foreign exchange-rate traders, who frequently change the weight

they attach to fundamentals. In addition, Bacchetta and van Wincoop [2009] show that the unstable relationship

between fundamentals and exchange rates can be generated within a model whose structural parameters are

unknown to economic agents, and evolve gradually over time.

An alternative explanation for the low predictive ability of macroeconomic fundamentals has been suggested by

Engel and West [2005], who argue that exchange-rate unpredictability is an implication of the structural models,

rather than being evidence against them. Their contribution stems from the consideration that exchange rates

are asset prices and are therefore influenced not only by current fundamentals, but also by the expectation on

their future values. Engel and West [2005] show that all exchange-rate determination models can be rewritten

so as to express foreign exchange rates as present discounted values of current and future fundamentals, as well

as unobservable shocks. Intuitively, if fundamentals are very persistent and if agents are patient, implying that

future fundamentals matter more than current ones, exchange rates will exhibit almost no correlation with cur-

rent fundamentals. Analytical calculations provided in their paper show in fact that persistent processes for the

macroeconomic variables, coupled with reasonable calibration values for the discount factor, generate very low

correlations between exchange rates and fundamentals.
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3 BVAR models with time-varying parameters and changing volatility

3.1 The time-varying parameter stochastic volatility BVAR

We start with a short description of the time-varying parameter stochastic volatility Bayesian vector autoregression

(TVP-SV-BVAR), developed by Cogley and Sargent [2005] and Primiceri [2005], to whom we refer for additional

details. The first component of the model is the measurement equation:

yt = Ztβt + ut , (4)

where yt is a n×1 vector of observed variables, Zt is a n×k matrix of regressors, βt is a k×1 vector of time-varying

coefficients and ut is a n× 1 vector of innovations with covariance matrix Ωt. Let Zt contain a constant and p lags

of each variable; it is then defined as Zt = In ⊗ [1, y′t−1, . . . y
′
t−p] with dimension n× k = n× n(1 + np).

Following Primiceri [2005], the covariance matrix Ωt can be decomposed as follows9:

AtΩtA
′
t = ΣtΣ

′
t , (5)

where Σt is a diagonal matrix, with the standard deviations of the structural innovations as its elements; while At

is a lower triangular matrix with ones on its main diagonal, which summarises the contemporaneous relationships

between the variables in yt. Using the structural decomposition in 5, the measurement equation 4 can be rewritten

in terms of the white-noise, homoskedastic and uncorrelated shocks εt:

yt = Ztβt +A−1t Σtεt, with E[ε′t, εt] = Im . (6)

To close the model, three transition equations are specified, describing the evolution of the parameters over time:

βt = βt−1 + νt ,

αt = αt−1 + ξt ,

log σt = log σt−1 + ηt ,

(7)

where αt is the vector of the non-zero, non-one elements of At stacked by rows, and σt is the vector of the diagonal

elements in Σt. While the slope coefficients and those in the contemporaneous impact matrix are assumed to follow

a random walk, the standard deviations of the structural innovations are modelled as geometric random walks.

Finally, all the innovations of the model are posited to be distributed as a multivariate normal, with zero mean

9The decomposition in 5 emphasises the two drivers of the time variation in Ωt: variation in the variance of the innovations and in
their correlation structure.
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and with the following block diagonal covariance matrix:

V = V ar



εt

νt

ξt

ηt


=



In 0 0 0

0 Q 0 0

0 0 S 0

0 0 0 W


. (8)

The objectives of the estimation are the unobserved paths of the parameters in 7, indicated by (BT , AT , ΣT ),

and the hyperparameters in V . Sampling from the posterior density requires the specification of a prior distribution,

as well as the use of a posterior simulator algorithm. A description of both is given below.

The covariance matrices (Q, W, S) are assumed to have an inverse-Wishart distribution and to be therefore

characterised by a number of degrees of freedom and a scale matrix, set to a constant fraction of the covariance

matrix’s training sample estimate. The initial states of the three types of time-varying coefficients, β0, α0, log σ0,

are assumed to be normally distributed, with mean and variance calibrated through a training sample. The prior

on the initial states and the transition equations in 7 imply that, conditional on Q, W, S, the prior distributions of

the entire sequence of VAR coefficients, contemporaneous relationships, and log standard deviations are themselves

normal. Further details on the prior specification, related to the empirical application of this paper, are provided

in Section 4.

Sampling from the BVAR posterior density To generate a sample from the posterior of (BT , AT , ΣT , V )

we rely on a five-step Gibbs-sampler, following Primiceri [2005] and Del Negro and Primiceri [2013].

The first step is to sample the sequence of VAR coefficients βT , given an initial guess of the parameters. For

this task, a simulation smoother like the one proposed in Carter and Kohn [1994] can be used, exploiting the fact

that the distribution of βT , conditional on AT and ΣT , is linear and normal. The sequence of AT can be drawn in

a similar way, as its posterior distribution is normal, given BT and ΣT .

To draw the sequence of standard errors, the model needs to be transformed, given that it is neither linear

nor Gaussian in ΣT . More specifically, at this stage of the sampler the innovations to the measurement equation

are distributed as a logχ2. The transformation of the system can be achieved by using a mixture of normal

approximations of the logχ2 distributions, as described in Kim et al. [1998]. After sampling sT , the matrix

of indicator variables that rules the normal approximation10, the system is approximately linear and Gaussian,

conditional on AT , BT , V and sT : a standard simulator smoother can then be applied, to recover the smoothened

estimates of the volatility and of the variance of its innovations.

The last step is a draw from the inverse-Wishart distributions of the block components of V , yielding a sample

of the model’s covariance matrix.

10The parameters used for the approximation to the logχ2 distribution are those of Primiceri [2005].
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Sampling from the BVAR predictive density Let us denote with yt and θt = (Bt, At, Σt, V ), the history

of the variables and of the coefficients from period 1 up to period t. We want to forecast up to h steps ahead in the

future, that is, to make predictions on the vector yt+h = [y′t+1, . . . , y
′
t+h]. For this, we need the predictive density

of the BVAR model, which can be factored as follows, emphasising the different sources of forecast uncertainty:

p(yt+i, θt+i| yt) = p(yt+i| θt+i, yt) · p(θt+i| θt, yt) · p(θt| yt), i = 1, . . . , h . (9)

To make the simulation from the predictive density p(yt+h, θt+h| yt) less time consuming, we assume that the

coefficients in θt+i are fixed out of sample11. Conditional on each Gibbs sampler draw from p(θt| yt), we simulate a

value for βt+1 by drawing the innovations νt+1 in 7, and for the innovations ut+1, drawn from a Normal distribution

with variance Ωt. A path for ŷt+i, i = 1 . . . h is then generated, conditioning on ŷt+i−1 and on ut+i ∼ N(0,Ωt).

We repeat this procedure a thousand times, and store the mean and the 68% and 95% percentiles of the simulated

values {ŷt+i, κ, i = 1 . . . h}1000κ=1 . After the Gibbs sampler is completed, we take the average of these values across

the sampler draws.

3.2 The time-varying parameter forgetting factor VAR

Using the stochastic volatility Bayesian VAR for a recursive forecasting exercise generally demands a high compu-

tational time, as the number of iterations required for the convergence of the Gibbs sampler is large. To reduce

the computational time, Koop and Korobilis [2013] have developed a procedure which approximates the model in

4, by replacing the posterior draws of the covariance matrices Q and Σt with empirical estimates.

