The US dollar exchange rate and the demand for oil

Selien De Schryder Ghent University Gert Peersman Ghent University

Norges Bank/ECB workshop on "Monetary Policy and Commodity Prices" 19-20 November 2012

- Growing consensus: oil price fluctuations are mainly driven by changes in oil demand in recent times
 - Hamilton (2009): strong income growth primary cause of oil price surge in 2007-08, while subsequent collapse of oil prices result of global downturn
 - SVAR literature: dominant role for shocks at the demand side of the global crude oil market
 - E.g. Peersman (2005), Kilian (2009), Peersman and Van Robays (2009), Lombardi and Van Robays (2011), Kilian and Murphy (2012)

- The role of the US dollar exchange rate has been ignored in these studies
 - Global oil prices expressed in US dollar: a shift in dollar exchange rate should affect oil demand in countries that do not use the dollar for local transactions
 - For oil consumption, it is the "local" price that matters (Austvik 1987)
 - If exchange rate matters, changes in US dollar shift global oil demand curve
 - E.g. US dollar depreciation: boosts global oil demand, prices and production
 - Evolution exchange rate, oil production and oil prices over time suggests that this could indeed be the case: oil production and oil prices decline when the US dollar exchange rate appreciates, and vice versa (see figures)

- Same is true for multi-country (panel) studies that examine determinants of oil demand more directly
 - E.g. Gately and Huntington (2002), Dargay et al. (2007), Narayan and Smith (2007), Dargay and Gately (2010)
 - Focus on estimation of income and oil price elasticity expressed in US dollar: ignoring the exchange rate could bias the results
 - Some studies use local oil prices in the estimations but do not distinguish between changes of global oil price and shifts in US dollar exchange rate
 - E.g. Griffin and Schulman (2005) and Fawcett and Price (2012)

This paper

- Explores the role of US dollar exchange rate for oil demand
 - Panel dataset of 23 OECD and 42 non-OECD countries over 1971-2008 sample period (annual data - oil exporting countries are excluded)
- Using recent advanced in panel data estimation techniques
 - Existing panel studies on oil demand suffer a number of econometric problems
- Are there similar nonlinearities as for price elasticity of oil demand?
 - Decline over time, and increases versus decreases

Benchmark specification

$$\Delta dem_{i,t} = \alpha_i + \tau_i * trend + \lambda_i * dem_{i,t-1} + \gamma_i^l * gdp_{i,t-1} + \beta_i^l * oilp_{t-1} + \theta_i^l * rer_{t-1} + \gamma_i * \Delta gdp_{i,t} + \beta_i * \Delta oilp_t + \theta_i * \Delta rer_t + \varepsilon_{i,t}$$

- *dem* : total oil demand (consumption) per capita
- *gdp* : real income per capita
- *oilp* : international real crude oil price in US dollars
- *rer* : real effective US dollar exchange rate
- Panel error correction model
 - All variables are non-stationary (ADF and PANIC tests)
 - Null hypothesis of no error correction between variables is rejected (GUW test)

Econometric issues

- Panel oil demand estimations typically with standard fixed effects estimator
 - E.g. Gately and Huntington (2002), Griffin and Schulman (2005)
 - FE estimators are biased when there is heterogeneity in slope coefficients
 - Likely the case given differences in economic structures across countries
 - Homogeneity consistently rejected by Hausman and likelihood-ratio tests: also for subsamples of OECD and non-OECD countries
 - We use the Mean Group estimator in the analysis

- Cross-sectional dependence in error terms is ignored
 - Results are biased when observed explanatory variables are correlated with unobserved common factors (e.g. common global business cycle)
 - CD-test of Pesaran (2004) shows that there is a significant degree of crosssectional correlation in the error terms for both FE and MG estimators
 - Bai et al. (2009): Include estimated common component of residuals to eliminate cross-sectional dependence in error terms of cointegrating model
- Both econometric issues matter for the (magnitudes) of results
 - Bias in different directions

Empirical results – estimated elasticities

	OECD	Non-OECD	Total
Real income	0,568*** (0,073)	0,639*** (0,119)	0,614*** (0,081)
Oil price	-0,051*** (0,007)	-0,026** (0,012)	-0,035*** (0,008)
Exchange rate	-0,204 *** (0,040)	-0,051 (0,068)	-0,105** (0,047)
	(median) long-run coefficients		
Real income	0,674	0,885	0,775
Oil price	-0,150	-0,104	-0,126
Exchange rate	-0,385	-0,324	-0,325

