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Abstract

The design and conduct of climate change policy necessarily confronts uncertainty along
multiple fronts. We explore the consequences of ambiguity over various sources and configu-
rations of models that impact how economic opportunities could be damaged in the future.
We appeal to decision theory under risk, model ambiguity and misspecification concerns to
provide an economically motivated approach to uncertainty quantification. We show how this
approach reduces the many facets of uncertainty into a low dimensional characterization that
depends on the uncertainty aversion of a decision-maker or fictitious social planner. In our
computations, we take inventory of three alternative channels of uncertainty and provide a
novel way to assess them. These include i) carbon dynamics that capture how carbon emis-
sions impact atmospheric carbon in future time periods; ii) temperature dynamics that depict
how atmospheric carbon alters temperature in future time periods; iii) damage functions that
quantify how temperature changes diminish economic opportunities. We appeal to geosci-
entific modeling to quantify the first two channels. We show how these uncertainty sources
interact for a social planner looking to design a prudent approach to the social pricing of

carbon emissions.
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1 Introduction

There are many calls for policy implementation to address climate change based on confidence
in our knowledge of the adverse impact of economic activity on the climate, and conversely
the negative effects of climate change on economic outcomes. Our view is that the knowledge
base to support quantitative modeling in the realm of climate change and elsewhere remains
incomplete. While there is a substantial body of evidence demonstrating the adverse human
imprint on the environment, uncertainty comes into play when we build quantitative models
aimed at capturing the dynamic transmission of human activity on the climate and on how
adaptation to climate change will play out over time. In many arenas, it has been common
practice in discussions of economic policy to shunt uncertainty to the background when building
and using quantitative models. To truly engage in “evidence-based policy” requires that we are
clear both about the quality of the evidence and the sensitivity to the modeling inputs used to
interpret the evidence. While the importance of quantifying uncertainty has been stressed and
implemented in a variety of scientific settings, the analysis of economic policy provides some
unique challenges. Specifically, our aim is to explore ways to incorporate this uncertainty for
the purposes of making quantitative assessments of alternative courses of action while exploring
a broader conceptualization of uncertainty than is typical in econometric analyses. We see this
challenge as much more than putting standard errors on econometric estimates or incorporating
risk (uncertainty with known probabilities) into the analysis. We turn to developments in dynamic
decision theory as a guide to how we confront uncertainty in policy analysis.

In climate economics, Weitzman (2012), Wagner and Weitzman (2015) and others have em-
phasized uncertainty in the climate system’s dynamics and how this uncertainty could create
fat-tailed distributions of potential damages. Relatedly, Pindyck (2013) and Morgan et al. (2017)
find existing integrated assessment models in climate economics to be of little value in the actual
prudent policy. We are sympathetic to their skepticism, and are not offering simple repairs to
the existing integrated assessment models in this area nor quick modifications to EPA postings
for the social cost of carbon. Nevertheless, we find value in the use of models to engage in a form
of “quantitative storytelling” and we explore the consequences for policy when multiple models
or specifications are entertained.! Instead of proceeding with comparing policies model by model,
our ambition is to incorporate at least some of the model uncertainty into the formal analysis.
That is, our aim is to explore ways to assess policies with a more explicit accounting for the limits
to our understanding. In the climate economics arena, not only is there substantial uncertainty
about the economic modeling inputs, but also about the geoscientific inputs.

Drawing on insights from decision theory and asset valuation, Barnett et al. (2020) proposed

a framework for assessing uncertainty, broadly-conceived, to include ambiguity over alternative

'The term “model” is used differentially in statistical discussions of uncertainty. For us, a model conditions on
any unknown parameters. Thus, we differentiate a model from a parameterized family of models.



models and the potential form of the misspecification of each. As is demonstrated in their paper,
this broad notion of uncertainty is reflected in an endogenously determined adjustment to the
probabilities used to depict meaningful economic values. This adjustment pushes well beyond the
familiar discussions of social discount rates in the environmental economics literature. But the
examples in Barnett et al. scratch the surface of the actual quantitative assessment of uncer-
tainty pertinent to the economics of climate change, and they abstract from setups in which the
uncertainty is at least partially resolved in the future.

In sections 3 and 4, this paper takes inventory of the alternative sources of uncertainty that

are pertinent to climate change policy:

e carbon dynamics mapping carbon emissions into carbon in the atmosphere
o temperature dynamics mapping carbon in the atmosphere into temperature changes

e cconomic damage functions that depict the fraction of the productive capacity that is re-

duced by temperature changes

We necessarily adopt some stark simplifications to make this analysis tractable. Many of the
climate models are both high-dimensional and nonlinear. Rather than using those models directly,
we rely on outcomes of pulse experiments applied to the models. We then take the outcomes of
these pulse experiments as inputs into our simplified specification of the climate dynamics inside
our economic model. We follow much of the environmental macroeconomic modeling literature in
the use of ad hoc static damage functions, and explore the consequences of changing the curvature
in these damage functions. Even with these simplifications, our uncertainty analysis is sufficiently
rich to show how uncertainty about the alternative channels by which emissions induce economic
damages interact in important ways. Modeling extensions that confront heterogeneity in exposure
to climate change across regions will also open the door to the inclusion of cross-sectional evidence
for measuring potential environmental damages.

