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Abstract

This paper describes an algorithm to compute the distribution of conditional fore-
casts, i.e. projections of a set of variables of interest on future paths of some other
variables, in dynamic systems. The algorithm is based on Kalman filtering methods and
is computationally viable for large vector autoregressions (VAR) and dynamic factor
models (DFM). For a quarterly data set of 26 euro area macroeconomic and financial
indicators, we show that both approaches deliver similar forecasts and scenario assess-
ments. In addition, conditional forecasts shed light on the stability of the dynamic
relationships in the euro area during the recent episodes of financial turmoil and indi-
cate that only a small number of sources drive the bulk of the fluctuations in the euro
area economy.
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1 Introduction

Vector autoregressions (VARs) are very flexible and general models and provide a reliable

empirical benchmark for alternative econometric representations such as dynamic stochastic

general equilibrium (DSGE) models, which are more grounded in theory but, at the same

time, impose more structure on the data (see, for example, Christiano, Eichenbaum, and

Evans, 1999).

Recent literature has shown that VARs are viable tools also for large sets of data (see Bańbura,

Giannone, and Reichlin, 2010). In this paper, we construct a large VAR for the euro area

and we apply it to unconditional forecasting as well as for conditional forecasts and scenar-

ios. These, along with structural analysis (assessing the effects of structural shocks), have

been the main applications of VARs. Whereas large VARs have been used for unconditional

forecasting and structural analysis,1 limited attention has been devoted as yet to conditional

forecasting. This is because popular algorithms for deriving conditional forecasts have been

computationally challenging for large data sets. We overcome this problem by computing the

conditional forecasts recursively using Kalman filtering techniques.

Conditional forecasts and, in particular, scenarios are projections of a set of variables of

interest on future paths of some other variables. This is in contrast to unconditional forecasts,

where no knowledge of the future path of any variables is assumed. The prior knowledge,

albeit imperfect, of the future evolution of some economic variables may carry information

for the outlook of other variables. For example, future fiscal packages would affect the future

evolution of economic activity and, thus, might provide important off-model information.

Moreover, it may be of interest to assess the impact of specific future events on a set of

variables, i.e. to conduct scenario analysis. Notable examples of the latter are the stress

tests recently conducted in the US and the euro area in order to assess the vulnerability

of their banking systems. For recent examples of conditional forecasts, see Lenza, Pill, and

Reichlin (2010); Giannone, Lenza, and Reichlin (2010); Jarociński and Smets (2008); Bloor

and Matheson (2011); Giannone, Lenza, Pill, and Reichlin (2012); Stock and Watson (2012a);

Baumeister and Kilian (2011); Giannone, Lenza, Momferatou, and Onorante (2013).

1See e.g. Koop (2013), Giannone, Lenza, Momferatou, and Onorante (2013), Giannone, Lenza, and Reichlin
(2012), Paciello (2011).
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For VAR models, the conditional forecasts are typically computed by using the algorithm de-

veloped by Waggoner and Zha (1999). Due to computational burden, the latter approach can

easily become impractical or unfeasible for high dimensional data and long forecast horizons,

even if the computationally more efficient version of Jarociński (2010) is employed. However,

many problems in macroeconomics and finance can only be addressed by looking at the joint

dynamic behavior of a large number of time series. For example, business cycle research,

as in the NBER tradition, typically involves the analysis of many macroeconomic variables.

Professional forecasters and policymakers look at a variety of different indicators to predict

key variables of interest and make their decisions. Investors analyze the joint behavior of

many asset returns in order to choose their optimal portfolios. More in general, contemporary

science relies more and more on the availability and exploitation of large data sets.

In this paper, building on an old insight by Clarida and Coyle (1984), we propose an algo-

rithm based on Kalman filtering techniques to compute the conditional forecasts. Since the

Kalman filter works recursively, i.e. period by period, this algorithm reduces significantly the

computational burden and is particularly well suited for empirical approaches handling large

data sets. Using a simulation smoother (see Carter and Kohn, 1994; de Jong and Shephard,

1995; Durbin and Koopman, 2001a, for examples of simulation smoothers) allows for the com-

putation of the full distribution of conditional forecasts. The algorithm applies to any model

which can be cast in a state space representation.

The interest in issues which are best addressed by considering large information sets raises

a trade-off between excessive simplicity of the models – misspecification due to omitted vari-

ables – and their excessive complexity – many free parameters leading to large estimation

uncertainty. Recent developments in macroeconometrics have suggested two approaches to

deal with the complexity of large sets of data, without losing their salient features: Bayesian

VARs (BVARs) and dynamic factor models (DFMs).

The aforementioned flexibility of VARs comes at the cost of a high number of free parameters

to be estimated. Specifically, for a generic VAR(p) model for a vector of n variables yt =

(y1,t, . . . , yn,t)
′:

yt = c+ A1yt−1 + ...+ Apyt−p + εt , εt ∼WN(0,Σ) , (1)

where WN(0,Σ) refers to a white noise process with mean 0 and covariance matrix Σ, we
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count: i) pn2 parameters in autoregressive matrices, A1, . . . , Ap, that are of dimension n× n

each; ii) n(n + 1)/2 free parameters in the n × n covariance matrix of residuals Σ; iii) n

parameters in the constant term c. The number of parameters proliferates as the number of

variables in the model increases, making estimation unfeasible or unreliable. For example,

when the number of variables in a VAR with 4 lags increases from 6, as in the original VAR

model proposed by Sims (1980), to 20, 50 or 100, the total number of parameters to be

estimated goes from 171 to, respectively, numbers in the order of 2, 10 and 50 thousands.

Such a high number of parameters cannot be well estimated by ordinary least squares, for

example, since the typical macroeconomic sample involves a limited number of data points

(in the best case, 50− 60 years of data, i.e. 200− 250 data points with quarterly data). The

problem of parameter proliferation that prevents econometricians from conducting reliable

inference with large dimensional systems is also known as the “curse of dimensionality”.

A solution to the curse of dimensionality in the VAR framework consists in adopting Bayesian

shrinkage. The idea of this method is to combine the likelihood coming from the complex

and highly parameterised VAR model with a prior distribution for the parameters that is

näıve but enforces parsimony. As a consequence, the estimates are “shrunk” toward the

prior expectations, which are typically equal to 0.2 This approach can also be interpreted

as a penalised maximum likelihood method, with a penalisation on large (in absolute value)

coefficients.

The shrinkage methods have been advocated by early proponents of VARs as a macroecono-

metric tool (Litterman, 1979; Sims, 1980; Doan, Litterman, and Sims, 1984) but they were

typically used for low dimensional systems. Recently, it has been shown that the idea of

shrinkage works also for high dimensional systems and provides results that are very similar

to those obtained by using the DFMs (see De Mol, Giannone, and Reichlin, 2008; Bańbura,

Giannone, and Reichlin, 2010; Giannone, Lenza, and Primiceri, 2012). This is not surprising

since, as shown by De Mol, Giannone, and Reichlin (2008), when applied to collinear vari-

ables, as are typically macroeconomic variables, the forecasts produced by factor models and

Bayesian shrinkage tend to get closer, as the size of the sample and of the cross-section get

larger.

2For an extensive discussion of shrinkage in various contexts see e.g. Stock and Watson (2012b) and Ng
(2013).
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Factor models exploit the fact that macroeconomic and financial time series are characterised

by strong cross-sectional correlation. Under the assumption that most of the fluctuations

are driven by a relatively limited set of common sources, factor models offer a parsimonious

representation by summarizing the information from a large number of data series in few

common factors. DFMs further parameterize the dynamics of the factors, typically assuming a

VAR process. The estimation of factor models generally requires that the data are stationary.

Assuming that stationarity is achieved via taking first differences3, the DFM is defined as

follows:

∆yt = µ+ ΛFt + et,

Ft = Φ1Ft−1 + . . .+ ΦpFt−s + ut , ut ∼WN(0, Q) ,

where Ft = (F1,t, . . . , Fr,t)
′ is an r-dimensional vector of common factors, with r much smaller

than n and Λ is an n × r matrix of factor loadings. Since the number of common factors r

is typically small, the estimation of the VAR describing the dynamics of the common factors

does not pose any problem. The residual et = (e1,t, . . . , en,t)
′ is the idiosyncratic component.