The assumptions of the TVP-SV-BVAR model imply that, given information up to t− 1, the slope coefficients

in t are draws from a normal distribution:

βt | Ft−1 ∼ N(βt|t−1, Pt|t−1) . (10)

The Kalman filter routine, used in the first step of the Gibbs sampler, entails a prediction for the coefficients’

covariance matrix, Pt|t−1 = Pt−1|t−1 +Q, which involves the posterior draw of Q. To circumvent this problem, the

following approximation is used:

Pt|t−1 =
1

λt
Pt−1|t−1, with λt ∈ (0, 1] , (11)

implying a possibly time-varying value for Q:

Qt =

(
1

λt
− 1

)
Pt−1|t−1 . (12)

The parameter λt is a forgetting factor, and discounts past information. In particular, a value of λ equal to

11This simplification is justified only if the time variation of the coefficients is moderate and, as is the case in our empirical application.
Results obtained by letting θt+i drift for h ≥ 1 are indeed very similar and available upon request.
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0.99 implies, in the case of monthly data, that observations one year ago receive 89% as much weight as current

observations. The case of a constant Q, like in the TVP-SV-BVAR model, is encompassed by choosing a constant

λt = λ̄, ∀t. On the other hand, time variation in Q can be accommodated by positing a law of motion for the

forgetting factor, as specified by Park et al. [1991]:

λt = λmin + (1− λmin)Lf(ε̂
′
t−1ε̂t−1) , (13)

where λmin = 0.96, L = 1.1, f denotes a function that rounds its input to the nearest integer, and ε̂t−1 is the

one-step ahead prediction error.

A similar approximation is used for the covariance matrix of the non-structural innovations, Ωt. The latter is

estimated as a weighted average of its past value, and of its current estimate12:

Ω̂t = κΩ̂t−1 + (1− κ)ε̂′tε̂t , (14)

where the weight is represented by the decay factor κ. To summarise, the procedure developed by Koop and

Korobilis [2013] is based on the Kalman filter and relies on the parametrisation of equations 13 and 14, as well as

on the choice of initial conditions for the covariance matrix Ω0, for the slope coefficients β0 and their variance P0.

Further details on the paramerisation are provided in the next Section.

There are three main differences between the TVP-SV-BVAR model and its approximation based on the use

of forgetting factors. Firstly, the latter delivers filtered, rather than smoothed, estimates and should hence be

better suited for a forecasting exercise but less suited for a full sample evaluation. Secondly, and more importantly,

equations 13 and 14 in the forgetting factor model do not provide any rule for the out-of-sample evolution of

the covariance matrices Qt and Ωt. Lastly, while the TVP-SV-BVAR embeds a structural decomposition of the

innovations covariance matrix, its approximation deals solely with non-structural innovations. However, this should

not be a concern, so long as the objective of the researcher lies in forecasting, rather than in a structural analysis.

Sampling from the predictive density As it has been already noted, neither equation 13 nor equation 14 are

proper laws of motion for the two covariance matrices of the model. Hence, in order to generate samples from the

predictive density, we follow Koop and Korobilis [2013] and assume that both covariance matrices are fixed out of

sample. That is, we assume that Q̂t+i = · · · = Q̂t+1 = P̂t|t and that Ω̂t+i = · · · = Ω̂t, ∀i ≥ 1. In a similar way,

the out-of-sample path for the slope coefficients βt+h is assumed to be fixed out of sample and centred around

the last estimated values for β̂t|t and for P̂t|t. Given these assumptions, we simulate 5000 values for the vector

ŷt+h = [ŷ′t+1, . . . , ŷ
′
t+h], and store the mean and the 68% and 95% percentiles of the values {ŷt+i, κ, i = 1 . . . h}5000κ=1 .

12This is the Exponentially Weighted Moving Average estimator, commonly used in the finance literature.
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4 Modelling and forecasting exchange rates

In this Section the two methodologies previously discussed are applied to jointly model and forecast three main

exchange rates vis-a-vis the US dollar: the British Pound, the Japanese Yen13, and the German Mark14. The

currencies, defined such that an increase pertains to a depreciation, cover the period from 1971:m1 to 2013:m6

and have been downloaded from Datastream. Figure 1 shows that the volatility of the three exchange rates has

changed over the years. In particular, note that after the 2008 financial crisis the volatility of the Mark and of the

Pound has increased after a period of relative moderation in the previous decade.

After a description of the empirical exercise, we briefly discuss the in-sample estimates of the time-varying

parameter models. We then assess their out-of-sample forecasting performance relative to four benchmarks: a

random walk with or without GARCH innovations, and a constant-parameter BVAR estimated either recursively

or with a rolling estimation window of eleven years.

4.1 Description of the estimation and forecasting exercises

We transform the exchange rates by taking either the logarithm of the levels, or their percentage change, approxi-

mated through the differences in the log levels15. All models but the random walk are estimated using a lag length

of 12, to capture any seasonal component that might be present in the data. If a training sample is used, its length

is set to be of four years. Depending on whether the model is estimated on the log levels or on the percentage

changes, a driftless random walk prior or a white-noise one is used for the slope coefficients.

The parameterisation of all TVP-FF-VAR models, estimated on the log levels unless stated otherwise, follows

that in Koop and Korobilis [2013] for the choice of the forgetting factor (λmin = 0.96) but uses a smaller decay

factor for the estimation of the covariance matrix (κ = 0.90 instead of κ = 0.96), on the account of the data being

monthly, and not quarterly, and exhibiting a greater volatility. Interestingly, though the covariance matrix of the

VAR coefficients is allowed to be time varying, the estimation reveals that the matrix is actually constant, thus

matching the assumption of the TVP-SV-BVAR model.

The TVP-SV-BVAR is estimated on the percentage change of the variables, to ensure the stability of the

estimates. Crucial for stability is also the prior specification of Q, the covariance matrix of the slope coefficients.

Following Cogley and Sargent [2005], we impose a loose prior that pertains to a time-invariant model: the prior

scale matrix is set close to zero, while the number of degrees of freedom is one plus the dimension of the matrix,

the lowest possible16. All remaining details of the prior distribution follow closely those in Primiceri [2005] and

are summarised in table 2. The estimation of the model follows the procedure described in the theoretical section

13The Yen has been standardised by a factor of a 100 to avoid computational problems due to the scale of the variable.
14After the introduction of the Euro, the exchange rate for the Mark is obtained by using the conversion rate fixed in January 1999.

For further details on the calculation of this currency see http://www.bankofengland.co.uk/statistics/Pages/iadb/notesiadb/

effective_exc.aspx
15Both these transformations are common in the literature and are chosen so that the forecasts need not be restricted on a subset

of positive values.
16As pointed out by Cogley and Sargent [2005] and verified empirically in the case of our data, large values of Q make explosive

draws of the VAR coefficients more likely. Note that in Primiceri [2005] the prior scale matrix is larger and the prior tighter (the
number of degrees of freedom is higher).
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Table 1: Exchange-rate prediction models

models variables description

1 tvp-ff-var £, DM, Y en

2 tvp-sv-bvar £, DM, Y en

3 bvar £, DM, Y en

4 bvar (rolling) £, DM, Y en rolling estimation window of 11 years

5 rw £ ∨ DM ∨ Y en
6 rw-garch £ ∨ DM ∨ Y en si,t − si,t−1 ∼ garch(1,1), i = {uk, de, jp}

additional tvp-ff-var models variables

7 uirp si, Ri −Rus

i = {uk, de, jp}8 ppp si, ∆(pi − pus)

9 m si, ∆(mi −mus)

10 y si, ∆(yi − yus)

11 sp si, ∆(ai − aus)

12 gby si, Bi −Bus

13 vix si,vix

14 ibr ei, Li − Lus

Note: Small case letters denote the logarithm of the variables, while ∆ indicates that the transformation
chosen is the monthly growth rate. s stands for the nominal exchange rate, R for the short-term interest
rate, p for the CPI index, m for money, y for total industrial production, a for stock prices, B for the 10-year
government bond yield, vix stands for the log of the CBOE volatility index, and L for the 3-month interbank
lending rate. The subscript i indexes the country and refers either to the UK, to Germany, or to Japan. See
the text and references therein for a description and motivation of the different models.

with one major modification: explosive draws of the VAR coefficients are rejected in the first step of the Gibbs

sampler. This is equivalent to sampling from a restricted posterior density, with the restricted law of motion for

the VAR coefficients being a truncated and renormalised version of the unrestricted one17.

The benchmark forecast models, estimated on the log-levels of the data, are the random walk, with or without

GARCH residuals, and the Bayesian VAR. Point forecasts from a random walk are obtained by setting ŷrwi,t+h|t =

yit, ∀h, while density forecasts are retrieved from a random walk model, whose residuals follow a GARCH(1,1)

process18. The Bayesian VAR is estimated on the log-levels of the variables, using a Minnesota prior19.