Decision theory provides tractable ways to explore a tradeoff between projecting the “best
guess” consequences of alternative courses of action versus “worst possible” outcomes among a
set of alternative models. Rather than focusing exclusively on these extremal points, we allow our
decision-maker to take intermediate positions in accordance with parameters that govern aversions
to model ambiguity and potential misspecification. We presume a decision-maker confronts many
dimensions of uncertainty and engages in a sensitivity analysis. To simplify the policy analysis,
we consider a world with a “fictitious social planner.” Thus, we put to the side important ques-
tions pertaining to heterogeneity in the exposure to climate change and to the consequent policy
objectives by different decision-makers. Instead, we simplify the policy implementation to that of
a Pigouvian tax that eliminates the wedge between market valuation and social valuation. We use

this setup to illustrate how uncertainty can contribute to social valuation while recognizing the



need for further model richness in future research. Our planner confronts risk, model ambiguity,
and model misspecification formally and deduces a socially efficient emissions trajectory. The
planner’s decision problem adds structure to the sensitivity analysis and reduces a potentially
high-dimensional sensitivity analysis to a two-dimensional characterization of sensitivity param-
eterized by aversion to model ambiguity and potential misspecification. We describe formally
in section 5 some convenient continuous-time formulations of decision theory designed so that
recursive methods familiar in economic dynamics can be applied with tractable modifications.

We use the social cost of carbon (SCC) as a barometer for investigating the consequences of
uncertainty for climate policy. In settings with uncertainty, the SCC is the economic cost to the
current and future uncertain environmental and economic damages induced by an incremental
increase in emissions. In effect, it is the current period cost of an adverse social cash flow.
Borrowing insights from asset pricing, this cash flow should be discounted stochastically in ways
that account for uncertainty. This follows in part revealing discussions in Golosov et al. (2014) and
Cai et al. (2017) who explore some of the risk consequences for the social cost of carbon. We extend
this by taking a broader perspective on uncertainty. The common discussion in environmental
economics about what “rate” should be used to discount future social costs is ill-posed for the
model ambiguity that we feature. Rather than a single rate, we borrow and extend an idea from
asset pricing by representing broadly based uncertainty adjustments as a change in probability over
future outcomes for the macroeconomy. As we argue formally in section 6, when we incorporate
uncertainty we are pushed away from the commonly employed modular approaches for measuring
the SCC as the modular components to the SCC become much more intertwined.? Drawing on
insights from recursive approaches to economic dynamics adds clarity to how best to rationalize
and quantify the SCC in presence of decision-maker uncertainty.

Finally, this paper extends previous work by “opening the hood” of climate change uncertainty
and exploring which components have the biggest impact on valuation. Rather than embrace a
“one-model-fits-all-type-of-approaches” perspective, we give three computational examples de-
signed to illustrate different points. The example presented in section 7 is by far the most
ambitious and sets the stage for the other two. This first example explores what impact of fu-
ture information about environmental and economic damages, triggered by temperature anomaly
thresholds, should have on current policy. It adds a dynamic richness missing from other treat-
ments of model uncertainty. The second example, presented in section 8, implements a novel
decomposition of uncertainty assessing the relative importance of uncertainties in carbon dynam-
ics, temperature dynamics and damage function uncertainty. The approach that is described and
implemented in section 8 is more generally applicable to other economic environments. Finally,

the third example investigates the interacting implications of the uncertainties in the develop-

2See, for instance, National Academies of Sciences, Engineering and Medicine (2017) for a discussion and a
defense for the modular approach.



ment of green technologies and in environmental damages for prudent policy. This example is
developed in Section 9.

In the next section, we elaborate on some the prior contributions that motivate our analysis.

2 Some motivating literature

Palmer and Stevens (2019) take inventory of what we know about climate change from basic prin-
ciples while noting the limits to the existing efforts at quantitative modeling. They articulate the
disconnect between arguments made to advance environmental policy and the state of knowledge
coming from climate science. Moreover, they argue for the systematic inclusion and quantifica-
tion of stochastic components in climate models as a way to make a substantive improvement in
predictive models from climate science, even though the “big picture” is quite settled. Palmer and
Stevens proposed modeling improvements that are well beyond the ambition of our work, but we
have a shared appreciation for explicit stochastic modeling. It is important for our uncertainty
quantification methods that we incorporate explicit randomness to partially disguise the model
ambiguity and misspecification from a decision-maker. We aim to enrich the policy discussions
by acknowledging rather than disguising uncertainty.

Our specification of damage function uncertainty can be motivated in part by “tipping points”
in the climate system. Consistent with our formulation, Sharpe and Lenton (2021) and Lenton
(2020), while noting that the “great majority of climate tipping points are damaging ones, and they
may be closer than is often assumed,” also present evidence for tipping points that open the door
to a far greener and less damaged economy. Lenton, then, highlights the need to comprehensively
study the uncertainty in such complicated, non-linear settings so that we can effectively risk-
manage positive and negative tipping points. Our example includes the possibility of good news
with the delay in the Poisson event realization. On the other hand, while we are illustrating an
important message for policy-making, our example is too simplistic to connect formally to tipping
point specifications and the resulting uncertainties.?

Hausfather and Peters (2020) noted that policymakers and researchers have increasingly des-
ignated scenarios as “business-as-usual” without good justification. The formal use of decision
theory allows for useful distinctions between adverse scenarios that are possible and best guesses
for decision-makers to trade off considerations between such projections.