The most common approach is to assume that the idiosyncratic component is cross-sectionally

uncorrelated. This assumption gives rise to the “exact” factor model, which highlights the

fact that the cross-correlation between the variables is fully accounted for by the common

factors. Interestingly, recent literature has shown that factor models can be estimated with

large data sets, i.e. even in situations in which the cross-sectional dimension n is much larger

than the sample size T . In addition, the estimates are asymptotically valid also when the data

generating process is not the “exact” but rather an “approximate” factor model, in the sense

that the idiosyncratic components are weakly cross-correlated (see Forni, Hallin, Lippi, and

Reichlin, 2000; Stock and Watson, 2002b; Bai and Ng, 2002; Bai, 2003; Forni, Hallin, Lippi,

and Reichlin, 2004; Doz, Giannone, and Reichlin, 2012). Stock and Watson (2011) provide an

exhaustive survey of the literature.

Factor models are appealing also because many popular economic models can be cast in their

format. The typical theoretical macro model, indeed, includes only a handful of shocks driving

the key aggregate variables in the economy. The arbitrage pricing theory (APT) is built upon

the existence of a set of common factors underlying all returns. Moreover, the distinction

3Trending series are typically “logged” beforehand.

5



between common and idiosyncratic sources of fluctuations is often employed in international,

regional and sectorial studies and represents a useful device to study macroeconomic implica-

tions of microeconomic behavior (see e.g. Kose, Otrok, and Whiteman, 2003; Foerster, Sarte,

and Watson, 2011).

In our empirical application, we carry out a comprehensive comparison of the two techniques

just described, on a large data set of quarterly euro area macroeconomic and financial variables.

We consider two versions of the BVAR – with data in (log-)levels and in (log-)differences –

and a dynamic factor model. First, we show that the three models produce quite accurate

unconditional forecasts, compared to univariate benchmarks, and that the forecasts from

the three approaches are very correlated. The latter finding lends empirical support to the

theoretical argument that the approaches are tightly linked, complementing similar evidence

already available for the US (see, for example De Mol, Giannone, and Reichlin, 2008; Giannone,

Lenza, and Primiceri, 2012).

Then, we compare the two approaches also for what concerns scenarios and conditional fore-

casts. In particular, we study the economic developments associated to a scenario of an

increase in world GDP as well as conditional forecasts based on the realised path of real

GDP, consumer prices and the policy rate. We show that also the scenario analysis and the

conditional forecasts computed for the three models provide similar insights. The fact that

the results are not model specific is reassuring, since it indicates that the predictions of the

models are reflecting genuine data features.

The results from the conditional forecasts yield support to two further conclusions. First, the

fact that the conditional forecasts based on the three variables track, in general, quite closely

the actual developments in most of the variables under analysis suggests that there are only a

few “sources” that drive the bulk of the fluctuations in the euro area economy. Second, there

appears to be some degree of stability in the economic relationships following the financial

crisis as the the conditional forecasts for this period based on the parameters estimated with

data until end of 2007 are relatively accurate, with the possible exception of some categories

of loans and broad monetary aggregates (see Giannone, Lenza, and Reichlin, 2012, for an

extensive discussion and interpretation of these results).

The structure of the paper is as follows. In section 2, we review the state-of-the-art techniques
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for the estimation and inference for DFMs and BVARs and we expound the close relationship

linking the two approaches. In section 3, we describe a Kalman filter based methodology to

compute conditional forecasts. In section 4, we present and discuss the empirical results. Sec-

tion 5 concludes. The appendix contains some implementation details and data descriptions.

2 Models for large data sets

2.1 Dynamic factor models

The general representation of the dynamic factor model described in the introduction is:

∆yt = µ+ ΛFt + et, (2)

Ft = Φ1Ft−1 + . . .+ ΦsFt−s + ut , ut ∼WN(0, Q) .

Following Doz, Giannone, and Reichlin (2012) the model can be estimated by means of quasi-

maximum likelihood methods. In this context, the estimation of the model is performed by

maximising a likelihood function, under the assumption that data are Gaussian and that

the factor structure is exact, i.e. the idiosyncratic errors are cross-sectionally orthogonal:

ut ∼ i.i.d.N (0, Q) and et ∼ i.i.d.N (0,Γd), where Γd is a diagonal matrix.

Doz, Giannone, and Reichlin (2012) have shown that this estimation procedure provides con-

sistent estimates for approximate dynamic factor models under general regularity conditions

(convergence in probability of the covariance matrix of the data and data stationarity). Re-

markably, consistency is achieved without any constraint on the number of variables, n, rel-

ative to the sample size, T , under the assumption of weak cross-sectional dependence of the

idiosyncratic term, et, and of sufficient pervasiveness of the common factors.

As the factors are unobserved, the maximum likelihood estimators of the parameters Λ,Γd,

Φ1, . . . ,Φs, Q, which we collect in θ, are, in general, not available in closed form. They can

be obtained either via a direct numerical maximisation of the likelihood, which can be com-

putationally demanding,4 or, as in Doz, Giannone, and Reichlin (2012), via the Expectation-

4Jungbacker and Koopman (2008) show how to reduce the computational burden in case the number of
observables is much larger than the number of factors.
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Maximisation (EM) algorithm. The EM algorithm was proposed by Dempster and Rubin

(1977) as a general solution to problems with incomplete or latent data. In the case of the

DFM, the algorithm alternates between the use of the Kalman smoother to estimate the com-

mon factors given a set of parameters (E-step), and multivariate regressions (corrected for the

uncertainty in the estimation of the common factors) to estimate the parameters given the

factors (M-step), see e.g. Watson and Engle (1983) or Shumway and Stoffer (1982).

The algorithm can be initialised using the sample principal components. In what follows, we

assume that data are standardised to have sample mean equal to zero and variance equal to

one.5 Denote by dj, j = 1, . . . n, the eigenvalues of 1
T

∑T

t=1 ∆yt∆y
′
t and by vj , j = 1, . . . n, the

associated eigenvectors, i.e.
(

1

T

T
∑

t=1

∆yt∆y
′
t

)

vj = vjdj , j = 1, 2, . . . n ,

with v′jvj = 1, v′jvk = 0 for j 6= k and d1 ≥ d2 ≥ . . . ≥ dn. The sample principal compo-

nents of ∆yt are defined as zjt =
1√
dj
v′j∆yt. The principal components are ordered accord-

ingly to their ability to explain the variability in the data as the total variance explained

by each principal component is equal to dj. The principal components transform cross-

sectionally correlated data, ∆yt, into linear combinations zt = (z1,t, ..., zn,t)
′ = H∆yt where

H =
(

1√
d1
v1, . . . ,

1√
dn
vn

)′
. These linear combinations are cross-sectionally uncorrelated, with

unit variance 1
T

∑T

t=1 ztz
′
t = In.

The approximate factor structure is defined in terms of behavior of the eigenvalues of the

population covariance matrix when the number of variables increases. Specifically, the first r

eigenvalues of the population covariance matrix of ∆yt are assumed to grow with the dimension

of the system, at a rate n. All the remaining eigenvalues remain instead bounded. It can be

proved that these assumptions imply that the eigenvalues dj of the sample covariance matrix

will go to infinity at a rate n for j = 1, . . . , r, where r is the number of common factors. On

the other hand, dr+1, . . . , dn will grow at a rate given by n/
√
T (see De Mol, Giannone, and

5The zero mean assumption is without loss of generality, since it is equivalent to concentrating out the
mean. Since maximum likelihood estimates are scale invariant, rescaling the data does not affect the estimates.
On the other hand, homogeneity of the scale across variables is convenient, since the algorithm for maximizing
the likelihood is more efficient from a computational standpoint. In addition, working with standardised data
is useful since the initialisation of the algorithm is based on principal components, which are not scale invari-
ant. Once the estimates are obtained, the factor loadings, Λ̂, and the covariance matrix of the idiosyncratic
components, Γ̂d, can be obtained by simple rescaling.
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Reichlin, 2008; Doz, Giannone, and Reichlin, 2011, 2012). Forni, Hallin, Lippi, and Reichlin

(2000) and Stock and Watson (2002a,b) have shown that if data have an approximate factor

structure6, then the first r principal components can approximate well the space spanned by

the unobserved common factors, when the sample size and the cross-sectional dimension are

large.

