Overview	Cross-Country Data	U.S. Data	Model	Policy Experiments	Conclusion

House Prices, Credit Growth, and Excess Volatility: Implications for Monetary and Macroprudential Policy

Paolo Gelain¹ Kevin J. Lansing² Caterina Mendicino³

2nd Conference of the Macro-prudential Research Network European System of Central Banks

October 30-31, 2012

¹Norges Bank ²Federal Reserve Bank of San Francisco and Norges Bank ³Banco de Portugal

• Could policymakers have done more to prevent the buildup of financial imbalances, particularly in the household sector?

- Could policymakers have done more to prevent the buildup of financial imbalances, particularly in the household sector?
- Should central banks take deliberate steps to prevent or deflate suspected bubbles? If so, what policy instruments should be used to do so?

- Could policymakers have done more to prevent the buildup of financial imbalances, particularly in the household sector?
- Should central banks take deliberate steps to prevent or deflate suspected bubbles? If so, what policy instruments should be used to do so?
- Standard macro-modeling approach: House price booms driven by preference shocks. Financial crises caused by "capital quality" shocks. All agents are fully-rational.

- Could policymakers have done more to prevent the buildup of financial imbalances, particularly in the household sector?
- Should central banks take deliberate steps to prevent or deflate suspected bubbles? If so, what policy instruments should be used to do so?
- Standard macro-modeling approach: House price booms driven by preference shocks. Financial crises caused by "capital quality" shocks. All agents are fully-rational.
- This Paper: DSGE model of housing with excess volatility. Subset of agents employ moving-average forecast rules. Policy experiments:
 - Interest-rate response to house price growth or credit growth.
 - Tightening of lending standards (lower LTV).
 - Weight on wage income in borrowing constraint. (best).

- Interest rate response to asset prices or credit in RE models
 - Dupor (2005)
 - Gilchrist and Saito (2008)
 - Christiano, Ilut, Motto and Rostagno (2010)
 - Airaudo, Cardani, and Lansing (2012)

- Interest rate response to asset prices or credit in RE models
 - Dupor (2005)
 - Gilchrist and Saito (2008)
 - Christiano, Ilut, Motto and Rostagno (2010)
 - Airaudo, Cardani, and Lansing (2012)
- Macroprudential policy tools
 - Galati and Moessner (2011), BIS Working Paper 337 "Macroprudential policy: A literature review."
 - Bank of England (2011), Discussion Paper "Instruments of macroprudential policy."

- Interest rate response to asset prices or credit in RE models
 - Dupor (2005)
 - Gilchrist and Saito (2008)
 - Christiano, Ilut, Motto and Rostagno (2010)
 - Airaudo, Cardani, and Lansing (2012)
- Macroprudential policy tools
 - Galati and Moessner (2011), BIS Working Paper 337 "Macroprudential policy: A literature review."
 - Bank of England (2011), Discussion Paper "Instruments of macroprudential policy."
- Countercyclical LTV rules in RE models
 - Kannan, et al. (2009), Angelini, et al. (2010), Christensen and Meh (2011), Lambertini, et al. (2011).

- Interest rate response to asset prices or credit in RE models
 - Dupor (2005)
 - Gilchrist and Saito (2008)
 - Christiano, Ilut, Motto and Rostagno (2010)
 - Airaudo, Cardani, and Lansing (2012)
- Macroprudential policy tools
 - Galati and Moessner (2011), BIS Working Paper 337 "Macroprudential policy: A literature review."
 - Bank of England (2011), Discussion Paper "Instruments of macroprudential policy."
- Countercyclical LTV rules in RE models
 - Kannan, et al. (2009), Angelini, et al. (2010), Christensen and Meh (2011), Lambertini, et al. (2011).
- Countercylical tax on debt in RE Model
 - Bianchi and Mendoza (2010).