In prior work, Rudik (2020) explored damage function uncertainty. He reviewed the extensive
literature on damage functions and developed a Bayesian learning framework about uncertain
damage function parameters together with an analysis of the effects of robustness concerns caused

by misspecification of the damage functions. Our formulation of damage function uncertainty

3See Lemoine and Traeger (2016) and Cai et al. (2016) for an example of an economic analysis with tipping
point uncertainty.



differs substantially from his because of our Poisson event that governs damage function steepness.
In our analysis, observations prior to this event are not informative about the damage function

curvature beyond a threshold yet to be attained.

3 Uncertain climate dynamics

In this section, we first describe some very tractable characterizations of cross-model variation in
the dynamic responses of temperature to emission pulses. To support our analysis, we then build

a simplified stochastic specification of the pulse responses.

3.1 Simple approximations to climate dynamics

Recent contributions to the climate science literature have produced low-dimensional approxima-
tions, emulators, and pulse experiments that provide tractable alternatives to full-scale Atmospheric-
Oceanic General Circulation Models (AOGCMs) used by climate scientists. These results allow
for the inclusion of climate models within economic frameworks in ways that can be informative
and revealing. We use the pulse experiment results of Joos et al. (2013) and Geoffroy et al. (2013)
across various carbon and climate dynamics models to build the set of models we will use in our
uncertainty analysis.?

Joos et al. (2013) report the responses of atmospheric carbon concentration to emission pulses
of one hundred gigatons of carbon for several alternative Earth System models. The emission
pulse experiments follow a standardized model intercomparison analysis so that outcomes are
directly comparable. We use the responses for nine such models to capture the variation and
uncertainty present in models of carbon cycle dynamics.

We feed these responses for carbon concentration into log-linear approximations of temperature
dynamics constructed by Geoffroy et al. (2013). In accordance with the Arrhenius (1896) equation,
these dynamics relate the logarithm of carbon in the atmosphere to future temperature. The
parameters that Geoffroy et al. (2013) constructed using their simplified representation differ
depending on the model being approximated. We use the 16 models listed in Appendix A.
Thus, we take the nine different atmospheric carbon responses as inputs into the 16 temperature
dynamics approximations, giving us a total of 144 different temperature responses to emissions.?

Figure 1 captures the resulting temperature responses across various sets of these 144 models.
The top panel provides the results based on all 144 models, the middle panel provides the results
based on variation in the carbon models, and the bottom panel provides the results based on

variation in the temperature models. In each case, the maximal temperature response to an

“See Seshadri (2017), Eby et al. (2009), Matthews et al. (2009), and MacDougall et al. (2017) for additional
examples of work in this area.

5Appendix A provides additional details on the emission pulse responses from Joos et al. (2013), the approxi-
mating model of Geoffroy et al. (2013), and lists the specific models we use from these two studies.
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Figure 1: Percentiles for temperature responses to emission impulses. The emission pulse was
100 gigatons of carbon (GtC) spread over the first year. The temperature units for the vertical
axis have been multiplied by ten to convert to degrees Celsius per teraton of carbon (TtC). The
boundaries of the shaded regions are the upper and lower envelopes. Top panel: percentiles for
impulse responses including both carbon and temperature dynamic uncertainty. Center panel:
responses obtained for the different carbon responses for nine models each averaged over the 16
models of temperature dynamics. Bottom panel: percentiles for the 16 temperature responses
using each averaged over the nine models of carbon concentration dynamics.



emission pulse occurs at about a decade and the subsequent response is very flat. These dynamics
are consistent with the response patterns featured by Ricke and Caldeira (2014).

The top panel of Figure 1 also reports the percentiles for each horizon computed using the 144
different temperature response functions from all the different combinations of models of carbon
and temperature dynamics. While there are similar patterns across the temperature response
functions, there is considerable heterogeneity in the magnitudes of the responses. For a further
characterization of this heterogeneity, we compute the exponentially weighted average of each of
these response functions and use them in our computations. We report the resulting histogram

as the top panel of Figure 2.
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Figure 2: Histograms for the exponentially weighted average responses of temperature to an
emissions impulse from 144 different models using a rate § = .01.

The eventually flat trajectories of the temperature response functions are consistent with
model comparisons made using what is called the transient climate response (TCRE) to CO,

emissions. The TCRE is the ratio of C'Os-induced warming realized over an interval of time to the



cumulative carbon emissions over that same time interval. This linear characterization provides a
simplification suggested by Matthews et al. (2009) and others by targeting the composite response
of the carbon and temperature dynamics instead of the components that induce it. MacDougall
et al. (2017) provide a pedagogical summary of this literature and report a histogram for the
TCRE computed for 150 model variants. Their histogram looks very similar to what we report
in Figure 2.