The sample principal components offer thus good starting values for the common factors:

F̂
(0)
t = zt.

7 The starting values for the parameters of the model, θ(0), can then be estimated

by means of OLS techniques, by treating the principal components as if they were the true

factors. Once the parameters have been estimated, we can estimate a new set of factors

by using the Kalman smoother: F̂
(1)
t = Eθ(0) [Ft|∆y1, . . . ,∆yT ]. At this stage, we have the

two-step procedure of Doz, Giannone, and Reichlin (2011). The quasi-maximum likelihood

estimation via the EM algorithm consists essentially in iterating these steps until convergence.

Details are reported in the appendix.

2.2 Bayesian vector autoregressions

The general representation of the VAR model described in the introduction is:

yt = c+ A1yt−1 + ... + Apyt−p + εt, εt ∼ N (0,Σ) .

We consider conjugate priors belonging to the normal-inverse-Wishart family, where the prior

for the covariance matrix of the residuals is inverse-Wishart and the prior for the autoregressive

coefficients is normal. The priors are a version of the so-called Minnesota prior, originally

due to Litterman (1979), which is centered on the assumption that each variable follows an

independent random walk process, possibly with drift:

yt = c+ yt−1 + εt ,

which is a parsimonious yet “reasonable approximation of the behavior of an economic vari-

able”.

6As stressed above, this amounts to assume that the idiosyncratic components are weakly cross-correlated.
7In fact, under the assumption that Φ1 = . . . = Φs = 0 and Γd = γ̄In (i.e. homoscedastic idiosyncratic

components) the quasi-maximum likelihood solution is analytical, with the expected value for the factors
proportional to the principal components of the data.
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For the prior on the covariance matrix of the errors, Σ, we set the degrees of freedom equal

to n+ 2, which is the minimum value that guarantees the existence of the prior mean, which

we set as E[Σ] = Ψ, where Ψ is diagonal.

The prior moments for the VAR coefficients are as follows:

E
[

(As)ij |Σ, λ,Ψ
]

=

{

1 if i = j and s = 1
0 otherwise

cov
[

(As)ij , (Ar)hm |Σ, λ,Ψ
]

=

{

λ2 1
s2

Σih

ψj
if m = j and r = s

0 otherwise
.

Notice that the variance of this prior is lower for the coefficients associated with more distant

lags, and that coefficients associated with the same variable and lag in different equations can

be correlated. Finally, the key hyperparameter λ controls the scale of all the variances and

covariances, and effectively determines the overall tightness of this prior. The terms Σij/ψj

account for the relative scale of the variables. The prior for the intercept, c, is diffuse.8

We include an additional prior, which implements a so-called “inexact differencing” of the

data. More precisely, rewrite the VAR equation in an error correction form:

∆yt = c+Πyt−1 +B1∆yt−1 + . . .+Bp̃∆yt−p̃ + εt.

where p̃ = p− 1, Bs = −As+1 − . . .− Ap, s = 1, . . . , p̃ and Π = A1 + . . .+ Ap − In.

A VAR in first differences implies the restriction Π = 0 (or A1 + . . . + Ap = In). We follow

Doan, Litterman, and Sims (1984) and set a prior centered at 1 for the sum of coefficients on

own lags for each variable, and at 0 for the sum of coefficients on other variables’ lags. This

prior introduces correlation among the coefficients on each variable in each equation. The

tightness of this additional prior is controlled by the hyperparameter µ. As µ goes to infinity

the prior becomes diffuse while, as it goes to 0, we approach the case of exact differencing,

which implies the presence of a unit root in each equation.

The setting of the priors importantly depends on the hyperparameters λ, µ and Ψ, which

reflect the informativeness of the prior distributions for the model coefficients. These heper-

8Koop (2013) considers non-conjugate priors which allow for exclusion of certain variables from some
equations, however, he finds that these do not outperform simpler Minnesota priors in terms of forecast
accuracy. Carriero, Clark, and Marcellino (2012) find that allowing for stochastic volatility helps to improve
forecast accuracy. See Karlsson (2013) for a comprehensive overview of Bayesian methods for inference and
forecasting with VAR models.
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parameters have been usually set on the basis of subjective considerations or rules-of-thumb.

Instead, we closely follow the theoretically grounded approach proposed by Giannone, Lenza,

and Primiceri (2012). This involves treating the hyperparameters as additional parameters,

in the spirit of hierarchical modelling. As hyperpriors (i.e. prior distributions for the hyper-

parameters), we use proper but quite disperse distributions. The implementation details are

reported in the appendix.

2.3 Bayesian vector autoregression and dynamic factor model

The connection between Bayesian shrinkage and dynamic factor models is better understood

by focusing on the data that have been transformed to achieve stationarity, ∆yt, and that

have been standardised to have mean zero and unit variance.

The VAR in differences can be represented by:

∆yt = B1∆yt−1 + . . .+Bp̃∆yt−p̃ + εt.

Imposing that the level of each variable yt follows an independent random walk process, is

equivalent to imposing that its difference, ∆yt, follows an independent white noise process.

Consequently, the prior on the autoregressive coefficients can be characterised by the following

first and second moments:

E
[

(Bs)ij |Σ, λ,Ψ
]

= 0

cov
[

(Bs)ij , (Br)hm |Σ, λ,Ψ
]

=

{

λ2 1
s2

Σih

ψj
if m = j and r = s

0 otherwise
.

Since the variables are rescaled to have the same variance, the hyperparameter related to the

scale can be set to be the same for all variables, i.e. Ψ = ψ̄In.

Hence, the model can be rewritten in terms of the principal components described in section

2.1:

∆yt = B1H
−1zt−1 + . . .+Bp̃H

−1zt−p̃ + εt,

where zt = H∆yt are the ordered principal components.
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Interestingly, the prior set-up that imposes a uniform shrinkage on the parameters is equivalent

to imposing a non-uniform degree of shrinkage on principal components:

E
[

(

BsH
−1
)

ij
|Σ, λ, ψ̄

]

= 0

cov
(

(

BsH
−1
)

ij
,
(

BrH
−1
)

hm
|Σ, λ, ψ̄

)

=

{

(λ2dj)
1
s2

Σih

ψ̄
if m = j and r = s

0 otherwise
.

In fact, the prior variance for the coefficients on the jth principal component turns out to be

proportional to the variance explained by the latter (dj).

As discussed in section 2.1, if the data are characterised by a factor structure then, as the

number of variables and the sample size increase, dj will go to infinity at a rate n for j =

1, . . . , r, where r is the number of common factors. On the other hand, dr+1, . . . , dn will grow

at a slower rate which cannot be faster than n/
√
T . As a consequence, if λ goes to zero

at a rate that is faster than that for the smaller eigenvalues and slower than for the largest

eigenvalues, i.e. λ2 = κ
√
T
n

1
T δ with 0 < δ < 1/2 and κ an arbitrary constant, then λ2dj will

go to infinity for j = 1, . . . , r. Hence the prior on the coefficients associated with the first

r principal components will become flat. Instead, for j > r λ2dj will go to zero, i.e. the

coefficients related to the principal components associated with the bounded eigenvalues will

be shrunk to zero.

De Mol, Giannone, and Reichlin (2008) have shown that, if the data are generated accordingly

to a dynamic factor model and the hyperparameter λ is set according to the rate described

above, the point forecasts obtained by using shrinkage estimators converge to the unfeasible

optimal forecasts that would be obtained if the common factors were observed.