A summary of the competing models is given in the first block of table 1. Accounting for the training sample

and for the initial observations required by the lag choice, the first estimation sample starts in 1976:m1 and ends

in 2000:m1. The estimation sample is then progressively enlarged in a pseudo-real time exercise: at each step,

models are re-estimated and forecasts up to one-year ahead are computed20. Finally, to gauge how the financial

crisis might have influenced the forecasting ability of the competing models, we split the forecast sample in two:

a pre-crisis sample that ends in August 2008, such that the last forecasted period is always one month before the

Lehman bankruptcy filing, and a crisis sample that starts in September 2008 and ends in June 201321.

17For additional details, see Cogley and Sargent [2005].
18A random walk with GARCH innovations is better suited than a simple random walk to deliver density forecasts. Density forecasts

from a simple random walk are available upon request, and are the worst among all models considered, a result consistent with the
findings of Balke et al. [2013].

19We have tried to set the prior specification of the BVAR models as close as possible the initialisation of the forgetting-factor
models.

20In the case of the time-varying stochastic volatility model of Primiceri [2005], the model is re-estimated every year as opposed to
every month, due to the computational time required by the posterior simulation algorithm.

21The second forecast sample is inevitably shorter due to data availability.
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4.2 In-sample evaluation: does time variation matter?

We preliminary assess whether the modelling of time variation suits the dynamics of the data by analysing in figure

2 the in-sample estimates of the forgetting-factor VAR model, fitted on the log-levels of the data over the full sample

1976:m1-2013:m622. The first three rows of figure 2 plot the sum of the estimated VAR coefficients, by exchange-

rate equation (rows) and regressor (columns), together with the relevant 68% confidence intervals. These graphs

provide a partial justification for both the joint modelling of the three currencies, and the assumption of coefficient

time-variation. The off diagonal panels show in fact that most of the cross-currency coefficients are different from

zero and display a change in pattern, though moderate, after 2000. The sum of the non-autoregressive coefficients

entering the Pound equation (first row of figure 2) are always significant but have decreased in magnitude after

2000. By contrast, while the Mark (second row of figure 2) seems to be affected solely by the Pound and only

for the period comprised between 2000 ad 2010, the Yen is affected by both currencies, but the coefficients of

the Mark are significant only after 2000. Further evidence of time variation is found in the standard deviation of

the innovations, plotted in the last row of figure 2. These panels disclose a fall in volatility in the 1990s, and an

increase after the 2008 financial crisis.

Lastly, we compare the in-sample likelihood23 (in log scale) of the competing models. Figure 3 shows that the

likelihood of the TVP-FF-VAR is generally higher than that of its Bayesian time-varying parameter counterpart

(upper panel), and also of the non-time varying BVAR (second panel), especially in the first half and last part of

the sample. Among the two Bayesian models, it is instead the non time-varying one that has the highest in-sample

likelihood, as it can be inferred by the negative difference in the third panel of figure 3.

These preliminary results suggest that the assumption of time variation in the parameters and in the volatility

of the innovations is supported by the data, and that the best in-sample modelling strategy seems to be the

forgetting-factor VAR. However, as the in-sample and out-of sample performances are not always related, we

proceed by assessing to what extent the modelling of time variation improves the point, interval and density

forecasts of the three target variables.

4.3 Out-of-sample evaluation

Point forecasts: Point forecasts are compared through their relative mean squared forecast error:

RMSFEa,bi,h =
1

Tf

(∑Tf

t=1(ŷai,t+h|t − yi,t+h)2∑Tf

t=1(ŷbi,t+h|t − yi,t+h)2

)
, (15)

where Tf is the number of forecasts, while i and h index, respectively, the variable and the horizon. Throughout

this work the numerator refers to a time-varying parameter model, while the denominator pertains to a constant-

22The in-sample estimates of the TVP-FF-VAR model fitted on the log-differences of the data, as well as of the TVP-SV-BVAR are
available in a not-for-publication appendix companion to this paper.

23As no analytical formula is available for the likelihood of the TVP-SV-BVAR model, we have approximated it using the harmonic
mean estimator suggested by Newton and Raftery [1994]. Though this estimator is in principle sensitive to outliers, we have verified
that outliers are not a concern in our estimation procedure by checking the post burn-in draws of the parameters.
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parameter benchmark.

The first two blocks of tables 3 and 4 report the mean squared forecast errors of the TVP-SV-BVAR and of

the core forgetting factor model containing only exchange rates, relative to those of a random walk (table 3), or

to those of the constant-parameter BVAR (table 4). Values in bold denote the horizon and variable for which

the two forecast errors being compared are significantly different from each other, according to a Diebold and

Mariano test at a 5% significance level, modified using the small sample size correction of Harvey et al. [1998].

Both time-varying models deliver lower mean squared forecast errors than a random walk in the pre-crisis forecast

sample, and loose accuracy in the forecast sample that includes the financial crisis. However, while the one-step

ahead forecast errors of the TVP-SV-BVAR are significantly smaller than those of a random walk across all forecast

subsamples, the forgetting-factor model can never significantly beat the benchmark. In fact, the performance of the

forgetting-factor model worsens considerably after 2008 and, over the entire forecast sample, it beats the random

walk only at a one-month ahead horizon, and never significantly. The comparison with the constant-parameter

BVAR, reported in the first two blocks of table 4, is instead generally in favour of the time-varying parameter

models, and in particular of the TVP-SV-BVAR. At a one-year ahead forecast horizon the differences are however

almost never statistically significant, though the time-varying models do on average better in the pre-crisis sample,

and worse in the forecast sample that includes the financial crisis.

An explanation for the worsened performance of the forgetting factor model after 2008 can be traced back

to equations 13 and 14, which describe the evolution over time of the coefficients’ covariance matrices. The two

transition equations adjust only partially to the current and past Kalman filter prediction errors. As a result,

several periods are needed to fully incorporate a change in the model such as the sudden change in drift occurred

at the time of the financial crisis, see e.g. first row of figure 4. A similar argument is made by Clements and Hendry

[1996], where they show that vector error-correction models forecast worse than simple vector autoregressions when

long-run equilibrium relationships alter over the forecast period. Moreover, the one currency for which the TVP-

FF-VAR forecasting performance did not worsen considerably after the financial crisis is the Yen, for which the

change in drift arguably did not occur, or did so in a less pronounced manner.

In summary, the time-varying stochastic volatility BVAR delivers one-month ahead point forecasts which are

more accurate than both the random walk and the constant-parameter BVAR. On the other hand, the forgetting-

factor model delivers accurate forecasts in the pre-crisis sample, though it never beats the random walk significantly,

and its forecasting performance worsens considerably after the financial crisis.

Interval forecasts: We proceed to examine whether allowing for parameter time variation improves the cal-

ibration of the 68% and 95% forecast confidence intervals, the two most commonly used in empirical studies.

The statistic we use is the coverage rate of each competing model, measured as the percentage of times in which

the actual exchange rate is contained in the forecast confidence interval. As it has been previously discussed, an

accurate assessment of the uncertainty surrounding point forecasts is likely to be of interest to a wide variety of
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forex market participants, from central banks to private investors. A model that delivers coverage rates which are

significantly below their nominal counterparts underestimates forecast uncertainty. To the other extreme, coverage

rates of a 100% imply that the estimated forecast confidence intervals always contain the actual values, but the

confidence bands are so wide to be of little practical use. A model with correctly calibrated forecast intervals

would have coverage rates which do not significantly differ from their nominal counterparts.

The empirical coverage rates of the different models, corresponding to 68% and 95% nominal coverages, are

reported in table 6. Values in bold have not been found to be statistically different from their nominal counterparts,

according to a likelihood-ratio test with 1 degree of freedom24. In the pre-crisis sample, the forecast confidence

intervals of the TVP-FF-VAR model are correctly calibrated at all forecast horizons and for both values of nom-

inal coverage, with few exceptions. By contrast, the random walk with GARCH innovations delivers accurately

calibrated confidence intervals only for the Pound and the Yen at a one-month horizon. At longer horizons the con-

fidence intervals are very large and always contain the actual outcome, thus overestimating forecast uncertainty. A

similar problem affects the forecasts from the TVP-SV-BVAR and of the BVAR estimated using a rolling window,

which systematically delivers excessively large confidence intervals. By contrast, the BVAR estimated without

a rolling window tends to underestimate forecast uncertainty at long horizons, delivering one-standard deviation

confidence bands which are too narrow.

