New Perspectives on the European Debt Crisis Enrique G. Mendoza University of Maryland,

University of Pennsylvania & NBER

0

New perspectives

- I. Focus on adverse macroeconomic effects of sovereign debt crises (w. V. Yue, QJE 2012)
 - Debt crises turn into Great Recessions
- 2. Think of the European debt crisis as a domestic debt crisis (w. P. D'Erasmo)
 - Outright defaults on domestic debt are infrequent but they do occur
- 3. Study unpleasant arithmetic of fiscal austerity (w. L. Tesar & J. Zhang)
 - Use workhorse Macro model to quantify required tax hikes and the size of fiscal externalities & welfare costs.

DEBT CRISES FACTS

Stylized facts of debt crises in Europe & beyond

- Surge in debt ratios
- Rise in spreads
- Sharp economic slowdown
- Banking system exposure (broad & narrow)
- Dynamics around recent EM debt crises

Surging debt ratios

Surging debt ratios

Widening spreads (v. German 5 yr. bonds)

Widening spreads (v. German 5 yr. bonds)

Sharp slowdown

(annualized quarterly GDP growth, IMF forecast)

Another "Lost Decade"? (real GDP index, 2007=100, IMF forecast 2013-17)

Banks' direct exposure (2011 Q2)

Banks' total "macro" exposure (2011 Q2)

Macro dynamics around recent defaults

- 23 EM default events during 1977-2009
- Event windows for HP-filtered cyclical components
- Defaults coincide with the through of "Great Recessions"
 - Medians: GDP -5%, C -6.5%, L -20%, IntGds -20%, Imp. IntGds -25%
 NX/GDP rise 12 ppts.

DEBT CRISES & GREAT RECESSIONS

Four key empirical regularities

- Debt crises coincide with through of Great Recessions
- 2. Spreads peak at the same time and they are generally countercyclical
- 3. Large TFP drops driven by reallocation of inputs (Gopinath & Neiman (10))
- 4. Average debt ratios of 50%+ coexist with default frequencies in the 2-5% range.

Questions

- Why do debt crises have large negative effects on private economic activity?
- How do these effects affect default incentives & dynamics?
- Can these effects help us explain the stylized facts?
- Is there a connection between trade openness and default?

Output dynamics in default models

- Exogenous output costs are key for obtaining eq. with debt & defaults in bad times.
 - a) Proportional (Aguiar & Gopinath (06), Yue (10)): $y_t^{def} = \lambda y_t$

b) Stepwise-increasing (Arellano (08)):

 $y_t^{def} = y_t \text{ if } y_t \leq \lambda E[y]; \quad y_t^{def} = \lambda E[y] \text{ if } y_t > \lambda E[y]$

- At 2-5% def. frequency, a) yields negligible debt ratios, b) yields 6%
 - b) does better, but is disconnected from actual output dynamics and defaults occur below $\lambda E[y]$, hence at zero cost (i.e. in regular downturns)

Modeling Default & Great Recessions (Mendoza-Yue Model)

- Firms use external working capital loans to pay for subset of imported inputs
- Default freezes all external borrowing, forcing substitution of inputs & labor misallocation
- Three key elasticities: domestic v. foreign inputs, across foreign inputs, and labor supply
- Efficiency loss drives endogenous cost of default
- Gov. defaults strategically taking this into account

Output Cost of Default: Application to Argentina 2002

Output dynamics around default

Interest rate dynamics before default

Financial amplification

- Defaults occur with "typical" TFP shocks (1.3 std. devs. on average)
- Output response to same size TFP shock is 81% larger in a default
- Slow recovery (low re-entry prob.)

Long-run moments

Statistics	Data	Model
Average debt/GDP ratio	35%	22.88%
Average bond spreads	1.86%	0.74%
Std. dev. of bond spreads	0.78%	1.23%
Consumption std./GDP std.	1.44	1.05
Correlations with GDP		
bond spreads	-0.62	-0.17
trade balances	-0.87	-0.54
labor	0.39	0.52
intermediate goods 1	0.90	0.99

Main message

- Default triggers a financial amplification mechanism that hits the private sector and has feedback links with debt & default
- Working capital is tractable & empirically relevant way to model this mechanism
- Banking collapse is a more complex, but very relevant, alternative (Padilla (12))
- Default should be less frequent in economies more open to external trade!