3 Conditional forecasts for state space representations

3.1 State space representation

Several univariate and multivariate time-series models may be cast in a state space represen-

tation. For the sake of notation, the generic state space form is defined as9:

9See Harvey (1989) for a thorough treatment of state space techniques. To simplify notation we abstract
from exogenous variables as they are not included in our empirical model.
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Measurement equation

Zt = CtSt + vt (3)

Transition equation

St = GtSt−1 + wt (4)

where Zt = (Z1,t, Z2,t, . . . , Zk,t)
′ is a k-dimensional vector of observables, St an m-dimensional

vector of potentially unobserved states, vt and ut two vectors of errors with: E [vt] = 0,

E [vtv
′
t] = Rt, E

[

vtv
′
t−s
]

= 0 ∀s 6= 0, E [wt] = 0, E [wtw
′
t] = Ht, E

[

wtw
′
t−s
]

= 0 ∀s 6= 0 and

E [vtw
′
s] = 0 ∀ t, s. Finally, Ct and Gt are two, respectively, k × m and m × m matrices of

potentially time-varying coefficients.

The dynamic factor model in (2) can be cast in the representation (3)-(4) with Zt := ∆yt,

Ct := (Λ, 0n×r(s−1), In), Rt := Γd and

St :=











Ft
...

Ft−s+1

µ











, Gt :=















Φ1 Φ2 . . . Φs 0r×n

Ir 0r . . . 0r
...

...
. . . . . .

...
...

0r . . . Ir 0r 0r×n
0n×r . . . . . . 0n×r In















, Ht :=







Q . . . 0r×n
...

. . .
...

0n×r . . . 0n






.

For the VAR in (1), we have Zt := Yt, Ct := (In, 0n×np), Rt := 0n and

St :=











Yt
...

Yt−p+1

c











, Gt :=















A1 A2 . . . Ap In
In 0n . . . 0n 0n
...

. . . . . .
...

...
0n . . . In 0n 0n
0n . . . 0n 0n In















, Ht :=







Σ . . . 0n
...

. . .
...

0n . . . 0n






.

For the implementation in differences the modifications are straightforward.

3.2 Conditional forecasts

Simulation smoothers (see Carter and Kohn, 1994; de Jong and Shephard, 1995; Durbin and

Koopman, 2001a, for example) can be used to generate a draw of the state vector St , t =

1, . . . , T conditional on the observations {Zt, t = 1, . . . , T} and (a draw of) the parameters,

C
(j)
t , G

(j)
t , R

(j)
t , H

(j)
t :

13



S
(j)
t|T ∼ p(St|Zt, C(j)

t , G
(j)
t , R

(j)
t , H

(j)
t , t = 1, . . . , T ) , t = 1, . . . , T .

Let us now assume that for a subset of variables, I, we are interested in obtaining conditional

forecasts for t > t0, conditional on their own past and on the past and future observations of

the remaining variables, i.e. conditional on the information set Ω = {Zl,t, l ∈ I, t ≤ t0, Zl,t, l 6∈
I, t = 1, . . . , T}:

Zi,t|Ω ∼ p(Zi,t|Ω), i ∈ I, t > t0 .

In order to obtain such conditional forecasts, we adopt the solution proposed for forecasting

with ragged edge data sets using a Kalman filter methodology, see e.g. Giannone, Reichlin,

and Small (2005). In fact, the variables for which we do not assume the knowledge of a future

path can be considered as time series with missing data. The Kalman filter allows to easily

deal with such time series. Going more in details, we follow a standard approach (see e.g.

Durbin and Koopman, 2001b, pp. 92-93) and apply the Kalman filter to a modified state

space representation with Zt, Ct and Rt replaced by Z̃t, C̃t and R̃t respectively. The latter are

derived from the former by removing the rows (and, for Rt, also columns) that correspond to

the missing observations in Zt.
10

This insight is already sufficient in order to compute point conditional forecasts, by means

of the Kalman smoother. In addition, assuming that the posterior distribution of the model

parameters conditional on the data is available, the following algorithm (described for the

generic iteration j) may be used in order to derive the distribution of the conditional forecasts:

Step 1: draw the parameters C
(j)
t , G

(j)
t , R

(j)
t and H

(j)
t from their posterior (either using

explicit posterior distributions or some version of the Gibbs sampler).11

Step 2: draw the states S
(j)
t|Ω using a simulation smoother (Carter and Kohn, 1994; de Jong

10Giannone, Reichlin, and Small (2005) propose an equivalent solution. Instead of removing rows (and
columns) of Ct and Rt that correspond to missing observations, they replace Rt with R̃t defined as follows:

(R̃t)ij =

{

(Rt)ij if Zi,t and Zj,t are available
∞ otherwise

where, in practice, ∞ is a large number.
11In order to take the available future paths of selected variables into account when drawing the parameters,

the initial values can be obtained from the “balanced” data set (up to t0) and then steps 1-4 can be interated,
with the latest conditional forecasts treated as data when drawing the parameters in Step 1.
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and Shephard, 1995; Durbin and Koopman, 2001a) for the modified state space repre-

sentation with the parameters C̃
(j)
t , G

(j)
t , R̃

(j)
t and H

(j)
t .

Step 3: draw the noise for the observation equation from a conditional multivariate distri-

bution e
(j)
i,t ∼ p(e

(j)
i,t |e(j)l,t , l 6∈ I), i ∈ I, t > t0.

12

Step 4: compute Z
(j)
i,t|Ω = (C

(j)
t )i· S

(j)
t|Ω + e

(j)
i,t , i ∈ I, t > t0.

The algorithm can be modified in a straightforward manner for any pattern of “missing”

observations in Zt. Note that we can also easily condition on a linear combination of the

observations. Suppose, in fact, that the aim is to condition on j linear combinations WtZt

where Wt is a sequence of matrices of dimension j × k. Then we set

Z̄t =

(

WtZt
Zt

)

, C̄t =

(

WtCt
Ct

)

, R̄t =

(

WtRtW
′
t WtRt

RtW
′
t WtRtW

′
t

)

.

.

3.3 Comparison with the approach of Waggoner and Zha (1999)

The algorithm of Waggoner and Zha (1999) is a popular method to obtain conditional forecasts

for VAR models. Roughly speaking, the methodology involves drawing directly vectors of εt,

t = t0 + 1, . . . , T , in (1) which satisfy the required conditions. For the VAR described above

and the pattern of variable availability discussed in section 3.2:

Ω = {Yl,t, l ∈ I, t ≤ t0, Yl,t, l 6∈ I, t = 1, . . . , T} ,

this would involve an inversion of a q × q matrix, where q = (n−#(I))(T − t0) denotes the

number of restrictions, and, more importantly, a QR decomposition of a n(T − t0)×n(T − t0)
matrix (see e.g. Jarociński, 2010, for a detailed discussion).13 When the number of variables

and restrictions is large, this task could become computationally infeasible.14

In contrast, the application of the Kalman filter makes the problem “recursive”, and the

largest matrix to be inverted is of the size of the state vector, independently of the number of

restrictions.

12See e.g. Greene (2002) pp. 872 for conditional normal distributions. For a VAR e
(j)
i,t ≡ 0.

13#(I) denotes the number of elements in I.
14Jarociński (2010) proposes a way to decrease somewhat the computational complexity.
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4 Empirical Results

4.1 Data set

Our data set includes 26 quarterly variables. Roughly, we include the most relevant real

and nominal euro area aggregates and a set of international macroeconomic variables that

proxies for global macroeconomic conditions (GDP and expenditure components, consumer

and producer prices, labour market data, surveys, effective exchange rate, world economic

activity, commodity prices), financial variables (short and long term interest rates, stock

prices), credit (both to households and firms) and monetary aggregates (M1 and M3).

The sample covers the period from 1995Q1 to 2012Q4. Most of the data can be downloaded

from the ECB Statistical Data Warehouse. The variables for which official data are not

available over the entire sample, are back-dated by using the Area Wide Model data base

(Fagan, Henry, and Mestre, 2005). The data appendix at the end of the paper provides the

details, including the data transformations.