The middle and bottom panels of Figure 1 show the contribution of uncertainty in tempera-
ture and carbon dynamics to the temperature impulse responses. In generating the middle panel
of Figure 1, we computed the implied temperature responses for nine alternative models of atmo-
spheric COy dynamics averaging over the 16 models of temperature dynamics. In generating the
lower panel of Figure 1, we computed the 16 temperature responses for 16 temperature models
while averaging over the nine models of atmospheric COy dynamics. Consistent with the results
reported by Ricke and Caldeira (2014), we find heterogeneity in the temperature responses to be

more prominent than that coming from the atmospheric COs dynamics.®

3.2 Stochastic climate pulses

To explore uncertainty, we introduce explicit stochasticity as a precursor to the study of uncer-

tainty. We capture this randomness in part by an exogenous forcing process that evolves as:
dZt = ,U,Z(Zt)dt + O'Z(Zt)th

where {W; : t > 0} is a multivariate standard Brownian motion. We partition the vector Brownian

motion into three subvectors as follows:

wy
W= (W]

where the first component consists of the climate change shocks, the second component contains
damage shocks, and the third component captures the technology shocks. Consider an emissions
“pulse” of the form:

(ty - Zy) E (Odt + s - dWY)

where & is fossil fuel emissions and ¢, - Z = {t, - Z; : t = 0} is a positive process which we
normalize to have mean one. The ¢, - Z-process captures “left out” components of the climate
system’s reaction to an emission of & gigatons into the atmosphere while the ¢ - dW} process

captures short time scale fluctuations. We will use a positive Feller square root process for the

SRicke and Caldeira (2014) also consider separately two sources of temperature dynamics.



Ly - Z process in our analysis.
Within this framework, we impose the “Matthews’ approximation” by making the consequence
of the pulse permanent:
dYy = puy(Zy, E)dt + oy(Zy, &)W

where:

Throughout, we will use uppercase letters to denote random vector or stochastic processes and
lower case letters to denote possible realizations. Armed with this “Matthews’ approximation,”
we collapse the climate change uncertainty into the cross-model empirical distribution reported
in Figure 2. We will eventually introduce uncertainty about 6.

This specification misses the initial build up in the temperature response and instead focuses
exclusively on the flat trajectories depicted in the upper panel of Figure 1. We expect that this
error might be small when the prudent social planner embraces preferences that have a low rate
of discounting the future, but this requires further investigation. While others in climate sciences
find linear approximations to be relevant, we recognize the need for subsequent efforts to explore
systematically the potential importance of nonlinearities. Ghil and Lucarini (2020) is a thorough
review of climate physics at a hierarchy of temporal and spatial scales that embraces the inherent

complexity of the climate system.

Remark 3.1. For a more general starting point, let Yy be a vector used to represent temperature
dynamics where the temperature impact on damages is the first component of Y. This state vector
evolves according to:
dYy = AYydt + (vy - Zy) & (©dt + AWY)

where A 1s a square matriz and © is a column vector. Given an initial condition Yy, the solution
for Yy satisfies:

¢

Y: =exp (tA) Yo + J exp [(t — w)A] (¢y - Zu) Eu (Odu + W)
0

Thus under this specification, the expected future response of Y to a pulse at date zero is:
exp (ul) ©.

It is the first component of this function that determines the response dynamics. This general-
1zation allows for multiple exponentials to approximate the pulse responses. Our introduction of

a multiple exponential approximation adapts for example, Joos et al. (2013) and Pierrehumbert



(2014).7
As an example, we capture the initial rise in the emission responses by the following two-

dimensional specification

dy;t = Y2dt
dY? = —\Y2dt + N0&dt

which implies the response to a pulse is:
01 —exp(—At)] &

A high value of \ implies more rapid convergence to the limiting response 0&y. This approximation
1s intended as a simple representation of the dynamics where the second state wvariable can be

thought of as an exponentially weighted average of current and past emissions.®

Remark 3.2. The approximation in Geoffroy et al. (2013) includes the logarithm of carbon in
the atmosphere as arqued for by Arrhenius (1896) which is not directly reflected in the linear
approximation to the temperature dynamics that we use. The pulse experiments from Joos et al.
(2013) show a more than proportional change in atmospheric carbon when the pulse size is changed.
It turns out that this is enough to approximately offset the logarithmic Arrhenius adjustment so
that the long-term temperature response remains approzimately proportional for small pulse sizes.
See also Pierrehumbert (2014) who discusses the approzimate offsetting impacts of nonlinearity

in temperature and climate dynamics.

4 Uncertain environmental and economic damages

Discussions of climate change policy are often simplified to specifications of temperature anomaly
targets. For instance, many such discussions used a two degree anomaly as an upper bound
on the amount of climate change should tolerate. More recently, this target number has been
reduced to the point where numbers as low as a 1.5 degree anomaly should be entertained as a

target upper bound with warnings of potentially severe consequences once warming exceeds these

"See equation (5) of Joos et al. (2013) and equations (1)-(3) of Pierrehumbert (2014). Pierrehumbert puts the
change in radiative forcing equal to a constant times the logarithm of the ratio of atmospheric CO2 at date t to
atmospheric CO» at baseline date zero. His Figures 1 and 2 illustrate how an approximation of the Earth System
dynamics by three exponentials plus a constant tracks a radiative forcing induced by a pulse into the atmosphere
at a baseline date from the atmosphere works quite well with half lives of approximately six, sixty five, and four
hundred and fifty years.

8In independent work, Dietz and Venmans (2019) and Barnett et al. (2020) have used such simplified approx-
imations within an explicit economic optimization framework. The former contribution includes the initial rapid
upswing in the impulse response functions. The latter contribution abstracts from this. Barnett et al. instead
explore ways to confront uncertainty, broadly-conceived, while using the Matthews approximation.
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thresholds. There is considerable debate as to the scientific underpinnings of such thresholds.
Moreover, economic analyses have often introduced so called damage functions whereby economic
opportunities are reduced by global warming depending on the curvature of the damage function.
While damage functions are ad hoc simplifications that simplify the model solution and analysis,
there remains considerable uncertainty as to their steepness.