• THE EUROPEAN DEBT CRISIS AS A DOMESTIC DEBT CRISIS

Why a domestic debt crisis?

- High economic integration of EU
- Sov. debt denominated in same currency
- Large fraction of debt held inside EU
- EU institutions internalize EU-wide effects of default (e.g. effects on Greece & Spain, but also on creditors, Euro economy, etc)
- Reinhart & Rogoff (2011): The study of domestic defaults is a "Forgotten History..."

Strategic domestic default

- I. Economy inhabited by heterogeneous agents with incomplete markets
- 2. Agents face idiosyncratic income shocks and aggregate *G*/*T* shocks, buy bonds for smoothing and self insurance
- 3. Gov. issues non-state contingent bonds, faces G shocks, levies lump-sum taxes
- 4. Gov. values <u>all</u> agents and defaults if default payoff exceeds repayment payoff
- 5. Gov. is utilitarian (aggregates welfare using economy's endogenous wealth distribution)

Default tradeoffs

- Default is a mechanism for "short-run" redistribution favoring the "poor," and provides state-contingency to fiscal policy (lower taxes, lower consumption inequality)
- ...but it freezes a key asset market used for "long-run" consumption/tax smoothing & self insurance, and it lowers lenders' wealth
- Feedback loop: wealth distribution affects default incentives, but the dist. itself depends on risk premia, which depend on default risk

Main questions

- Can these tradeoffs support existence of domestic debt subject to default risk?
- Can this setup match the large domestic debt ratios and low frequency of default?
- How much does inequality/short-run redistribution affect default incentives?
- What is the long-run social value of public debt?

Distributional incentives: 2-period case

• t=0: exogenous initial wealth distribution:

a fraction γ of hh's holds $b_0^L = 0$ a fraction $(1 - \gamma)$ holds $b_0^H = \frac{B_0 - \gamma b_0^L}{1 - \gamma}$

- g shock at t=l is the only random shock
- Gov. chooses B_1 and can default at t=I
- Debt holdings & date-I consumption without default:

 $\gamma: b_1^L = B_1 - \epsilon; \quad (1 - \gamma): b_1^H(\gamma) = B_1 + \frac{\gamma}{1 - \gamma}\epsilon; \quad \epsilon \in [0, B_1]$

 $c_1^{L,d=0} = y - g + b_1^L - B_1, \qquad c_1^{H,d=0}(\gamma) = y - g + b_1^H - B_1$

Distributional incentives

...but redistribution alone would always lead to default!

What explains debt then?

- Exogenous default costs (again!)
- The missing long-run tradeoffs:
 - I. No idiosync. shocks, no income heterogeneity
 - 2. No tax smoothing & self insurance
 - \rightarrow Limited role of debt market
- Politicians weigh H agents more than the true wealth distribution
Supporting debt with costly default

Long-run social value of public debt (stationary eq. without default)

- Steady state gov. budget constraint $\tau = \bar{g} + B(1 q(B))$
- Agents' constraints (using $\tilde{b} = (b B)$): $c = y + \tilde{b} - q(B)\tilde{b}' - \bar{g}$

 $\tilde{b}' > -B$

 Debt enhances borrowing ability, improves ability to self-insure, and allows tax smoothing

Welfare cost of closing the debt market (consumption compensating variations)

B/Y	q(B)	$\tau(B)$	$\bar{\alpha}(B)$ (%)
0.1000	0.9998	0.1829	-0.6168
0.6333	0.9640	0.2057	-1.3729
0.9000	0.9591	0.2197	-1.4073
1.4333	0.9538	0.2491	-1.1837
1.9667	0.9510	0.2792	-0.7366
2.5000	0.9493	0.3096	0.0513

$$\alpha(b, y; B) = \left[\frac{V(b, y; B)}{V^{aut}(y)}\right]^{\frac{1}{\sigma - 1}} - 1$$