4.2 Model specifications

We include 3 common factors in the DFM, which are meant to roughly capture the information

on real developments, prices and interest rates. Moreover, we include 4 lags in the VAR of

the common factors in the DFM and in the BVAR in differences. In order to be consistent

with the dynamics captured in the latter two approaches (which are specified on variables in

differences), in the BVAR in levels we include 5 lags. In the BVAR approaches, we have to

set-up the tightness of the prior distributions. As suggested in Giannone, Lenza, and Primiceri

(2012), we follow a hierarchical approach and we treat the hyperparameters governing such

tightness as random variables. Hence, we draw those hyperparameters from their posterior

distribution.
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4.3 Model validation: out-of-sample forecasting evaluation of un-
conditional forecasts

As a preliminary step, we gauge the accuracy of our empirical models in terms of out-of-sample

unconditional forecasts. This preliminary step is particularly important because our models

are specified on a large set of variables (26). This feature leads to a proliferation of parame-

ters and, hence, potential instabilities due to estimation uncertainty might completely offset

the gains obtained by limiting model misspecification. Out-of-sample forecasting, reflecting

both parameter uncertainty and model misspecification, allows us to understand whether the

benefits due to the generality of our models outweigh the costs.

For each of the three models, we produce the forecasts recursively for three horizons (1, 2 and

4 quarters). We focus on point forecasts. Our first estimation sample ranges from 1995Q1

to 2003Q4. Based on that sample, we set the hyperparameters of the BVAR models to the

mode of their posterior distribution, we estimate the parameters of our three models and

then we generate forecasts for 2004Q1 (one quarter ahead), 2004Q2 (two quarters ahead)

and 2004Q4 (one year ahead). We then iterate the same procedure updating the estimation

sample, one quarter at a time, until the end of the sample, i.e. 2012Q4. At each iteration, we

also re-estimate the mode of the posterior distribution of the hyperparameters.

For each variable, the target of our evaluation is defined as mh
i,t+h = 4

h
[yi,t+h − yi,t]. For

variables specified in logs, this is approximately the average annualised growth rate over the

next h quarters while, for variables not transformed in logs, this is the average annualised

quarterly change over the next h quarters.

We compare our model with a simple benchmark model, a random walk with drift for the

levels of the variables. This model is a particularly challenging benchmark over the monetary

union sample and, in addition, it has also the appeal of being the prior model for the BVAR

approaches. Hence, in case the BVAR models out-perform the benchmark model, this would

suggest that they are able to extract valuable information from the sample.15

Table 1 reports the results of our analysis, for all models and variables. Results are cast in

terms of ratios of the Mean Squared Forecast Errors (MSFE) of our three models with respect

15We also compared our models to a battery of univariate autoregressive models, another class of popular
benchmark models, with very similar outcomes.
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to the corresponding MSFE of the random walk. Hence, values smaller than one indicate that

our model outperforms the random walk benchmark.

INSERT TABLE 1

The outcomes of the evaluation show that, in general, the BVARs and the DFM are able to

outperform the benchmark, particularly for the short horizons. For the one- and two-quarter

horizons, the models are more accurate than the random walk for most of the variables. Some

failures to outperform the benchmark are not particularly surprising, since it is well known

that it is very hard to beat the random walk model for financial and commodity prices, in

general. Also for consumer prices (HICP) and the GDP deflator there is a relatively ample

documentation of the difficulties to beat the random walk due to the steady anchoring of

inflation expectations in the monetary union sample.16

As argued in section 2.3 and in De Mol, Giannone, and Reichlin (2008), there is a tight connec-

tion between the BVARs and the DFM approaches. Indeed, the out-of-sample performance of

the three different approaches is quite similar. This reflects the fact that the forecasts from the

three approaches are very correlated. Figure 1 (panels a-c) reports the bivariate correlation

with the BVAR in levels of the DFM (black bar with stripes) and the BVAR in differences

(red solid bar) for all the variables and forecast horizons.

INSERT FIGURE 1

The figure reveals the strong collinearity of the forecasts across approaches, providing empirical

support for their theoretical connection highlighted in section 2.3 and in De Mol, Giannone,

and Reichlin (2008).

4.4 Scenario analysis: an increase in world GDP

In this exercise we perform a scenario analysis to assess the effects associated with positive

developments in the global economy, represented by a 0.1 percentage point stronger growth

in global GDP.

16See, for example, Diron and Mojon (2005) and Giannone, Lenza, Momferatou, and Onorante (2013).
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We compute the effects of the scenario by using our framework to produce conditional fore-

casts. Precisely, we estimate our models on the whole sample and generate two forecasts:

an unconditional forecast given the sample 1, 2, . . . , T (which provides a “baseline” scenario)

and a conditional forecast in which the world GDP growth in T + 1 is set to the value of

its own unconditional forecast plus 0.1 percentage points and all the remaining variables are

left unconstrained (which we will refer to as “shocked scenario”). The scenario results for all

variables are computed by taking the difference between the conditional and the unconditional

forecasts described above. We explore the horizon of eight quarters.

Notice that the estimation of the scenario effects just described is akin to estimating a gen-

eralised impulse response to a change in world GDP (on this point, see Koop, Pesaran, and

Potter, 1996; Pesaran and Shin, 1998).

Figure 2 shows the responses of some selected variables for the three models.17 In particular,

we report the distribution of the scenario effects computed in the context of the BVAR model

(shades of orange) in levels and the point estimates of the effects in the other two modelling

approaches (DFM: dashed blue line; BVAR in differences: black solid line). All results are

reported in terms of deviations of (log-)levels of the variables in the shocked scenario compared

to the baseline.18

INSERT FIGURE 2

The three approaches provide similar scenario assessments for all variables, at least qualita-

tively but, generally, also quantitatively. This result confirms the view that, for the variables

commonly used in macroeconometric studies, dynamic factor models and Bayesian shrinkage

(irrespective of data transformation) are both valid alternative methods to deal with the curse

of dimensionality.

Going more in details of the scenario analysis, the top left panel reports the developments in

global real GDP, which is 0.1 percent higher on impact (as assumed in the scenario assump-

tion), keeps on increasing for the first year and then tends to drop back to the level prevailing

before the initial increase.
17The total set of responses is available upon request.
18For the variables that are modelled in logs, this approximately corresponds to percentage deviation from

the baseline for the levels.
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The euro area real economy (GDP, exports, imports and unemployment) closely mirrors the

developments in global GDP. Consumer prices are also higher, reaching a peak after about

one year.

The short-term interest rate, which reflects systematic monetary policy, reacts positively to

stabilize the economy and then drops back toward the initial level. Long-term interest rates

are not particularly affected. This implies that the term-spread (defined as long-term interest

rates minus short-term interest rates) decreases on impact, to finally revert to initial values.

Credit aggregates, which are traditionally very cyclical, follow the same path as GDP. More-

over, loans to households are coincident with GDP, while loans to firms lag behind. The

narrow monetary aggregate M1 decreases on impact, reaching a trough after about one year.

To understand this pattern, notice that M1 is negatively related to the short-term interest

rate, indicating that its response to world demand is mainly driven by the liquidity effect.

The effect on M3 is instead mostly driven by the increases in the short-term monetary assets

included in the M3-M1 component, which completely offset the decrease in M1.(see Giannone,

Lenza, and Reichlin, 2012, for an extensive discussion on the cyclical properties of credit and

monetary aggregates in the euro area and their relationships with short-term and long-term

interest rates)

An implicitly maintained assumption in this exercise is that the forecast paths we examine

involve shocks small enough not to violate the Lucas critique.19 Indeed, the reliability of

the results rests on the fact that the perturbations we induce in the system by means of the

scenario assumptions are not too big to induce a substantial shift in the behavior of economic

agents which could, in turn, change the economic structure and, hence, the estimated reduced

form parameters.

4.5 Conditional forecasts

In this exercise we generate forecasts from the three models conditional on the realised paths

for the following three variables: real GDP, HICP and the short-term interest rate.

The conditional forecasts are generated over the period 1997-2012. The first two years in the

19See, Kilian and Lewis (2011) and references therein for a discussion of this issue.
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sample are used as initial conditions. The parameters are estimated over the sample 1995-

2007. Thus the conditional forecasts for 1997-2007 can be considered as “in-sample” while

those over 2008-2012 as “out-of-sample”. The aim of this exercise (see Giannone, Lenza,

and Reichlin, 2012; Stock and Watson, 2012a, for similar exercises) is twofold. First, the

“in-sample” part (1997-2007) of the conditional forecasts can be compared with the observed

developments in order to gauge whether knowing only the time series of real GDP, HICP

and the short-term interest rate is sufficient in order to capture the salient features of the

variables in our model. Second, comparing the “out-of-sample” part (i.e. from 2008 onward)

of the conditional forecasts with the observed developments, we can also assess whether the

turmoil associated to the financial and the sovereign debt crises was reflected in a change

in the structural economic relationships in the euro area. In fact, a change in the economic

relationships would likely lead to relevant inaccuracies of the conditional forecasts based on

parameters representing the pre-2007 economic relationships.