For purposes of illustration, we introduce explicitly stochastic models of damages. The speci-
fication includes an unknown threshold whereby the curvature becomes apparent. In some of our
computations, this threshold occurs somewhere between 1.5 and 2 degrees Celsius, but we also
explore what happens when this interval is shifted to the right. Under a baseline specification,
damage function curvature is realized in accordance with a Poisson event and an intensity that
depends on the temperature anomaly. The event is more likely to be revealed in the near future
when the temperature anomaly is larger. While we adopt a probabilistic formulation as a baseline,
we will entertain ambiguity over damage function curvature and potential misspecification of the
Poisson intensity. We intend our specification of the damage function to reflect that the value
of future empiricism in the near term will be limited as the climate-economic system is pushed
into uncharted territory. On the other hand, we allow for the damage function steepness to be
revealed in the future as the climate system moves potentially closer to an environmental tipping
point.

We posit a damage process, N; = {N; : t > 0} to capture negative externalities on society
1

ﬁtv
of the economy because of the impact of climate change. We follow much of climate economics

imposed by carbon emissions. The reciprocal of damages, diminishes the productive capacity
literature by presuming that the process N reflects, in part, the outcome of a damage function
evaluated at the temperature anomaly process. Importantly, we use a family of damage functions
in place of a single function. Our construction of the alternative damage functions is similar
to Barnett et al. with specifications motivated in part by prior contributions. Importantly, we

modify their damage specifications in three ways:
e we entertain more damage functions, including ones that are more extreme;

e we allow for damage function steepness to emerge at an exr ante unknown temperature

anomaly threshold;
e we presume that ex post this uncertainty is resolved;

We consider a specification under which there is a temperature anomaly threshold after which
the damage function could be much more curved. This curvature in the “tail” of the damage
function is only revealed to decision-makers when a Poisson event is triggered. As our model
is highly stylized, the damages captured by the Poisson event are meant to capture more than

just the economic consequences of a narrowly defined temperature movements. Temperature
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changes are allowed to trigger other forms of climate change that in turn can spill over into the
macroeconomy.

In our computational implementation, we use a piecewise log-quadratic function for mapping
how temperature changes induced by emissions alter economic opportunities. The Poisson inten-
sity governing the jump probability is an increasing function of the temperature anomaly. We
specify it so that the Poisson event is triggered prior to the anomaly hitting an upper threshold

7. Construct a process
_ Y; t<
Y, = ! ’
Y,-Y. +y t=71
where 7 is the date of a Poisson event. Notice that Y, = 7. The damages are given by
log Ny =T (Yy) + tn - Z4 (1)

where:

T — 72, 2 ﬁ _ 2
(y) = my + SVt 1>5(y —7)

and the only component of dWW pertinent for the evolution of ¢, - Z; is dW}*. Decision-makers do
not know when the Poisson event will be triggered nor do they know ex ante what the value of 3"
is prior to the realization of that event. At the time of the Poisson event, one of M values of 35"
is realized. In our application the coefficients 74" are specified so that the proportional damages
are equally spaced after the threshold .

The intensity function, J, determines the possibility of a jump over the next small increment
in time. For Y; = y, e¢J(y) is the approximate jump probability over small time increment e.
Equivalently, J is a local measure of probability per unit of time. In our computations, we use
intensity function

_)n(exp[Fy-»?]-1) oy
J(y)—{ 2 0 0<

as depicted in Figure 3. As J is increasing in y, jumps become all the more likely as Y; approaches
the upper threshold 7. This intensity depends on y, which we refer to as the lower threshold. We
set the values of (r,r2) so that the probability that the Poisson event is realized prior to Y; =7
is essentially unity. Thus, the uncertainty is concentrated for state Y in the interval [y,7]. We

use the intensity plotted in Figure 3 in computations that follow for y = 1.5 and y = 2.
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Figure 3: Intensity function, r; = 1.5 and ry = 2.5. With this intensity function, the probability of
a jump at an anomaly of 1.6 is approximately .02 per annum, increasing to about .08 per annum
at an anomaly of 1.7, increasing further to approximately .18 per annum at an anomaly of 1.8
and then to about one third per annum when the anomaly is 1.9.

The probability that the process has not jumped over the time interval [0,¢) is:

exp [— f: J (YT)dT]

so that a larger intensity makes the jumps more likely.

Figure 4 shows the range of damage function uncertainty that we impose in our computations.
Given our intensity specification, we expect the Poisson jumps to occur between 1.5 and 2 degrees
celsius. The upper panel shows the potential damage function quantiles when the jump is delayed
until a two degree temperature anomaly. These functions are all continuous extensions of initial
damage functions beyond 3. When a jump occurs at anomalies less than two, the damage functions
are steeper. This is illustrated in the lower panel, which shows the possible damage function
quantiles for temperature anomalies beyond the anomaly just prior to the jump. Earlier jump
dates imply steeper damage functions and are thus a form of “bad news.” In contrast, delayed

jumps are “good news.”