 $\bar{\alpha}(B) = \int \alpha(b, y; B) d\Gamma(b, y)$

Full model simulation: debt and default decision

Full model simulation: debt and bond prices

UNPLEASANT ARITHMETIC OF FISCAL AUSTERITY

0

Arithmetic of fiscal austerity

- Workhorse two-country Neoclassical model with exogenous growth, capital adj. costs, and trade in goods and bonds
- Distortionary taxes on L, K and C
- EU setup: full integration, harmonized C tax, large entitlement programs
- G includes expenditures and transfers
- Intertemporal gov. budget constraint holds (debt markets work smoothly)
- 2008 fiscal shock: unanticipated rise in debt

Pre-crises tax rates & fiscal shock

	GDP Weighted Aggregates				
	FGN	GIIPS			
Mendoza-Razin-Tesar Tax Rates:					
TAXC	17.00%	14.00%			
TAXN	36.00%	34.00%			
ТАХК	19.00%	21.00%			
2008-2011 debt change:					
DEBT08/GDP08	66.00%	79.00%			
DEBT11/GDP08	80.00%	115.00%			
DEBT SHOCK	14 ppts.	36 ppts.			
FGN=France, Germany & Netherlands					
GIIPS=Greece, Ireland, Italy, Portugal & Spair					

Restoring fiscal solvency

• Tax hikes restore solvency when PDV of primary balance rises as much as debt:

$$\sum_{t=0}^{\infty} \left[\prod_{\tau=0}^{t} R_{\tau}(\tau, \tau^{*}) \right]^{-1} [\tau_{K}(r_{t}(\tau, \tau^{*}) - \delta)k_{t}(\tau, \tau^{*}) + \tau_{L}w_{t}(\tau, \tau^{*})L_{t}(\tau, \tau^{*}) + \tau_{C}c_{t}(\tau, \tau^{*})].$$

$$- \sum_{t=0}^{\infty} \left[\prod_{\tau=0}^{t} R_{\tau}(\tau, \tau^{*}) \right]^{-1} (g+e)$$

- Dynamic Laffer curves
- Fiscal externalities: Eq. prices & allocations depend on country tax structures

Arithmetical questions

- Can tax hikes restore fiscal solvency, and if so at what levels?
- How large are the fiscal externalities?
- What are the welfare implications?
- What are the benefits of coordination?
- How does tax austerity compare v. cuts in outlays and debt haircuts?

Dynamic Laffer curves: capital tax

Transitional dynamics: Capital tax

Welfare & externalities: Capital tax

			GIIPS in		
	FGN	GIIPS	autarky		
Welfare effects (compensating variation in C)					
Transition	3.63%	2.53%	6.83%		
Long-run	-2.14%	-7.62%	-9.91%		
Total	1.49%	-5.09%	-3.08%		
PDV of tax revenue (ppts. increase)					
	18.5	36.3	57.7		
FGN=France, Germany & Netherlands					
GIIPS=Greed	ce, Ireland, l	taly, Portuga	al & Spain		

Caveats

- On the negative side:
 - I. Neoclassical model has relatively inelastic capital tax base
 - 2. Abstracted from sov. risk+financial instability
 - 3. Ignored efficiency loss due to sectoral input misallocation, sticky prices
- On the positive side:
 - Adjustment via cuts in unproductive outlays and haircuts would be less painful
 - 2. Haircuts are akin to making GIIPS's debt shock smaller and FGN's larger

New perspectives: Summary

- Sovereign debt crises & Great Recessions
 Focus on fin. amplification and efficiency loss
- Domestic nature of European debt crisis
 - Not the classic two-player game between benevolent sovereign and foreign lenders
 - Tradeoffs of freezing a key asset market
- Unpleasant arithmetic of fiscal austerity
 - Tax hikes can restore solvency but welfare effects and EU-wide externalities are large