Household leverage ratios: Debt to disposable income

Household leverage and the decline in consumption

Overview Cross-Country Data U.S. Data Model Policy Experiments Conclusion 00 00 000 000 00000000 0	II. ' D	- C (1)	1 0000	
				Conclusion O

U.S. Housing Boom of the mid-2000s

New buyers with access to easy credit helped fuel an excessive run-up in house prices.

Futures tend to overpredict prices when prices are falling (moving average forecast rule).

Case Shiller Index and Futures

Indexed to 100 in January 2000

Index

Overview	Cross-Country Data	U.S. Data	Model	Policy Experiments	Conclusion
00	00	○○●○○○○	000	00000000	O
	Expectations ectations track past			e Prices	

- Case and Shiller (2003): Surveys in 2002-3. 90% of survey respondents expect house prices to increase over the next several years. Over the next 10 years, respondents expect annual price appreciation in the range of 12 to 16% per year.
- Piazzesi and Schneider (2009): "Starting in 2004, more and more households became optimistic after having watched house prices increase for several years."
- Shiller (2007): Surveys in 2006-7. Places with high recent house price growth exhibited high expectations of future price appreciation, while places with slowing price growth exhibited downward shifts in expected appreciation.
- Case, Shiller and Thompson (2012): Survey in 2008. Respondents in prior boom areas now mostly expect declines in future house prices.

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Survey forecasts exhibit 1-sided forecast errors, resemble moving-average of past inflation.

U.S. Survey Expected Inflation versus Subsequent Actual Inflation

Date

DTI provided a much earlier warning signal of rising household leverage.

Leverage ratios - U.S. data

Overview 00	Cross-Country Data 00	U.S. Data 000000●	Model 000	Policy Experiments	Conclusion O	
	rstanding Hou					
Remarks at Credit Union National Association Governmental Affairs Conference (2004)						

"Overall, the household sector seems to be in good shape, and much of the apparent increase in the household sector's debt ratios over the past decade reflects factors that do not suggest increasing household financial stress."

Overview	Cross-Country Data	U.S. Data	Model	Policy Experiments	Conclusion
00	00	0000000	000	00000000	
"Unde	rstanding Hou	sehold De	bt Oblig	gations"	
Remarks a	at Credit Union Natio	nal Association	Governmer	ntal Affairs Conference	ce (2004)

"Overall, the household sector seems to be in good shape, and much of the apparent increase in the household sector's debt ratios over the past decade reflects factors that do not suggest increasing household financial stress."

Fed Chairman Alan Greenspan, February 23, 2004.

Overview	Cross-Country Data	U.S. Data	Model	Policy Experiments	Conclusion
00	00	0000000	●○○		O
	olds: Patient-			tient-borrower	rs

$$\begin{split} \max \widehat{E}_{1,t} \sum_{t=0}^{\infty} \beta_1^t \left\{ \log \left(c_{1,t} - b c_{1,t-1} \right) + \nu_{1,h} \log \left(h_{1,t} \right) - \nu_{1,L} \frac{L_{1,t}^{1+\varphi_L}}{1+\varphi_L} \right\}, \\ c_{1,t} + I_t + q_t \left(h_{1,t} - h_{1,t-1} \right) + \frac{b_{1,t-1}R_{t-1}}{\pi_t} = b_{1,t} + w_t L_{1,t} + r_t^k k_{t-1} + \phi_t. \\ k_t &= (1-\delta)k_{t-1} + \left[1 - \frac{\psi}{2} \left(\frac{I_t}{I_{t-1}} - 1 \right)^2 \right] I_t, \end{split}$$

$$\max \widehat{E}_{2,t} \sum_{t=0}^{\infty} \beta_2^t \left\{ \log \left(c_{2,t} - b c_{2,t-1} \right) + \nu_{2,h} \log \left(h_{2,t} \right) - \nu_{2,L} \frac{L_{2,t}^{1+\varphi_L}}{1+\varphi_L} \right\}, \\ c_{2,t} + q_t (h_{2,t} - h_{2,t-1}) + \frac{b_{2,t-1}R_{t-1}}{\pi_t} = b_{2,t} + w_t L_{2,t}, \\ b_{2,t} \leq \frac{\gamma}{R_t} \left[\widehat{E}_{1,t} q_{t+1} \pi_{t+1} \right] h_{2,t},$$