In the forecast subsample that includes the financial crisis, the coverage rates of the TVP-FF-VAR model

remain correctly calibrated. Also the performance of the remaining models remains substantially unaltered, with

two relevant exceptions. The coverage rates of the TVP-SV-BVAR model improve significantly for all currencies

but the Yen, making this model the second best performing one in this subsample, after the forgetting-factor

model. Also the BVAR (without a rolling estimation window) delivers correctly calibrated forecast confidence

intervals at a three-month horizon and, in the case of the Pound, at longer horizons as well.

To exemplify the results of table 6 we refer to figure 4 where the 68% forecast confidence intervals of the

forgetting-factor model are plotted together with those of the BVAR model (darker area) and with the actual

exchange rates (in red), across forecast horizons (rows) and currencies (columns)25. At short and medium forecast

horizon, the forgetting-factor model provides the narrowest confidence bands, which we know from table 6 to

be accurately calibrated. Hence, while the time-varying parameter model gives an efficient, as well as correct,

estimation of uncertainty, the constant-parameter model overestimates forecast uncertainty. The latter model

proves inaccurate also at long horizons, where forecast uncertainty is actually underestimated. As an example, the

last row of figure 4 shows that the appreciation of the Pound and of the Mark between 2002 and 2005 is underrated

by the BVAR, but it is instead contained in the confidence interval of the forgetting-factor model. Similarly, the

appreciation of the Yen in 2013 (lower right panel of figure 4) is underestimated by the BVAR model but forecasted

by the forgetting-factor model.

24For details of the test we refer to Clements [2005].
25The graphs of the remaining model’s forecast confidence intervals are available upon request.
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Density forecasts evaluation using probability integral transforms: Since the seminal work of by Dawid

[1984] and Diebold et al. [1998], probability integral transforms have been extensively used to evaluate competing

density forecasts. In the univariate case, the probability integral transform (p.i.t.) is the cumulative density

function corresponding to the forecast density p(·), evaluated at the actual value of the series:

zt =

∫ yt

−∞
p(yt)d(y) = P (yt) . (16)

Diebold et al. [1998] have shown that, if the forecast model p(y) coincides with the data generating process

f(y), the series {zt}
Tf

t=1 of probability integral transforms is an i.i.d. sample from a U(0, 1) distribution. These

conclusions are easily extended to a multivariate setting, such as ours26. Note that the joint predictive density can

be factored as follows:

p(y1,t, y2,t, y3,t) = p(y1,t| y2,t, y3,t) · p(y2,t| y3,t) · p(y3,t) . (17)

For 3 variables, there are 3! possible factorisations, but we shall use the one above for simplicity. Denote the

probability integral transforms of the two conditional densities and of the marginal one with: zc1|2,3,t, z
c
2|3,t, z

m
3,t. If

the predictive density is correct, the three sequences will each be i.i.d U(0,1) and independent of each other. As

a result, the test for i.i.d. uniformity can be conducted on the following 3Tf × 1 stacked vector, as proposed by

Diebold et al. [1998]:

S = [zc1|2,3,1, . . . , z
c
1|2,3,Tf

, zc2|3,1, . . . , z
c
2|3,Tf

, zm3,1, . . . , z
m
3,Tf

] . (18)

We start with a visual inspection: figure 5 plots the histogram of the probability integral transforms of the

one-month ahead density forecasts delivered by the competing models. The hump-shaped histograms of the

constant-parameter BVAR model27, and to a lesser extent of the time-varying BVAR, reveal that these models

overestimate the variance of the variables28, confirming the earlier findings of the coverage rates. On the contrary,

the histogram for the TVP-FF-VAR and RW-GARCH models are essentially uniform.

A formal test of uniformity is achieved through the Kolmogorov-Smirnov test (KS), whose p-values are reported

in table 5. The only model for which the null of uniformity is never rejected at any horizon is the forgetting-factor

one. For the remaining models the conclusions are mixed. The p.i.t. sequences of the RW-GARCH model are

found to be uniformly distributed only at a one-month and one-year ahead forecast horizons. In addition, the null

of uniformity is rejected only for the first horizon, in the case of the TVP-SV-BVAR model, or for the first three

months, in the case of the constant-parameter BVAR29.

26On this, see Diebold et al. [1998] and Clements [2005]
27A similar hump-shaped histogram is obtained for the p.i.t. sequence of the BVAR estimated using a rolling estimation window,

available upon request.
28See Mitchell and Wallis [2011].
29The plots of the empirical distribution and autocorrelation functions of the one-step ahead p.i.t. sequences are available upon

request. This analysis, based on Diebold et al. [1998], confirms the results discussed so far and further reveals that using constant-
parameter models leads to a misspecification of all conditional moments, and in particular of the conditional variance.
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Density forecasts comparison: As a last step of the out-of sample analysis, we broaden our attention to the

entire predictive densities of the competing models, and in particular to the evolution over time of the log-predictive

likelihoods, i.e. the log likelihood of observing the actual realisation of the variable, given a forecast model:

log pj, h, t(y1, t+h | Fj, t−1) , (19)

where pj, h, t(·) denotes the predictive likelihood of model j at horizon h (possibly time-varying and thus depending

on time t), y1 is a vector of target variables (one or all of the three exchange rates), Ft−1, j is the information set

of model j available at t. Of interest is the cumulative difference between the log-predictive likelihood of the core

TVP-FF-VAR model, log p1, h, t, and that of one of the alternative benchmarks, log gj, h t:

Sj,h =

Tf−h∑
t=1

[
log p1, h, t(y1, t+h | F1, t−1)− log gj, h t(y1, t+h| Fgj , t−1)

]
, (20)

where gj, h t(·) denotes, in turn, the predictive likelihood of the time-varying stochastic volatility BVAR, of the

constant-parameter BVAR (with and without a rolling estimation window), and of a random walk (with or without

GARCH innovations). This exercise is similar to what is undertaken in Amisano and Geweke [2010] and Amisano

and Geweke [2013], and enables us to gauge the contribution of different observations over time in favour or against

the core TVP-FF-VAR model. Moreover, the statistic in 20 can be interpreted as the summed difference in density

forecast errors30 and can be justified in terms of the Kullback-Leibler distance (KLIC). The latter can be expressed

as the expected difference between the true log predictive density, ft(·), and the predictive density of model j,

pj,t(·):

E[log ft(y1, t+1 | Fj, t−1)− log pj, t(y1, t+1 | Fj, t−1)] , (21)

where we consider the case h = 1 and drop the horizon subscript for expositional purposes. Under some regularity

conditions, the average of the sample quantities of ft and pj,t yields a consistent estimator of the KLIC distance.

Hence, when two different predictive densities are being compared, p1, t and p2, t, the average difference between

their logarithms is inherently related to their KLIC distance:

1

Tf

Tf∑
t=1

(
log p2, t(·)− log p1, t(·)

)
=

1

Tf

Tf∑
t=1

(
log ft(·)− log p2, t(·)

)
−
[

1

Tf

Tf∑
t=1

(
log ft(·)− log p2, t(·)

)]
, (22)

so that, among a class of alternative models, choosing the one with the highest average log-predictive likelihood

entails selecting the model with the minimal KLIC distance.

Figure 6 plots the statistic S in equation 20, for different benchmark models and selected forecast horizons31,

providing further insights on the relative predictive ability of the competing models. At a one-month ahead horizon

30See the discussion in Hall and Mitchell [2007].
31The statistic obtained when the benchmark model is a simple random walk is not shown, but it is available upon request. It is

always lower than that obtained when the benchmark model is a random walk with GARCH innovations.
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the forgetting-factor model does significantly better than the constant-parameter BVAR, but performs similarly to

both the random walk with GARCH innovations and the TVP-SV-BVAR. At medium and long forecast horizons

the constant-parameter BVAR improves its performance relative to the forgetting-factor model and, at a one-year

ahead horizon, always performs better. Finally note that a sharp drop in the likelihood of the forgetting-factor

model can be observed in the financial crisis period, across all comparisons. Nevertheless, as time passes and the

model discounts the Kalman filter prediction errors through equations 13 and 14, the predictive likelihood relative

to those of the competing model increases again.