Remark 4.1. Our choice of y = 1.5 and y = 2 degree celsius thresholds for the temperature
anomaly is motivated by discussions in the climate science literature. Thus these damage functions
are more than economic responses to changes in temperature but also inclusive of potentially
dramatic environmental changes triggered by so called “tipping points.” Drijfhout et al. (2015)
provided a catalog of potential abrupt changes implied by projections from a variety of earth science
models. Motivated by such concerns about such changes, Rogelj et al. (2018) and Rogelj et al.
(2019) suggested a 1.5 degree temperature anomaly as a goal for limiting human damages of

climate system. As this goal may be unachievable, they point to a 2 degree target in line with
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the 2015 Paris agreement, while noting the increased danger of severe damages. While there are
concerns about temperature anomalies triggering these tipping points, Ritchie et al. (2021) used
recent developments in dynamical systems theory to argue that “the point of no return” for climate
thresholds is highly uncertain. As an external form of sensitivity analysis, we also report results
with the temperature threshold shifted to the right with y = 1.75 and §j = 2.25.

5 Model ambiguity and misspecification concerns

The model we have built so far is one in which uncertainty is captured by the stochastic specifi-
cation of shocks as is typical when building dynamic stochastic models in macroeconomics. We
think of this shock specification as characterizing risk. The presence of these shocks opens the
door to a comprehensive assessment of uncertainty in which we entertain a broader notion of
uncertainty. We include uncertainty over model specifications and parameters, which we refer to
as ambiguity. In this discussion, we treat models and parameters as synonymous by thinking of
each parameter as indexing an alternative model. As in our prior work, Barnett et al. (2020) and
Berger and Marinacci (2020), we are led to depart from the Bayesian approach which starts with
the specification of a subjective prior over the alternative models, but does not distinguish the
role of subjective probabilities over models from the probabilities given a model. Instead, we use
recent formalisms from decision theory under uncertainty to explore the impact of uncertainty
over the subjective inputs. Within statistics, this gave rise to robust counterparts to Bayesian
inferences in the study of prior sensitivity, often outside the realm of a specific decision problem.
The decision theory framework formalizes the question of “sensitivity to what?” and the formal
tradeoff between making best guesses versus possible bad outcomes as we look across models.
While in some settings, data richness may diminish the role of prior sensitivity, we find the eco-
nomics of climate change to be a problem whereby prior sensitivity remains an important question
for the decision-maker. Of course, any model we write down is necessarily a simplification. We
also incorporate concerns about the potential misspecification of the models under exploration
using ideas from robust control theory extended to dynamic economic models.

Our use of decision theory gives rise to a form of uncertainty quantification. Uncertainty
quantification in the sciences is typically done by researchers. For instance, we might ask how
the social cost of carbon differs as we change the modeling ingredients. But decision-makers also
confront this uncertainty, including ones inside the models that we build. Thus, model ambiguity
or misspecification concerns by decisions makers should arguably be taken into account when
determining the prudent course of action. This same uncertainty emerges as adjustments to the
social cost of carbon as set by say a benevolent social planner. Just like risk aversion can induce
caution in decision making, the same can be said of broader notions of uncertainty aversion. While

the decision theory that we use does not determine the magnitude of what this aversion should
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be, it reduces a potentially high dimensional sensitivity analysis to a much lower dimensional one
captured by low dimensional representations of uncertainty aversion.

We analyze this uncertainty using the formalism of decision theory under uncertainty. We
apply two versions of such theory, one comes under the heading of variational preferences and
the other under smooth ambiguity preferences. We adapt both to continuous-time specifications,
which facilitates their implementation and interpretation. We use this decision theory to reduce
the sensitivity analysis to a one or two-dimensional parameterization that locates the potential
misspecification that is most consequential to a decision-maker. Our aim is to provide a more

complete uncertainty quantification within the setting of decision problems.

5.1 State dynamics

Posing our model in continuous-time leads to a simplified characterization of robustness. When
constructing dynamic programming solutions, it is advantageous to represent the local dynamics
oV 0V

iy CE [V (Xer) = VX0 | X0 = 0)] =l ) - G (@) + gtrace | 20 (03 (0,0) |

() f V(@) - V(2)] Q(di | 2)
(2)

where ¥ is the diffusion matrix:
Y(z,a) = o(x,a)o(z,a)

and local exposure of X; to a multivariate standard Brownian motion is o(X;,a)dW;, Z is the
state dependent jump intensity, and Q(dZ | ) is the jump distribution conditioned on the process
jumping. Both the intensity and the jump distribution can depend on the current Markov state.
The first two contributions to the drift of V(X;) are familiar from Ito’s Lemma. We allow for
both p and ¢ to depend on a current action a. The baseline probabilities are the ones implied by
this stochastic process specification.

Given our interest in recursive methods, in what follows, we will describe in turn implications
for mis-specifying a Brownian motion, a jump process and an ambiguity adjustment for the local
mean of the dynamical system.? We introduce robustness by following the approach described
in Anderson et al. (2003) and model ambiguity by following the approach in Hansen and Miao
(2018).