Instrumental variables estimations

Real effective US dollar short-run exchange rate elasticity			
OECD	Non-OECD	Total	
-0,819***	-0,412**	-0,556***	
(0,151)	(0,180)	(0,130)	

Real bilateral US dollar short-run exchange rate elasticity			
OECD	Non-OECD	Total	
-0,513***	-0,008	-0,238*	
(0,130)	(0,228)	(0,141)	

- Some carefulness when interpreting the results
 - Usual problem of finding good instruments (level, first difference FF-rate and lagged exchange rate)
 - Smaller samples for bilateral exchange rate estimations

Average versus global elasticity

- Estimated elasticity is (unweighted) average of individual countries
 - Not very useful for the analysis of global oil market dynamics
 - E.g. Kilian and Murphy (2010) implement estimated price elasticity oil demand as a boundary restriction in a global VAR to identify different types of oil shocks
- Since we are using MG estimator, we can accommodate this by deriving the Weighted Mean Group estimates
 - Shares of individual countries in total oil demand are used as weights
 - Sample represents 59% of non-US global oil demand

Average versus global elasticity

	Unweighted	Weighted
Real income	0,614*** (0,081)	0,484*** (0,164)
Oil price	-0,035 *** (0,008)	-0,045 *** (0,015)
Exchange rate	-0,105** (0,047)	-0,168** (0,067)

• Global exchange rate elasticity: -0,168 * (1-0,27) = -0,133

- Note: US represents on average 27% of global oil demand

Economic relevance

- A simple back of the envelope calculation
 - (simplified) benchmark oil demand: $\Delta q = -0,045 \Delta p 0,123 \Delta USD$
 - Kilian and Murphy (2010) oil supply: $\Delta q < 0,025 \Delta p$
 - In the data, the monthly average of $\Delta USD = 1,16\%$
 - To clear the market, this implies that:
 - $\Delta q > 0,05\%$ (whereas monthly average Δq is 1,08% in the data)
 - $\Delta p > 2,04\%$ (monthly average $\Delta p 4,76\%$ in the data)
 - Exchange rate is hence very important contributor to oil price volatility

US dollar exchange rate and nonlinearities

- Hughes et al. (2008), Baumeister and Peersman (2012): price elasticity has declined over time
 - Reason could be structural change in the real economy or the crude oil market
- Same is true for US dollar exchange rate
 - Interaction of the exchange rate with a simple linear trend

	OECD	Non-OECD	Total
Exchange rate	-0,432***	-0,268**	-0,326***
	(0,122)	(0,134)	(0,097)
Exchange rate	0,013**	0,012 (0,008)	0,012**
* trend	(0,005)		(0,006)

US dollar exchange rate and nonlinearities

- Gately and Huntington (2002): Price elasticity is higher for oil price increases versus decreases
- Same is true for appreciation versus depreciation US dollar exchange rate in OECD countries, but not for non-OECD countries

	OECD	Non-OECD	Total
Exchange rate depreciation	-0,020	-0,178*	-0,122*
	(0,049)	(0,107)	(0,072)
Exchange rate appreciation	-0,410***	0,110	-0,074
	(0,094)	(0,168)	(0,117)

US dollar exchange rate and nonlinearities

- What happens if we combine both nonlinearities?
 - Note: both nonlinearities could be correlated because US dollar exchange rate experienced persistent depreciation after its peak in 1985

- Results still hold

	OECD	Non-OECD	Total
Exchange rate	0,012**	0,010	0,011*
* trend	(0,005)	(0,008)	(0,006)
Exchange rate depreciation	-0,233**	-0,352**	-0,310***
	(0,110)	(0,176)	(0,120)
Exchange rate appreciation	-0,606*** (0,165)	-0,074 (0,168)	-0,262** (0,127)

Conclusions

- The US dollar exchange rate is a crucial determinant for oil demand
 - Appreciation of US dollar consistently leads to decline in oil demand
 - The elasticity turns out to be much higher than the price elasticity of oil demand (expressed in US dollar)
 - Economically important to explain fluctuations in the oil market: should be taken into account in the analysis of the global oil market
 - Similar nonlinearities for exchange rate as for oil price elasticity
- Open issue: why is the elasticity much higher than price elasticity?
 - Stronger responsiveness to a less volatile variable (e.g. signal to noise)?
 - Short term responsiveness is constrained, which implies a larger estimated elasticity of smaller shocks (another nonlinearity in oil demand)?