 $\beta_2 < \beta_1$ (Incentive to borrow)

Overview	Cross-Country Data	U.S. Data	Model	Policy Experiments	Conclusion
00	00	0000000	○●○		O
Househ	old Expectati	ons			

Subset employ moving-average forecast rules. Remainder employ rational forecast rules.

where $\lambda =$ weight on recent data in moving average.

$$X_{t+1} =$$
 object to be forecasted.
= $II = \begin{bmatrix} a^k & (1-\delta) + c^k \end{bmatrix}$ (eva

$$= U_{c_{1,t+1}} \left[q_{t+1}^{\kappa} (1-\delta) + r_{t+1}^{\kappa} \right] \qquad (\text{example})$$

Overview	Cross-Country Data	U.S. Data	Model	Policy Experiments	Conclusion
00	00	0000000	○●○		O
House	nold Expectati	ons			

Subset employ moving-average forecast rules. Remainder employ rational forecast rules.

where $\lambda =$ weight on recent data in moving average.

$$egin{array}{rcl} X_{t+1}&=& ext{object to be forecasted.}\ &=&U_{c_{1,t+1}}\left[q_{t+1}^k(1-\delta)+r_{t+1}^k
ight] & ext{(example).} \end{array}$$

$$\begin{split} \widehat{E}_t \, X_{t+1} &= \omega F_t \, X_{t+1} + (1-\omega) \, E_t \, X_{t+1}, \qquad 0 \leq \omega \leq 1 \\ \text{where } \omega &= \text{fraction who employ moving-average forecast rule.} \\ \omega &= 0.3, \quad \lambda = 0.35 \quad \text{(hybrid expectations w/ no-trade).} \end{split}$$

Overview	Cross-Country Data	U.S. Data	Model	Policy Experiments	Conclusion
00	00	0000000	000	●○○○○○○○	O
	ary Policy and cy actions are effectiv				ut, etc.?

Interest-rate response to house price growth or credit growth:

$$R_{t} = (1+r) \left(\frac{\pi_{t}}{1}\right)^{1.5} \left(\frac{y_{t}}{y}\right)^{0.125} \left(\frac{q_{t}}{q_{t-4}}\right)^{\alpha_{q}} \left(\frac{b_{2,t}}{b_{2,t-4}}\right)^{\alpha_{b}} \zeta_{t},$$

 $\alpha_q \text{ or } \alpha_b \in [0, 0.4],$ (baseline = 0)

Overview	Cross-Country Data	U.S. Data	Model	Policy Experiments	Conclusion
00	00	0000000	000		O
	ary Policy and cy actions are effectiv				ut, etc.?

Interest-rate response to house price growth or credit growth:

$$R_t = (1+r) \left(\frac{\pi_t}{1}\right)^{1.5} \left(\frac{y_t}{y}\right)^{0.125} \left(\frac{q_t}{q_{t-4}}\right)^{\alpha_q} \left(\frac{b_{2,t}}{b_{2,t-4}}\right)^{\alpha_b} \zeta_t,$$

 $\alpha_q \text{ or } \alpha_b \in [0, 0.4],$ (baseline = 0)

Lower LTV or move towards DTI constraint:

$$\begin{array}{rcl} b_{2,t} & \leq & \frac{\gamma}{R_t} \left[\widehat{E}_{1,t} \, q_{t+1} \pi_{t+1} \right] \, h_{2,t} \\ \gamma & \in & \left[0.2, \ 1.0 \right], \quad \mbox{(baseline} = 0.7) \end{array}$$

$$b_{2,t} \leq \frac{\widehat{\gamma}}{R_t} \left\{ m \, w_t L_{2,t} + (1-m) \left[\widehat{E}_{1,t} \, q_{t+1} \pi_{t+1} \right] \, h_{2,t} \right\}$$
$$m \in [0, 1] \quad \text{(baseline} = 0\text{)}$$