Figure 3 shows the conditional forecasts from the three models for the same selected variables

shown in Figure 2.20 As in the previous exercise, the distribution is generated using the BVAR

in levels and blue dashed and black solid lines correspond, respectively, to the conditional point

forecasts of the DFM and the BVAR in differences. In addition, the green line indicates the

actual outcomes.

INSERT FIGURE 3

Analogously to the previous exercise, the forecasts from the three models are similar for most

of the variables, indicating that different methodologies capture similar cross-sectional and

dynamic information. In addition, the conditional forecasts are close to the actual outcomes,

in particular in the “in-sample” period. This fact suggests that “3 dimensions” are sufficient

to capture the developments in most of the economy21 (Giannone, Reichlin, and Sala, 2004,

reach a similar conclusion for the US economy).

20Three additional variables replace the three variables shown in figure 2 which in this exercise were used
as conditions. A complete set of results is available upon request

21Notable exceptions are wages, GDP deflator, government consumption and the effective exchange rate
(not shown). For these variables, the conditional forecast distributions cover a relatively wide range of values
and the central forecasts are often quite far from the outcomes.

21



Turning to the “out-of-sample” evidence, there is still a general similarity of the conditional

forecasts across approaches. However, some differences appear between forecasts and observed

developments for a few variables, indicating an instability in the relationships of these variables

with the conditioning set. For example, notable differences appear in the developments in

money and credit variables, whose actual developments were much more subdued than what

would have been predicted based on the conditioning information.22 For the variables where we

have evidence of instability, we also notice some discrepancies in the forecasts across methods.

5 Conclusions

We have modelled the dynamic interactions among a large set of macroeconomic and financial

indicators in the euro area by means of large dynamic factor models and large Bayesian vector

autoregressions.

We find that both classes of models are reliable tools for analyzing large data sets, since they

produce accurate unconditional forecasts and meaningful scenarios.

Interestingly, the predictions of the two model classes are not only equally reliable, but are

also very similar, in general. The fact that the results are not model specific is reassuring

since it indicates that the predictions of the models are reflecting genuine data features.

The robustness and reliability of dynamic factor models and Bayesian vector autoregressions

for analyzing large macroeconomic data sets has been already established for the United States

in relation to forecasting and impulse response function analysis (see e.g. Bańbura, Giannone,

and Reichlin, 2010; Giannone, Lenza, and Primiceri, 2012). We document that the same holds

true for the euro area and for conditional forecasts.

In addition, we have shown how to implement scenario analysis and, in general, to compute

conditional forecasts in the context of large data sets. The procedure is computationally

feasible, produces meaningful results and interesting insights. The methodology has been

already used in a number of papers including Giannone, Lenza, Momferatou, and Onorante

(2013), Giannone, Lenza, and Reichlin (2010, 2012), Giannone, Lenza, Pill, and Reichlin

22Giannone, Lenza, and Reichlin (2012) extensively discuss and interpret the anomalies in the developments
in credit and money markets during the crisis.
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(2012), Lenza, Pill, and Reichlin (2010) and Luciani (2012).

A Implementation details

A.1 Dynamic factor model

If the factors were observed the joint likelihood of the data and the factors would be easily

maximised and the estimates of the parameters would correspond to ordinary least squares

outcomes. Specifically Λ and Γd would be obtained by regressing ∆yt on Ft while the autore-

gressive parameters Φ1, . . . ,Φs and the covariance matrix Q would be obtained by regressing

Ft on its lags Ft−1, . . . , Ft−s.

As the factors are unobserved the likelihood of the data cannot be maximised explicitly. As

an alternative to numerical optimisation methods, the EM algorithm alternates between com-

puting the expectation of the joint likelihood of the data and the factors given the parameter

estimates from the previous step (E-step) and deriving new estimates by maximising the ex-

pected likelihood (M-step). An interesting property is that at each step the likelihood of the

data increases, insuring that a convergence to a local maximum is reached.

Maximising the expected likelihood given the parameters at the jth iteration is achieved

through substituting the sufficient statistics with their expectation. This amounts to replacing

the unobserved factors with their expected value F̂
(j)
t = Eθ(j−1) [Ft|y1, . . . , yT ], and correcting

for estimation uncertainty which is measured as

V̂
(j)
l,t = Eθ(j−1)

[

(Ft − F̂
(j)
t )(Ft−l − F̂

(j)
t−l)

′|y1, . . . , yT
]

.

Those quantities can be computed recursively using the Kalman smoother.

It is easily seen that the expected sufficient statistics are as follows:

Eθ(j−1) [∆yt∆y
′
t|y1, . . . , yT ] = ∆yt∆y

′
t,

Eθ(j−1) [∆ytF
′
t |y1, . . . , yT ] = ∆ytF̂

(j)′

t

and

Eθ(j−1)

[

FtF
′
t−l|y1, . . . , yT

]

= F̂
(j)
t F̂

(j)′

t−l + V̂
(j)
l,t .
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As a consequence the M-step consists of the following equations, where for simplicity we

consider the case s = 123:24

Λ̂(j) =

(

T
∑

t=1

∆ytF̂
(j)′

t

)(

T
∑

t=1

F̂
(j)
t F̂

(j)′

t + V̂
(j)
0,t

)−1

,

Γ̂
(j)
d =

1

T
diag

[(

T
∑

t=1

∆yt∆y
′
t

)

− Λ̂(j)

(

T
∑

t=1

F̂
(j)
t ∆y′t

)]

,

Φ̂
(j)
1 =

(

T
∑

t=2

F
(j)
t F̂

(j)′

t−1 + V̂
(j)
1,t

)(

T
∑

t=2

F̂
(j)
t−1F̂

(j)′

t−1 + V̂
(j)
0,t−1

)−1

and

Q̂(j) =
1

T − 1

((

T
∑

t=2

F
(j)
t F

(j)′

t + V̂
(j)
0,t

)

− Â(j)

(

T
∑

t=2

F̂
(j)
t−1F̂

(j)′

t + V̂
(j)
1,t

))

.

Principal components represent a good starting point for the EM algorithm. The initial

estimates of the factor loadings are obtained by regressing ∆yt on the principal components:

Λ̂(0) =

(

T
∑

t=1

∆ytF̂
(0)′

t

)(

T
∑

t=1

F̂
(0)
t F̂

(0)′

t

)−1

.

The variance of the idiosyncratic residuals is hence given by:

Γ̂
(0)
d =

1

T
diag

[(

T
∑

t=1

∆yt∆y
′
t

)

− Λ̂(0)

(

T
∑

t=1

F̂
(0)
t ∆y′t

)]

.

The total variance of the residual is given by: trace(Γ̂
(0)
d ) = dr+1 + . . .+ dn.

Turning to the estimation of the VAR model for the common factors, the OLS estimates,

treating the factors as known, can be obtained as follows:

Φ̂
(0)
1 =

(

T
∑

t=2

F
(0)
t F̂

(0)′

t−1

)(

T
∑

t=2

F̂
(0)
t−1F̂

(0)′

t−1

)−1

and

Q̂(0) =
1

T − 1

((

T
∑

t=2

F
(0)
t F

(0)′

t

)

− Φ̂
(0)
1

(

T
∑

t=2

F̂
(0)
t−1F̂

(0)′

t

))

.

23Extending it for more general situations is straightforward.
24Bańbura and Modugno (2014) show how to modify the following formulas in case some of the observations

in yt are missing.
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It is important to stress that this algorithm is more efficient when the scale of all the variables

is similar. Hence, although the QML estimates are scale invariant, it is useful to standard-

ise variables beforehand. The scale can be re-attributed accordingly once the likelihood is

maximised. Standardisation is also useful for assuring a good initialisation since principal

components are not scale invariant.