From this discussion it can be concluded that the hardest benchmarks to beat, in terms of predictive likelihoods

are the random-walk with GARCH at a one-month horizon, and the constant-parameter BVAR at longer horizons.

These two benchmarks are used when comparing the marginal log-predictive likelihoods in figure 7. The one-

month ahead predictive likelihood of the forgetting-factor model is higher than the RW-GARCH model for all

three currencies. At a three-months horizon, the time-varying model beats the constant parameter BVAR only in

the case of the Yen, and of the Pound until 2008. The BVAR is instead a more accurate forecast model for the

Mark, and for all three currencies when longer forecast horizons are considered.

To gauge whether the differences observed in figures 6 and 7 are statistically significant, we use the general test

of equal predictive ability proposed by Amisano and Giacomini [2007]. The test statistics are reported in table 8,

where positive values in bold denote combinations currency-forecast horizons at which the TVP-FF-VAR model

performs better than the model indicated in the row header. The test confirms that the forgetting-factor model

yields a significantly lower density forecast error than the constant-parameter BVAR at a one-month horizon, but

is then beaten by the latter model at longer horizons. As far as the comparison with the RW-GARCH model

is concerned, the predictive likelihood of the forgetting factor model is significantly higher at medium and long

horizons, but it is not statistically different at a one-month horizon, despite being higher on average.

In this Section we have explored whether allowing for parameter time variation and stochastic volatility improves

the in-sample fit, as well as the point, interval and density forecasts of the three target exchange rates. The in-

sample estimates of the forgetting-factor VAR reveal time variation, albeit modest, in both the innovations’ variance

and in the slope coefficients, particularly in the cross-country ones. Turning our attention to the out-of-sample

forecasting performance, we have found that the point forecasts of the TVP-SV-BVAR are significantly more

accurate than those of the constant-parameter benchmarks at a one-month ahead horizon. Moreover, the time-

varying parameter models, and in particular the forgetting-factor one, allow for a correct estimation of forecast

uncertainty through an accurate calibration of the forecast confidence intervals. In addition, the joint modelling of

the three exchange rates yields gains in terms of predictive accuracy over a simple random walk. The forgetting-

factor model delivers in fact the lowest density forecast errors at short and medium horizons, though it is beaten by

the constant parameter BVAR at longer horizons. Lastly, we have also noted that the forecasting performance of

the forgetting-factor model worsens over the financial crisis period, and that this might be attributed to the nature

of its transition equations. As the forecast errors made during the financial crisis are increasingly discounted, the
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likelihood of the forgetting-factor model increases relative to that of the competing models.

5 Do macroeconomic and financial variables matter for exchange-rate

forecasting?

5.1 Empirical methodology and description of the competing models

In this Section, we assess how the performance of the core forgetting-factor model, containing only the three

exchange rates, varies when the set of regressors is enlarged with different macroeconomic and financial predictors.

The choice of the forgetting factor methodology is motivated not only by its computational advantages over its

Bayesian counterpart, but also by the fact that it delivers similar point forecasts to those of the TVP-SV-BVAR,

while improving on its interval and density forecasts.

The full set of exchange-rate prediction models analysed is summarised in the second block of table 1, and has

been chosen on the basis of the theoretical suggestions in Section 2. In models 7-10 we add to the core model

one group of macroeconomic predictors at a time: differentials in nominal interest rates (UIRP), inflation (PPP),

money growth (M), and output growth (Y). The second group of models (11-14) adds differentials in stock market

prices (SP), long-term government bond yields (GBY), interbank lending rates (IBR), or simply a measure of

financial market stress like the CBOE volatility index (VIX). With these last four models we seek to capture the

effects of the recent financial market developments, including the 2008 financial crisis and the liquidity injections

that followed the credit easing programs of central banks around the world. For a more detailed description of the

variables used we refer to Appendix A.

The dataset spans the period between 1982:m7 and 2013:m6, though the interbank lending rates and the VIX

volatility index respectively start in 1985 and 1990. All variables are taken as differentials with respect to their

counterpart for the US economy, with the exception of the VIX volatility index which pertains solely to the US.

We transform all fundamentals by taking their monthly percentage changes. Exceptions include the VIX index,

taken in log levels, and the interest rates (short-term, government bond yields, and interbank lending rates), kept

in levels.

All models are estimated with the forgetting-factor methodology. The slope coefficients are initialised such that

the exchange rates are shrunk to a random walk, and the fundamentals to white-noise processes. The initialisation

of the variance, as well as the factor parametrisation follow those of the previous Section.

5.2 In-sample performance of the competing models

Figure 8 shows that the correlations32 between exchange rates and fundamentals have evolved over the sample

period considered, and that a clear change in pattern is particularly evident after the financial crisis. The correlation

32Standard errors are not available, due to the use of the EWMA estimator for the variance.
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between exchange rates and interest rates is on average positive (with the exception of the Pound) but it is mostly

negative after the financial crisis, when an increase in the interest rate with respect to the US is associated with

a currency depreciation (an increase in the exchange rate). Hence, it is only in the years after the financial crisis

(and for the Pound also between 1995 and 2000) that we observe the ”forward bias puzzle” commonly found in

empirical literature, i.e. the result that high-interest rate currencies tend to depreciate, rather than to appreciate

as the UIRP theory would suggest33. Another interesting result is the estimated correlation between exchange

rates and inflation differentials: higher inflation differentials are in fact associated with a currency depreciation

(positive correlation in the second row of figure 8), as suggested by the purchasing power parity theory.

The estimated values of the reduced form VAR coefficients provide additional evidence of cross-country inter-

dependencies and parameter time variation, though both are modest in entity and variable across currencies. Such

time variation, mostly unaccounted for in empirical works, may be one of the causes of the apparent low predictive

ability of macroeconomic fundamentals. A particularly important fundamental seems to be the differential in

long-term government bond yields, as it can be inferred from the dynamics of the coefficients in figure 9.

5.3 Out-of-sample performance of the competing models

Point and interval forecasts: The mean squared forecast errors of the competing forgetting-factor VARs,

relative to a random walk or to a constant-parameter BVAR, are reported in tables 3 and 4. Of all the models

enriched with additional predictors, only the one that includes money growth differentials delivers lower mean-

squared forecast errors for all currencies at a 6-month and 1-year ahead horizons, in the forecast sample that

excludes the financial crisis. This difference is however significant only for 1-year ahead forecasts, and solely for

the Pound. The forecast errors for the Yen delivered by the money growth model, as well as by the GBY and SP

ones, are smaller than those of a random walk also in the forecast sample that includes the financial crisis, though

the difference is never significantly significant.

Overall the inclusion of additional predictors to the core TVP-FF-VAR does not seem to improve on the point

forecasts of a naive random walk forecast model. Similarly, controlling for additional predictors does not improve on

the interval forecasts of the core forgetting-factor model: the forecast confidence intervals are correctly calibrated,

as they are in the core model containing only exchange rates 34.

Density forecasts: As a last step of the out-of sample analysis, we turn once again to the entire predictive

density and compare the cumulated differences in log-predictive likelihoods between the forgetting-factor models

so far considered and the best-preforming benchmarks: the RW-GARCH at a one-month horizon, and the BVAR

with constant parameters at longer horizons.

As far as the forecasts of the Pound and of the Mark are concerned, the fundamentals-based models generally

perform worse than the core TVP-FF-VAR, and always worse than the BVAR at horizons greater than one month

33See, for instance, the discussion in Della Corte et al. [2009]
34See table 7.
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(Mark) or three months (Pound).