9See Hansen and Sargent (2020b) and Cerreia-Vioglio et al. (2021) for decision theoretic discussions of the
distinct roles for model ambiguity and misspecification concerns.
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5.2 Misspecified Brownian increments

Following James (1992), Hansen and Sargent (2001) and others, the potential misspecification of
a Brownian motion has a particularly simple form. It is known from the famed Girsanov Theorem
that a change in distribution represented by a likelihood ratio replaces the standard Brownian
motion by a Brownian motion with a drift. Specifically, under such a change in probability dis-
tribution, dW; is changed from a Brownian increment to a Brownian increment with a drift or
local mean that can be state (or model) dependent, which we denote H;dt. Thus, to explore the
consequences of misspecification, we modify our (locally) normally distributed shocks by enter-
taining possible mean distortions. Allowing for arbitrary changes in the drift without a constraint
or a penalty, leads to an uninteresting and inflexible decision problem. Here we follow one of
the preference specifications in Hansen and Sargent whereby we use an expected log-likelihood
ratio measure of discrepancy called relative entropy to restrain the search over alternative possi-
ble drift specifications.'® For Brownian motion models, the relative entropy penalty is %T]Ht|2dt
where &, is the penalty parameter that governs the decision-maker’s concern for misspecification
and %|Hy|2dt is the local contribution to relative entropy.

Given our intention to use recursive methods, we characterize the impact that the Brownian
motion has for the state dynamics in terms of the local means for functions of the Markov state.
We allow for the probabilities implied by a multivariate standard Brownian motion to be modified
to include possible drift distortions. Equivalently, we introduce potential model misspecification

by replacing v by

A% &, oV 1 [0V _ [0V
- h)+ Zhh=— p———| (=
T oz (M+J)+2 ox 2&(033) (0:3) )
where the minimizing h is:
1,0V
h* - _ /177
&’ o

h is a drift distortion in the Brownian increment. This distortion is state dependent as reflected
by the partial derivative of the value function. The term %h’ h is the local measure of relative
entropy implied the local normality of Brownian motion. Large values of the penalty parameter

& induce small robustness adjustments.

5.3 Misspecified jump components

To specify a Markov jump process requires both a) a state-dependent intensity, Z, governing
the probability of a jump and b) the distribution Q(- | ) over the post-jump state given the

current jump state, x. Both of these could be mistaken. We capture potential misspecification

10This approach is a continuous-time version of the dynamic variational preferences of Maccheroni et al. (2006).
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by introducing positive functions g of the post-jump state

I(2) f V(&) - V(2)] 9(2)Qd7 | z)

The implied probabilities resulting from the concern about misspecification are given by

L
g(z)

and the implied intensity is given by g(x)Z(z) where

9()Q(dz | x)

9(x) = f 9(B)QUE | ).

Thus the choice of g determines both the jump probabilities and the jump intensities in a manner

that is mathematically tractable. The local relative entropy discrepancy for a jump process is:

I(2) f [1— g() + 9(8) log g(5)] Q(di | x)

This measure is nonnegative because the convex function g log g exceeds its gradient g—1 evaluated
at g = 1.

We make a robustness adjustment by solving;:

minZ(z) j V(F) — V(2)] 9()QUE | 7) + £, I(x) f [1— g() + 9(8) log g(2)] Q(di | =)

g

The minimizing g is given by

with a minimized objective given by

T

62 [ |1-ew (~ ¢ W@ - Vo) | Qs )

We use this outcome in place of the jump contribution

f V(@) — V()] QU7 | x)

in the local mean contribution for a continuous time Hamilton-Jacobi-Bellman (HJB) equation.
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5.4 Structured ambiguity

To assess the consequences of the heterogeneous responses from alternative climate models, we
use what are called recursive smooth ambiguity preferences proposed by Klibanoff et al. (2009).
For an important special case of these preferences, Hansen and Sargent (2007) provide a robust
prior/posterior interpretation of these preferences. This alternative interpretation has advantages
both in terms of calibration and representation of social valuation which we exploit in our char-
acterization. In deploying such preferences, we use a robust prior interpretation in conjunction
with the continuous-time formulation of smooth ambiguity proposed by Hansen and Miao (2018).

To assess the consequences of the heterogeneous responses from alternative climate models, we
follow Hansen and Miao (2018). Suppose that p(z,a | ) where 6 is an unknown parameter. In our
applications, 0 is the climate sensitivity parameter pertinent for the Matthew’s approximation.
Let 7w denote a subjective probability distribution over 8. For instance, this could be the cross
model distribution coming from the alternative pulse experiments reported in Figure 1. To justify
this distribution as a meaningful distribution from a decision-theoretic perspective requires that
all model outputs be treated as equally plausible. In Bayesian parlance, m would be a current
period posterior dependent on an initial prior and likelihood. The decision-maker does not have

in the full posterior and engages in a robust adjustment by solving

V(2. [ wtea 1 011@w(a0) + & [ 50)108 5O)m(an) (4)

min
15 F(O)m(do)=1 Ox

where f(0) is a density relative to a baseline probability 7. The minimizing f is

ol « ool (4) G nalo)]

where the right side requires scaling to be a proper relative density.!! The minimizing objective

~tog ([ew |~ (&) G @) ntaal0)] m(an))

T@) [ nwaloyr(a0

is

which replaces

in an HJB equation.

5.5 A valuation adjustment for uncertainty

There is much discussion in the literature on environmental economics about what discount rate

to use. In our analysis so far, there is a single discount rate used to define the preferences of a

HTn particular, the right-hand side needs to integrate to one over 6.
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fictitious social planner. But the discussions in the literature usually refer to present discounted
value formulas for marginal valuation. We represented the robust adjustments in terms of altered
probabilities which we compute in conjunction with the HJB equations used for optimization. As
Barnett et al. (2020) demonstrate, these same probabilities provide the uncertainty adjustments
for social valuation. Thus, to account for uncertainty, broadly conceived, we are pushed beyond
the question of what discount rate to use because the necessary adjustment is most conveniently

depicted as an altered probability measure.