A.2 Bayesian vector autoregression

In this section we summarise the the procedures derived by Giannone, Lenza, and Primiceri

(2012).

Consider the VAR model of section 2.2:

yt = c+ A1yt−1 + ...+ Apyt−p + εt, t = 1, ..., T ,

εt ∼ N (0,Σ) ,

and rewrite it as

Y = Xβ + ǫ ,

ǫ ∼ N (0,Σ⊗ IT−p) ,

where y ≡ (yp+1, ..., yT )
′, Y ≡ vec (y), xt ≡

(

1, y′t−1, ..., y
′
t−p
)′
, x ≡ (xp+1, ..., xT )

′, X ≡ In ⊗ x,

ε ≡ (εp+1, ..., εT )
′, ǫ ≡ vec (ε), B ≡ (c, A1, ..., Ap)

′ and β ≡ vec(B). Finally, denote the number

of regressors for each equation by k ≡ np + 1.

For expositional convenience we will focus first on the implementation of the Minnesota prior.

Later in the section, we will describe how to implement the sum-of-coefficient prior.

The Minnesota prior on (β,Σ) is given by the following normal-inverse-Wishart distribution:

Σ|Ψ ∼ IW (Ψ, d) ,

β|Σ,Ψ, λ ∼ N (b,Σ⊗ ΩΨ,λ) .

The posterior is given by:

Σ|Ψ, λ, Y ∼ IW

(

Ψ+ ε̂′ε̂+
(

B̂ − b̂
)′
Ω−1

Ψ,λ

(

B̂ − b̂
)

, T − p+ d

)

, (5)

β|Σ,Ψ, λ, Y ∼ N
(

β̂,Σ⊗
(

x′x+ Ω−1
Ψ,λ

)−1
)

, (6)
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where B̂ ≡
(

x′x+ Ω−1
Ψ,λ

)−1
(

x′y + Ω−1
Ψ,λb̂

)

, β̂ ≡ vec
(

B̂
)

, ε̂ ≡ y − xB̂, ǫ̂ ≡ vec (ε̂), and b̂ is a

k × n matrix obtained by reshaping the vector b in such a way that each column corresponds

to the prior mean of the coefficients of each equation (i.e. b ≡ vec(b̂)).

We follow Giannone, Lenza, and Primiceri (2012) and set an almost flat, but proper, hyper-

prior. For λ we choose Gamma distribution with mode equal to 0.2 and standard deviation

equal to 0. Our prior on Ψ is an inverse-Gamma with scale and shape equal to (0.02)2.

The posterior for the hyperparameters is p(Ψ, λ|Y ) ∝ p (Y |Ψ, λ) p(Ψ, λ), where p (Y |Ψ, λ) is
the marginal likelihood, which takes the following form (see Giannone, Lenza, and Primiceri,

2012):

p (Y |Ψ, λ) =

(

1

π

)
n(T−p)

2 Γn
(

T−p+d
2

)

Γn
(

d
2

) ×

|ΩΨ,λ|−
n
2 · |Ψ| d2 ·

∣

∣x′x+ Ω−1
Ψ,λ

∣

∣

−n
2 ×

∣

∣

∣

∣

Ψ+ ε̂′ε̂+
(

B̂ − b̂
)′
Ω−1

Ψ,λ

(

B̂ − b̂
)

∣

∣

∣

∣

−T−p+d
2

. (7)

Draws from the joint posterior of the parameters and hyperparameters can be easily derived

by using the following algorithm. Since the marginal likelihood conditional on the hyperpa-

rameters is available in closed form, the hyperparameters can be drawn using the Metropolis-

Hastings algorithm. For any draw of the hyperparameters Ψ and λ, the covariance matrix of

the residuals Σ and the autoregressive parameters β can be drawn from their distributions

conditional on Ψ and λ.

A.2.1 Implementing the sum-of-coefficient prior

The sum of coefficient prior is implemented by using the following dummy observations:

Yµ = diag(ȳ0)µ; Xµ = [0n, 1
′
p ⊗ diag(ȳ0)]µ ,

where ȳ0 is the average of the first p initial observations, 1p is a p × 1 vector of ones and 0n

is a n× 1 vector of zeros.

These dummy observations are added to the data and the procedure described above is per-

formed on the augmented data set Y ∗
µ =

(

Y ′ Y ′
µ

)′
and X∗

µ =
(

X ′ X ′
µ

)′
. The only correction
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that has to taken into account concerns the marginal likelihood which should be computed on

the original data only. As derived in Giannone, Lenza, and Primiceri (2012), this is equivalent

to taking the ratio between the marginal likelihood of the augmented data set relative to the

marginal likelihood of the dummy observations:

p(Y |Ψ, λ, µ) = p(Y ∗
µ |Ψ, λ)/p(Yµ|Ψ, λ).

B Description of the data set

No Code Variable Transformation (BVAR in levels)

1 YER Real GDP Log-levels

2 PCR Real private consumption Log-levels

3 ITR Real gross investment Log-levels

4 GCR Real government consumption Log-levels

5 XXR Real exports Log-levels

6 MXR Real imports Log-levels

7 LNN Total employment Log-levels

8 URX Unemployment rate Raw

9 ESI Economic sentiment indicator Raw

10 YWR World GDP Log-levels

11 HICP Harmonised consumer prices index Log-levels

12 PPIXC Producer price index Log-levels

13 YED GDP deflator Log-levels

14 MXD Imports deflator Log-levels

15 WRN Compensation per employee Log-levels

16 EEN Nominal effective exchange rate Log-levels

17 POILU Price of oil in USD Log-levels

18 PCOMU Non-energy commodity prices in USD Log-levels

19 STN Short term interest rate Raw

20 LTN Long term interest rate Raw

21 SHEUR Share prices - Total market euro area Log-levels

22 FFR Federal Funds Rate Raw

23 M1 M1 notional stocks Log-levels

24 M3 M3 notional stocks Log-levels

25 LOAH Loans to Households Log-levels

26 LOAC Loans to non-financial corporations Log-levels

Note: In the BVAR in differences and in the DFM specification we take the first difference
of the variables transformed as in the VAR in levels. The producer price index refers to
total industry excluding construction. Loans to households are the sum of consumer loans,
loans for house purchases and other loans.
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TABLES AND FIGURES

Table 1. Ratio of MSFE relative to random walk in levels

Variables VAR in levels VAR in differences Dynamic Factor model

H=1 H=2 H=4 H=1 H=2 H=4 H=1 H=2 H=4

Real GDP 0.60 0.84 1.16 0.56 0.80 1.07 0.56 0.70 0.83

Real Consumption 0.36 0.20 0.26 0.46 0.31 0.36 0.55 0.41 0.64

Government Consumption 0.56 0.43 0.35 0.59 0.44 0.38 0.85 0.85 0.91

Real Investment 0.54 0.63 0.68 0.53 0.56 0.61 0.43 0.46 0.51

Real Exports 0.71 1.03 1.45 0.71 0.98 1.43 0.72 0.99 1.02
Real Imports 0.51 0.64 0.77 0.51 0.64 0.84 0.54 0.65 0.73

GDP deflator 0.76 0.95 1.63 1.20 1.35 1.58 1.25 1.38 1.81
Imports deflator 0.79 1.21 1.86 0.78 1.31 2.27 0.91 1.53 2.08
Employment 0.17 0.22 0.38 0.16 0.22 0.39 0.17 0.19 0.33

Unemployment rate 0.41 0.58 0.89 0.37 0.52 0.82 0.30 0.39 0.61

Economic Sentiment 0.54 0.75 0.85 0.60 0.93 1.27 0.73 0.97 1.17
Nominal Wages 1.06 1.36 1.98 1.12 1.04 1.28 0.87 0.96 1.44
PPI excluding construction 0.75 1.14 1.71 0.70 1.14 1.85 0.97 1.58 2.26
Oil price 1.30 1.62 1.65 1.37 1.83 2.05 1.93 2.89 3.43
Commodity prices 1.16 1.43 1.51 1.20 1.59 1.74 1.23 1.55 1.63
HICP 0.99 1.39 2.34 1.00 1.35 1.98 1.55 2.27 3.25
Global GDP 0.66 0.72 0.84 0.66 0.72 0.73 0.60 0.62 0.63