By contrast, macroeconomic fundamentals perform better at forecasting the future dynamics of the Yen. As the

upper panels of figure 11 show, inflation differentials forecast better at short horizons, and their relative importance

has increased in the years preceding the financial crisis. Differentials in money growth and in government bond

yields instead forecast better at medium and long horizons, with a further increase in their relative forecasting

ability after the financial crisis, when they beat also the constant-parameter BVAR. Other important predictors

are the differentials in short term interest rates and in industrial production. As shown in figure 12, the addition

of these fundamentals improves the performance of the core forgetting-factor model at medium and long horizons,

especially in the period between 2009 and 2011, though the predictive likelihoods are always lower than that of

the constant-parameter BVAR.

Though a statistical test on the differences in log-predictive likelihoods generally favours the constant-parameter

BVAR model35, a suggestive pattern emerges when comparing the one-year ahead predictive likelihoods of the

fundamentals-based models with those of the BVAR and of the core forgetting-factor model. As figure 13 shows,

models enriched with macroeconomic or financial fundamentals tend to forecast better in recession periods36.

This is especially true for the Pound in the 2008 recession, when the best performing models are those enriched

with inflation and government bond yield differentials, for the Mark in the recessions between 2001 and 2005 and

between 2011 and 2013, and for the Yen in the financial crisis years as well as in the current recession. These results

provide evidence in favour of the hypothesis that in times of economic crises the expectation, and ultimately the

determination, of exchange rates by forex market participants tend to be based on macroeconomic and financial

fundamentals.

6 Economic evaluation: a simple trading strategy

So far, we have relied on purely statistical criteria to evaluate exchange-rate forecasts from competing models.

However, an evaluation based on economic criteria might be of interest, particularly if the statistical models are

to be used in real-world applications. In what follows, we asses the performance of the competing models through

a simple trading strategy, described in Carriero et al. [2009]. We take the perspective of a US-based investor who

bases her investment decisions on the predictions of a given forecast model, and has an investment horizon of one

month37. The investor buys foreign currency only if she expects the latter to appreciate over the period of interest;

no investment is made if the currency is instead expected to depreciate. At the end of the investment period, the

investor liquidates the realised gain/loss (if the currency actually appreciated/depreciated) and reinvests the initial

capital. We consider trading strategies based on the FF-VAR with only exchange rates, the FF-VARs augmented

with fundamentals, the constant-parameter BVAR, and on a naive strategy that in each time attributes a 50%

probability to a currency appreciation over the investment period. Trading strategies are evaluated on the basis of

35See table 9 for details.
36Recession periods are country specific and have been dated using the OECD series available on the FRED website.
37Results of the trading strategy with a longer investment horizon are available upon request.
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their average return µ(π), on the returns’ standard deviation σ(π), as well as on the Sharpe ratio (SR)38, over both

the full forecast sample and the pre-crisis and crisis subsamples. The three statistics, together with the difference

in the Sharpe ratio over the naive strategy (∆SR) are reported in table 10.

As a preliminary assessment, note that across all forecast samples and currencies a trading strategy based on

the core time-varying forgetting-factor model offers higher returns than both the naive strategy and the one based

on the constant-parameter BVAR39. The profits of these three models are shown in figure 14, highlighting how the

modelling of parameter time-variation proves useful at a one-month ahead horizon even when economic criteria,

instead of statistical ones are used.

Next we assess whether controlling for macroeconomic and financial predictors would have offered any economic

gain to an hypothetical investor. In the case of the Pound (first block of table 10), the only strategy that offers

a positive return in the pre-crisis sample, despite having also the highest volatility, is the one based on the core

forgetting-factor model. Interestingly, in the financial crisis sample almost all forgetting-factor models enriched

with financial predictors (stock prices, government bond yields, and VIX index) offer a positive return. Of all these

models however, only the one that includes the VIX indicator has a higher Sharpe ratio than the core forgetting-

factor model. Similarly to what observed in the case of the Pound, a trading strategy for the Mark based on

the core forgetting-factor model is the best performing one in the pre-crisis sample (middle block of table 10). If

we instead limit our attention to the financial crisis sample, the strategies based on the models that incorporate

macroeconomic and financial fundamentals offer higher returns and, in some cases, also a lower volatility. In

particular, the Sharpe ratio of the strategy based on the output model is approximately 10 times higher than that

based on the core model. Also the interbank lending rate model beats the core model in terms of Sharpe ratios,

though its returns are much lower than those of the output model. Finally, the best models to form a strategy

for the Yen (last block of table 10) are the M model in the pre-crisis sample, and the PPP in the crisis one, even

though they are both beaten by the simple core model when the whole forecast sample is considered.

The results in this Section have highlighted two main points. First, a trading strategy based on the core

forgetting-factor model with time-varying parameters yields a higher mean return, as well as a higher Sharpe

ratio, than both a naive trading strategy and one based on a constant-parameter BVAR. Moreover, as it can be

evinced from figure 15, trading strategies based on forgetting-factor models enriched with monetary and financial

fundamentals would have offered higher returns to investors in the years between 2008 and 2010, one in which

financial markets were characterised by high stress and uncertainty. This result is particularly evident in the case

of the Mark, the currency for which the statistical criteria evaluated in the previous Section did not reveal any

role for macroeconomic and financial fundamentals.

38The Sharpe ratio is defined as the ratio between the mean return and its standard deviation, and it is an effective way to summarise
the mean-variance trade-off of a given investment strategy.

39The results of a trading strategy based on a BVAR estimated using a rolling window are very similar to those of the BVAR-based
strategy, and are therefore not shown.
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7 Conclusions

A big puzzle in the foreign exchange literature is the inability of macro and financial variables to predict the future

behaviour of exchange rates. A few suggestions have been proposed in the literature to address this issue, and in

this paper we have concentrated on the idea that the determinants of the exchange rate evolution can be time-

varying. We have focused on the three major exchange rates vis-a-vis the US dollar and have assessed whether there

are gains from a joint modelling of the three rates, as well as from the assumption of parameter time-variation.

Next, we have evaluated whether adding a set of macro and financial variables to the model yields additional

gains. Terms of comparison are the in-sample fit, the point, interval and density forecasts, as well as the results

of a simple trading strategy. We have used two state-of-the-art time-varying parameter models: the stochastic

volatility BVAR of Cogley and Sargent [2005] and Primiceri [2005], and its forgetting factor approximation recently

proposed by Koop and Korobilis [2013]. These models have been compared with several benchmarks: the random

walk, with or without GARCH innovations, and a constant-parameter BVAR.

Overall, the in-sample analysis is in favour the joint modelling of the three currencies and provides evidence of

time variation, both in the VAR parameters and in the innovations’ covariance matrix. Though time variation is

modest and variable across currencies and models, this finding supports the conjecture by which the low predictive

ability of fundamentals is driven by the instability of the relationship that links them to exchange rates. In

particular, parameter time-variation is exhibited by the exchange-rate coefficients (both the autoregressive and the

cross-country ones), and by the the reduced-form coefficients of the differentials in government bond yields.

The out-of-sample comparison of the competing models has revealed that accounting for parameter time vari-

ation, though improving the point forecasts of the target variables only at one-month ahead horizon, significantly

refines the estimation of forecast uncertainty through an accurate calibration of the forecast confidence intervals.

The analysis of the forecast probability integral transforms has further conveyed the result that it is the entire

forecast density of the three exchange rates to be correctly calibrated, and not just the 68% and 95% confidence

intervals.

A comparison based on log-predictive likelihoods has revealed that the forgetting-factor model yields the highest

predictive densities at short and medium horizons, but a constant parameter BVAR beats the time-varying model

at longer horizons. Thus, though on one hand we confirm that the joint modelling of exchange rates yields gains

in terms of predictive accuracy over a simple random walk, the modelling of time-variation is best suited only at

short horizons. We have also remarked that the error-correction nature of the forgetting-factor model might be

the cause of its worsened forecasting performance over the financial crisis period. In fact, as the forecast errors

made during the financial crisis are incorporated, the likelihood of the forgetting-factor model increases relative to

that of the competing models.

We have then employed the TVP-FF-VAR, proven to deliver the best calibrated density forecasts, to gauge

whether exchange rate predictability by fundamentals can be unravelled through the modelling of time variation.