- Policy rule coefficients are not optimized with respect to any utility function or loss function.
- Thought experiment: A modest shift from exisiting central bank policy (captured by Taylor-type rule) to a policy that responds to a financial variable (house price growth or credit growth) that previously had been ignored.
- If such a policy shift were to be undertaken by a real-world central bank, we would not expect policymakers to radically alter their responses to inflation and output at the same time.

Reduces volatility of household debt but magnifies volatility of output and nflation.

Overview	Cross-Country Data	U.S. Data	Model	Policy Experiments	Conclusion
00	00	0000000	000		O
	ary policy resu		· · · · · · · · · · · · · · · · · · ·		

Interest rate res	oonse to o	credit gro	wth ($\alpha_b =$	0.2)
		Standar	d deviation	IS
	House	HH		
	price	debt	Output	Inflation
Rational Expectations				
Not responding	2.08	3.17	2.31	0.81
Responding	2.14	2.00	2.34	0.84
Volatility Ratio	1.03	0.63	1.01	1.04
Hybrid Expectations				
Not responding	3.62	6.55	3.14	0.90
Responding	3.72	6.68	3.18	1.65
Volatility Ratio	1.03	1.02	1.01	1.83

Standard deviations expressed as percent deviations from steady state.

Overview	Cross-Country Data	U.S. Data	Model	Policy Experiments	Conclusion
00	00	0000000	000		O
Tighten	Lending Sta	ndards: L	ower LT	V	

Reduces volatility of household debt but magnifies volatility of other macro variables.

Overview	Cross-Country Data	U.S. Data	Model	Policy Experiments	Conclusion				
00	00	0000000	000	00000000	•				
	Conclusion No policy was perfect but some did better than others.								

• Interest rate response to either house price growth or credit growth had the serious drawback of substantially magnifying the volatility of inflation.

Overview	Cross-Country Data	U.S. Data	Model	Policy Experiments	Conclusion				
00	00	0000000	000	00000000	•				
	Conclusion								

- Interest rate response to either house price growth or credit growth had the serious drawback of substantially magnifying the volatility of inflation.
- A lower LTV ratio mildly raised the volatilities of output, inflation, and consumption, but reduced the volatility of household debt—a financial stability benefit.

Overview	Cross-Country Data	U.S. Data	Model	Policy Experiments	Conclusion				
00	00	0000000	000	00000000	•				
	Conclusion								

- Interest rate response to either house price growth or credit growth had the serious drawback of substantially magnifying the volatility of inflation.
- A lower LTV ratio mildly raised the volatilities of output, inflation, and consumption, but reduced the volatility of household debt—a financial stability benefit.
- <u>Best-performing policy</u>: Require lenders to put substantial weight on wage income in the borrowing constraint. Promotes both economic and financial stability (automatic stabilizer).

Overview	Cross-Country Data	U.S. Data	Model	Policy Experiments	Conclusion			
00	00	0000000	000	00000000	•			
Conclusion								

- Interest rate response to either house price growth or credit growth had the serious drawback of substantially magnifying the volatility of inflation.
- A lower LTV ratio mildly raised the volatilities of output, inflation, and consumption, but reduced the volatility of household debt—a financial stability benefit.
- <u>Best-performing policy</u>: Require lenders to put substantial weight on wage income in the borrowing constraint. Promotes both economic and financial stability (automatic stabilizer).
- Best performing policy calls for lending behavior that is basically the opposite of what U.S. lenders did during housing boom of the mid-2000s. By 2006, 27 percent of all new mortgages were "no-doc" and "low-doc" loans.