Short-term Interest rate 0.72 1.08 1.81 0.61 0.98 2.00 0.71 1.18 1.74
Effective exchange rate 1.34 1.50 2.20 1.54 1.60 2.94 1.29 1.43 1.76
US Short-term interest rate 1.02 1.27 1.31 0.78 0.93 0.96 0.87 0.88 0.81

Long-term interest rate 1.02 1.19 1.83 1.01 1.29 2.20 1.08 1.25 1.62
M1 0.60 0.73 1.37 0.69 0.67 1.27 0.89 1.22 1.74
M3 0.44 0.43 0.56 0.54 0.55 0.71 0.54 0.49 0.55

Loans to households 0.09 0.11 0.17 0.12 0.18 0.31 0.25 0.31 0.50

Loans to firms 0.06 0.08 0.22 0.07 0.11 0.28 0.15 0.20 0.40

Stock prices 0.93 1.10 1.53 0.97 1.13 1.89 0.90 1.12 1.50

Note: The table reports the ratio of Mean Squared Forecast Errors (MSFE) of the BVAR in levels, BVAR in differences
and the DFM over the MSFE of the random walk in levels with drift (the model that would prevail if we assumed a
dogmatic prior). The ratios are reported for the horizons of one, two and four quarters ahead. Values smaller than
one (in bold) indicate that the MSFE of a specific model is lower than the corresponding MSFE of the random walk
model.
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Figure 1:
Correlation of DFM and BVAR in differences forecasts with BVAR in levels forecasts

(a) One quarter ahead
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(b) Two quarters ahead
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(c) Four quarters ahead
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Note: For each variable on the horizontal axis, we report the correlation between the forecasts from the DFM and BVAR in levels (bars with white

stripes) and between forecasts from the BVAR in differences and BVAR in levels (bars with red solid fill).
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Figure 2: Scenario analysis: an increase in world GDP
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Note: The scenario responses are shown in terms of percentage deviation of variables levels in the shocked scenario relative to the baseline scenario
(except for unemployment and the interest rates, for which we show deviations). Shades of orange: distribution of the scenario responses in the
BVAR in levels, excluding the lower and higher 5% quantiles. Dashed blue line: point estimate of the scenario responses in the DFM model. Solid
black line: point estimate of the scenario responses in the BVAR in differences. The latter is computed as the mean of the distribution of the scenario
responses in the BVAR in differences.
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Figure 3: Conditional Forecasts
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Note: Shades of orange: distribution of the conditional forecasts in the BVAR in levels, excluding the lower and higher 5% quantiles. Dashed blue
line: point estimate of the conditional forecasts in the DFM model. Solid black line: point estimate of the conditional forecasts in the BVAR in
differences. The latter is computed as the mean of the distribution of the scenario responses in the BVAR in differences. Green line with crosses:
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which are in levels. Compared to Figure 1, we report total investment, producer price index and the oil price in place of real GDP, HICP and the
short-term interest rate, which are our conditioning assumptions.
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Bańbura, M., and M. Modugno (2014): “Maximum likelihood estimation of factor models

on datasets with arbitrary pattern of missing data,” Journal of Applied Econometrics, 29(1),

133160.

Baumeister, C., and L. Kilian (2011): “Real-Time Analysis of Oil Price Risks Using

Forecast Scenarios,” CEPR Discussion Papers 8698, C.E.P.R. Discussion Papers.

Bloor, C., and T. Matheson (2011): “Real-time conditional forecasts with Bayesian

VARs: An application to New Zealand,” The North American Journal of Economics and

Finance, 22(1), 26–42.

Carriero, A., T. E. Clark, and M. Marcellino (2012): “Common drifting volatility

in large Bayesian VARs,” Discussion paper.

Carter, C., and P. Kohn (1994): “On Gibbs Sampling for State Space Models,” Biomet-

rica, 81, 541–553.

Christiano, L. J., M. Eichenbaum, and C. L. Evans (1999): “Monetary policy shocks:

What have we learned and to what end?,” in Handbook of Macroeconomics, ed. by J. B.

Taylor, and M. Woodford, vol. 1, chap. 2, pp. 65–148. Elsevier.

Clarida, R. H., and D. Coyle (1984): “Conditional Projection by Means of Kalman

Filtering,” NBER Technical Working Papers 0036, National Bureau of Economic Research,

Inc.

de Jong, P., and N. Shephard (1995): “The simulation smoother for time series models,”

Biometrika, 2, 339–350.

32



De Mol, C., D. Giannone, and L. Reichlin (2008): “Forecasting using a large number

of predictors: Is Bayesian shrinkage a valid alternative to principal components?,” Journal

of Econometrics, 146(2), 318–328.

Dempster, A., N. L., and D. Rubin (1977): “Maximum Likelihood Estimation From

Incomplete Data,” Journal of the Royal Statistical Society, 14, 1–38.

Diron, M., and B. Mojon (2005): “Forecasting the central banks inflation objective is a

good rule of thumb,” Working Paper Series 0564, European Central Bank.

Doan, T., R. Litterman, and C. A. Sims (1984): “Forecasting and Conditional Projection

Using Realistic Prior Distributions,” Econometric Reviews, 3, 1–100.

Doz, C., D. Giannone, and L. Reichlin (2011): “A two-step estimator for large approx-

imate dynamic factor models based on Kalman filtering,” Journal of Econometrics, 164(1),

188–205.

(2012): “A QuasiMaximum Likelihood Approach for Large, Approximate Dynamic

Factor Models,” The Review of Economics and Statistics, 94(4), 1014–1024.

Durbin, J., and S. Koopman (2001a): “An efficient and simple simulation smoother for

state space time series analysis,” Computing in Economics and Finance 2001 52, Society

for Computational Economics.

Durbin, J., and S. J. Koopman (2001b): Time Series Analysis by State Space Methods.

Oxford University Press.

Fagan, G., J. Henry, and R. Mestre (2005): “An area-wide model for the euro area,”

Economic Modelling, 22(1), 39–59.

Foerster, A. T., P.-D. G. Sarte, and M. W. Watson (2011): “Sectoral versus Aggre-

gate Shocks: A Structural Factor Analysis of Industrial Production,” Journal of Political

Economy, 119(1), 1 – 38.

Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2000): “The Generalized Dynamic

Factor Model: identification and estimation,” Review of Economics and Statistics, 82, 540–

554.

33



(2004): “The generalized dynamic factor model: consistency and rates,” Journal of

Econometrics, 119, 231–245.

Giannone, D., M. Lenza, D. Momferatou, and L. Onorante (2013): “Short-term

inflation projections: a bayesian vector autoregressive approach,” International Journal of

Forecasting, forthcoming.

Giannone, D., M. Lenza, H. Pill, and L. Reichlin (2012): “The ECB and the Interbank

Market,” Economic Journal, 122(564), F467–F486.

Giannone, D., M. Lenza, and G. E. Primiceri (2012): “Prior Selection for Vector

Autoregressions,” NBER Working Papers 18467, National Bureau of Economic Research,

Inc.

Giannone, D., M. Lenza, and L. Reichlin (2010): “Business Cycles in the Euro Area,” in

Europe and the Euro, NBER Chapters, pp. 141–167. National Bureau of Economic Research,

Inc.

(2012): “Money, credit, monetary policy and the business cycle in the euro area,”

CEPR Discussion Papers 8944, C.E.P.R. Discussion Papers.

Giannone, D., L. Reichlin, and L. Sala (2004): “Monetary Policy in Real Time,” in

NBER Macroeconomics Annual, ed. by M. Gertler, and K. Rogoff, pp. 161–200. MIT Press.

Giannone, D., L. Reichlin, and D. Small (2005): “Nowcasting GDP and inflation: the

real-time informational content of macroeconomic data releases,” Finance and Economics

Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).

Greene, W. H. (2002): Econometric Analysis. Prentice Hall.

Harvey, A. (1989): Forecasting, structural time series models and the Kalman filter. Cam-

bridge University Press.
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