We have considered a wide set of macroeconomic predictors, as suggested by economic literature, as well as a
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number of financial variables and measures of market risk and liquidity, in an attempt to capture the effects of the

recent financial crisis. Though not substantially improving point forecasts nor the calibration of forecast confidence

intervals, we have found that controlling for macroeconomic and financial predictors can deliver predictive likelihood

gains in times of economic recessions.

Modelling parameter time variation proves useful at short horizons even when economic evaluation criteria,

instead of statistical ones, are employed. The results of a simple trading strategy have shown that the core time-

varying forgetting-factor model offers higher returns than both a BVAR-based strategy and a naive rule that

predicts a trading opportunity with 50% chance. Moreover, we have found that a strategy that controlled for

monetary and financial fundamentals would have offered higher returns to investors in the turbulent years between

2008 and 2010.
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Figure 2: Reduced-form coefficients: tvp-ff-var model with only exchange rates, in log levels. The first three panels plot the
sum of the slope coefficients by each regressor (column) and exchange-rate equation (row), together with the pertinent 68% confidence
band. The last row plots the standard deviations of the innovations to each exchange rate; confidence bands not available.
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Figure 3: Differences in the in-sample likelihood: Each panel displays the difference between the in-sample likelihoods (in log
scale) of the two models in the title.
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been estimated on the log differences of the data, to allow comparison with the tvp-sv-bvar. In the last panel, the bvar is estimated
on the log levels of the variables, to compare with a random walk.
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Figure 4: Forecast confidence intervals: 68% forecast confidence intervals delivered by the tvp-ff-var, and by the constant-
parameter bvar (darker area), by exchange rate (columns) and horizon (rows). Actual exchange rates in red.
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Figure 5: Evaluating density forecasts: Normalised histograms of the one-step ahead p.i.t. sequences, of 4 competing models.
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Figure 6: Comparing log-predictive likelihoods: Cumulative differences in log-predictive likelihoods between the core tvp-ff-var
and various benchmarks: tvp-sv-bvar (solid line), rw-garch (dashed-dotted line), bvar with and without a rolling estimation window
(respectively dashed and circled line), at selected forecast horizons.
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Figure 7: Comparing log-predictive likelihoods: Cumulative differences in log-predictive likelihoods between the core tvp-ff-var
and the rw-garch (for h = 1) or the bvar model (for longer horizons), by exchange rate (columns) and selected forecast horizons
(rows).
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Note: Positive values of the plotted statistics indicate whenever the core tvp-ff-var has a higher predictive likelihood than the
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Figure 8: Time-varying correlations: Correlations over time between exchange-rate and fundamentals, as estimated by the different
tvp-ff-var models.
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Figure 9: Reduced-form coefficients: by exchange-rate equation (row); gby model estimates.
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Figure 10: Log-predictive densities for the Pound: Cumulative differences in log-predictive likelihoods between competing
tvp-ff-var models and the best performing benchmark, at selected forecast horizons.
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Figure 11: Log-predictive densities for the Yen: Cumulative differences in log-predictive likelihoods between competing tvp-ff-
var models and the best performing benchmark, at selected forecast horizons.
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Note: The best performing forecast benchmarks are the rw-garch (at h = 1) and the constant-parameter bvar (at higher horizons).
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Figure 12: Log-predictive densities for the Yen: Cumulative differences in log-predictive likelihoods between competing tvp-ff-
var models and the best performing benchmark, at selected forecast horizons.
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A positive value of the statistic indicates a tvp-ff-var model with higher predictive likelihood than the benchmark. Increases in the
statistic denote dates in which the tvp-ff-var performs better than the benchmark.

Figure 13: The role of fundamentals: Differences in 1-year ahead log-predictive likelihoods between the tvp-ff-var model in the
row header and the core tvp-ff-var with only exchange rates (dashed blue line), or the bvar (solid red line).
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Figure 14: Economic evaluation: Returns of trading strategies based on different forecast models.
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Figure 15: Economic evaluation: Returns of trading strategies based on macroeconomic and financial fundamentals, over the crisis
forecast sample.
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Table 2: Priors of the TVP-SV-BVAR model: The hat notation refers to OLS estimates on a 4-year training sample. M and
K are the number of variables and of parameters. S1 and S2 pertain to the non-zero blocks of S, the covariance matrix of A. For the
variables with an Inverse-Wishart prior distribution, the chosen number of degrees of freedom is the lowest admissible (one more than
the size of the variable), to minimise the prior weight. The shrinkage parameters k2Q, k

2
S , k

2
S are all set to 0.1.

variable distribution mean variance d.f.

B0 N Âols 4 · V (B̂ols) −
A0 N B̂ols 4 · V (Âols) −
log σ0 N log σ̂ols IM −
Q IW k2Q · V (B̂ols) − K + 1

S1 IW k2S · 2 · V (Â1,ols) − 2

S2 IW k2S · 3 · V (Â2,ols) − 3

W IW k2W · 4 · IM − 4

Table 3: Mean squared forecast errors of the TVP-SV-BVAR and TVP-FF-VAR models relative to a random walk:
for different forecast samples and horizons. Values in bold denote significantly different RMSFE according to a Diebold-Mariano test,
modified using the small-sample correction of Harvey et al. [1998].

pre-crisis sample crisis sample full sample

h £ DM U £ DM U £ DM U

tvp-sv-bvar

h = 1 0.94 0.89 1.02 0.84 0.94 0.64 0.89 0.91 0.86

h = 3 0.99 0.93 0.96 1.03 1.08 0.74 1.02 1.00 0.84

h = 6 0.90 0.96 0.91 1.13 1.16 0.89 1.05 1.05 0.90

h = 12 0.88 1.05 0.90 1.32 1.28 1.05 1.02 1.11 0.96

core ff-var

h = 1 1.00 0.90 1.03 0.90 1.00 0.86 0.95 0.94 0.96

h = 3 1.07 0.97 1.08 1.09 1.18 0.89 1.09 1.06 0.98

h = 6 0.96 0.90 1.21 1.33 1.35 0.95 1.20 1.10 1.08

h = 12 0.97 0.86 1.34 2.07 1.64 1.02 1.26 1.05 1.24

uirp ff-var

h = 1 1.01 0.97 1.06 1.03 1.10 0.94 1.02 1.02 1.00

h = 3 1.05 1.04 1.06 1.24 1.47 1.01 1.18 1.22 1.03

h = 6 1.00 1.02 1.11 1.47 2.12 1.19 1.31 1.47 1.15

h = 12 1.02 1.10 1.07 2.49 2.94 2.16 1.52 1.54 1.51

ppp ff-var

h = 1 1.18 1.08 0.95 0.90 1.18 0.89 1.04 1.12 0.92

h = 3 1.34 1.20 0.98 1.01 1.46 0.99 1.12 1.32 0.99

h = 6 1.19 1.19 0.95 1.18 1.85 0.98 1.14 1.44 0.98

h = 12 1.24 1.12 1.05 1.56 2.34 1.20 1.08 1.37 1.17

m ff-var

h = 1 1.11 1.00 1.02 1.14 1.09 0.95 1.12 1.03 0.99

h = 3 1.20 1.01 0.94 1.26 1.17 0.89 1.24 1.09 0.91

h = 6 0.97 0.81 0.84 1.46 1.27 0.72 1.27 1.02 0.78

h = 12 0.89 0.77 0.59 2.93 1.33 0.66 1.34 0.91 0.68

y ff-var

h = 1 1.01 0.97 1.07 0.98 1.25 1.30 1.00 1.09 1.17

h = 3 1.08 1.06 1.05 1.09 1.49 1.20 1.09 1.25 1.13

h = 6 1.07 1.07 0.98 1.22 1.30 1.25 1.18 1.18 1.12

h = 12 1.07 0.96 0.80 2.10 2.02 1.24 1.36 1.26 1.02

gby ff-var

h = 1 1.06 1.07 1.04 0.91 1.07 0.81 0.98 1.07 0.94

h = 3 1.36 1.35 1.02 1.06 1.29 0.82 1.15 1.31 0.92

h = 6 1.84 1.88 1.04 1.33 1.76 0.87 1.37 1.69 0.95

h = 12 2.48 2.05 1.02 2.46 2.96 0.91 1.53 2.13 1.02

sp ff-var

h = 1 1.25 1.16 1.17 1.04 1.05 0.93 1.14 1.11 1.06

h = 3 1.44 1.30 1.24 1.20 1.09 0.84 1.28 1.20 1.03

h = 6 1.26 1.17 1.47 1.42 1.13 0.89 1.35 1.13 1.16

h = 12 1.04 0.95 1.86 2.53 1.22 0.85 1.44 0.99 1.36

Note: The forecasting models are described in table 1. The pre-crisis sample goes from 2000:m2 to
2008:m8. The crisis sample spans the period from 2008:m9 to 2013:m6.
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Table 4: Mean squared forecast errors of the TVP-SV-BVAR and TVP-FF-VAR models models relative to a constant-
parameter BVAR: for different forecast samples and horizons. Values in bold denote significantly different RMSFE according to a
Diebold-Mariano test, modified using the small-sample correction of Harvey et al. [1998].

pre-crisis sample crisis sample full sample

h £ DM U £ DM U £ DM U

tvp-sv-bvar

h = 1 0.47 0.42 0.52 0.32 0.38 0.41 0.39 0.40 0.48

h = 3 0.85 0.76 0.74 0.70 0.76 0.67 0.75 0.76 0.70

h = 6 0.79 0.85 0.81 0.96 0.95 0.94 0.92 0.91 0.88

h = 12 0.81 0.98 0.87 1.23 1.28 1.06 0.97 1.07 0.92

core ff-var

h = 1 0.49 0.42 0.52 0.35 0.41 0.55 0.41 0.41 0.53

h = 3 0.92 0.79 0.83 0.74 0.82 0.79 0.80 0.81 0.81

h = 6 0.85 0.80 1.08 1.13 1.11 1.01 1.05 0.96 1.06

h = 12 0.89 0.80 1.30 1.93 1.63 1.03 1.20 1.02 1.19

uirp ff-var

h = 1 0.50 0.45 0.54 0.40 0.45 0.60 0.44 0.45 0.56

h = 3 0.90 0.85 0.82 0.83 1.02 0.90 0.86 0.93 0.86

h = 6 0.88 0.91 0.99 1.25 1.74 1.25 1.15 1.28 1.13

h = 12 0.94 1.02 1.04 2.32 2.93 2.17 1.45 1.49 1.45

ppp ff-var

h = 1 0.58 0.50 0.48 0.35 0.48 0.57 0.45 0.49 0.51

h = 3 1.15 0.97 0.76 0.68 1.02 0.88 0.83 1.01 0.82

h = 6 1.05 1.07 0.85 1.01 1.52 1.04 1.00 1.26 0.96

h = 12 1.13 1.04 1.01 1.45 2.32 1.21 1.03 1.33 1.12

m ff-var

h = 1 0.55 0.46 0.52 0.44 0.44 0.61 0.49 0.45 0.55

h = 3 1.03 0.82 0.72 0.85 0.82 0.80 0.91 0.83 0.76

h = 6 0.86 0.72 0.75 1.24 1.05 0.76 1.11 0.89 0.76

h = 12 0.81 0.72 0.57 2.73 1.33 0.66 1.28 0.89 0.65

y ff-var

h = 1 0.50 0.45 0.54 0.38 0.51 0.83 0.43 0.48 0.65

h = 3 0.93 0.86 0.81 0.73 1.04 1.07 0.80 0.95 0.94

h = 6 0.94 0.96 0.87 1.04 1.07 1.32 1.03 1.03 1.10

h = 12 0.98 0.90 0.77 1.96 2.01 1.25 1.30 1.22 0.98

gby ff-var

h = 1 0.52 0.50 0.53 0.35 0.44 0.52 0.43 0.47 0.52

h = 3 1.17 1.10 0.79 0.71 0.90 0.74 0.85 1.00 0.76

h = 6 1.62 1.67 0.93 1.13 1.44 0.92 1.21 1.47 0.94

h = 12 2.28 1.91 0.98 2.30 2.94 0.92 1.46 2.07 0.98

sp ff-var

h = 1 0.62 0.54 0.59 0.40 0.43 0.59 0.50 0.49 0.59

h = 3 1.23 1.06 0.96 0.80 0.76 0.75 0.94 0.92 0.86

h = 6 1.11 1.04 1.31 1.21 0.93 0.94 1.19 0.99 1.14

h = 12 0.96 0.89 1.79 2.36 1.21 0.86 1.37 0.96 1.30

Note: The forecasting models are described in table 1. The pre-crisis sample goes from 2000:m2 to
2008:m8. The crisis sample spans the period from 2008:m9 to 2013:m6.

Table 5: Testing the probability integral transforms

models

horizon tvp-ff-var tvp-sv-bvar bvar ntvp-bvar (rw) rw

1 0.39 0.00 0.00 0.00 0.65

3 0.70 0.05 0.02 0.00 0.00

6 0.73 0.28 0.43 0.12 0.01

12 0.66 0.42 0.72 0.43 0.08

Note: Main table values are p-values for the null hypothesis of the Kolmogorov-
Smirnov test that the p.i.t. sequence of the model in the column is U(0, 1). The
Bonferroni correction is used for horizons greater than 1; see text for details.
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Appendix A: Database description

Table 11: Database description: All the series below are monthly data. The yen is scaled down by 100.

symbol series span unit source

£ pound sterling 1969:m1 - 2013:m6 currency units per USD datastream

U yen 1969:m1 - 2013:m6 currency units per USD datastream

DM deutsche mark 1969:m1 - 2013:m6 currency units per USD datastream

Yus industrial production us 1970:m1 - 2013:m6 index, 2005=100 oecd

Yuk industrial production uk 1970:m1 - 2013:m6 index, 2005=100 oecd

Yde industrial production de 1970:m1 - 2013:m6 index, 2005=100 oecd

Yjp industrial production jp 1970:m1 - 2013:m6 index, 2005=100 oecd

Pus core cpi us 1970:m1 - 2013:m6 index, 2005=100 oecd

Puk core cpi uk 1970:m1 - 2013:m6 index, 2005=100 oecd

Pde core cpi de 1970:m1 - 2013:m6 index, 2005=100 oecd

Pjp core cpi jp 1970:m1 - 2013:m6 index, 2005=100 oecd

Rus money mkt interest rate us 1970:m1 - 2013:m6 % ifs ifm

Ruk money mkt interest rate uk 1972:m1 - 2012:m6 % ifs ifm

Rde money mkt interest rate de 1970:m1 - 2013:m6 % ifs ifm

Rjp money mkt interest rate jp 1970:m1 - 2013:m6 % ifs ifm

Mus money supply m2 us 1959:m1 - 2013:m6 current prices fed

Muk money supply m2 uk 1986:m9 - 2013:m6 current prices bank of england

Mde money supply m2 de 1973:m1 - 2013:m6 current prices bundesbank

Mjp money supply m2 jp 1960:m1 - 2013:m6 current prices bank of japan

Bus 10y government bond yield us 1969:m1 - 2013:m6 % oecd (mei)

Buk 10y government bond yield uk 1969:m1 - 2013:m6 % oecd (mei)

Bde 10y government bond yield de 1969:m1 - 2013:m6 % oecd (mei)

Bjp 10y government bond yield jp 1969:m1 - 2013:m6 % oecd (mei)

Sus stock price index us 1969:m1 - 2013:m6 price index reuters

Suk stock price index uk 1969:m1 - 2013:m6 price index reuters

Sde stock price index de 1969:m1 - 2013:m6 price index reuters

Sjp stock price index jp 1969:m1 - 2013:m6 price index reuters

Lus 3-month interbank lending rate us 1986:m1 - 2013:m6 % bba

Luk 3-month interbank lending rate uk 1975:m1 - 2013:m6 % bba

Lde 3-month interbank lending rate de 1986:m1 - 2013:m6 % bba

Ljp 3-month interbank lending rate jp 1986:m5 - 2013:m6 % bba

vix vix volatility index 1990:m1 - 2013:m6 % cboe
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