5.6 Other approaches to uncertainty quantification across models

We briefly discuss three prior forms of uncertainty quantification as it pertains to unknown pa-
rameters or models. We give these as illustrations, but the list is by no means exhaustive.

Olson et al. (2012) propose and implement a Bayesian method for making inferences about
certain parameters of interest, including a climate sensitivity parameter coming from the UVic
(University of Victoria) earth system climate model. They document posterior sensitivity of the
climate sensitivity parameter to priors and other unknown modeling inputs. In particular, they
show the need to use an informative prior for climate sensitivity to obtain reasonable results,
therefore demonstrating the posterior uncertainty in their informative statistical investigation.
While not the focal point of their analysis, there is additional uncertainty in the likelihood con-
struction. These forms of uncertainty are pertinent not only to researchers presenting evidence,
but also to decision or policy makers in their efforts. Thus, we move the uncertainty quantification
“inside the decision problem,” including the sensitivity analysis. This allows us to explore the
impact of model or parameter ambiguity for choosing socially prudent emissions trajectories and
imputing the implied social cost of carbon.

In an alternative investigation of uncertainty within and across climate-economic models,
Gillingham et al. (2018) and Nordhaus (2018) computed distributions of model outcomes given a
priori distributions of parameters, specifications and model inputs, including emissions pathways.
From their analysis, they are able to produce a set of outputs associated with each parameter or
model configuration to demonstrate the role of uncertainty in their setting. Their static analysis
occurs “outside the decision problem,” but it opens the door to exploring changes in the prior
probability distribution without a systematic analysis of the sensitivity. Our framework uses
recursive methods and decision theoretic tools to determine endogenously prudent choices of
emissions over time and the implied social cost of carbon trajectories when the policy maker
confronts prior ambiguity. Policy outcomes include endogenous feedbacks and dynamic impacts on
the social cost of carbon, and, importantly, an adjustment for uncertainty that is either unresolved,

or only resolved well into the future.'?

2See Lemoine and Rudik (2017) who provided a related commentary, arguing why recursive methods from
economic dynamic can open the door to important extensions in climate economics including parameter learning.
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In a third approach, Hassler et al. (2018) conducted an analysis of uncertainty by comparing
policy outcomes across two parameter intervals, one pertaining to damages and another to climate
sensitivity. Instead of putting a probability distribution over parameters, they evaluate policy
outcomes at the extreme points of the parameter space. Their analysis can be thought of as a
simple illustration of robust decision making allowing for arbitrary probabilities over the unknown
parameters and is a revealing starting point to the policy problem they investigate. Our analysis of
the policy problems is explicitly dynamic and imposes probabilistic restraints on the probabilities
that could be assigned over a potentially large set of alternative model configurations. The
dynamic decision theory formulation we use collapses our resulting sensitivity analysis to a low

dimensional representation in terms of ambiguity and misspecification aversion parameters.

6 Social cost of carbon

The social cost of carbon (SCC) is intended to be the expected discounted value of future en-
vironmental and economic damages induced by carbon emissions during the current period. In
the special case in which socially efficient allocations are used, the wedge between the discounted
social costs and market prices determines the Pigouvian taxes that support the efficient allocation
in the presence of the environmental externality provided that the socially efficient emissions are
positive.!® More generally, the SCC is a decidedly local measure applicable to marginal changes
in policy. Since the SCC can be represented as an expected discounted value, we draw on insights
from asset pricing to explore the implications of uncertainty.

To place our research in a broader context of environmental economics, we draw on a recent
report from the National Academies of Sciences, Engineering and Medicine (2017), which featured

a four-step modular approach to measuring the SCC. We quote from the executive summary:

The committee specifies criteria for future updates to the SC — COs. It also rec-
ommends an integrated modular approach for SC' — COs estimation to better satisfy
the specified criteria and to draw more readily on expertise from the wide range of
scientific disciplines relevant to SC' — COs estimation. Under this approach, each step
in SC — COy estimation is developed as a module — socioeconomic, climate, dam-
ages, and discounting — that reflects the state of scientific knowledge in the current,

peer-reviewed literature.

Nordhaus (2018) noted the inability of his framework to address such endogenous feedbacks and unresolved uncer-
tainty, and also pointed out the potential value to using the type of recursive methods we employ in our analysis
as a way to address such issues.

13As Cai and Lontzek (2019) noted and encountered in some of their simulations, when emissions hit a zero
constraint, the SCC may reflect a desire for negative emissions while Pigouvian taxes are needed only to reach the
zero emissions outcome.

1YWe use units of carbon as opposed to COs in our computation, which is in effect a different choice of units.
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The report goes on to argue:

In addition, the committee details longer-term research that could improve each mod-

ule and incorporate interactions within and feedbacks across modules.

The modularization has the advantage of compartmentalizing different ingredients to the SCC
estimation. Perhaps this is a valuable shortcut, but as we will argue, it misses or disguises
contributions to valuation that we take to be central. This is especially true once we seek to
formally integrate uncertainty into the analysis. In what follows, we will use recursive methods
from control theory and economic dynamics to expose some of the considerations missed or treated

inconsistently by the modular approach.

6.1 Impacts of marginal changes in emissions

For pedagogical (and computational) simplicity, we consider a highly stylized problem in order to
pose some important conceptual challenges. We suppose a single policy maker with a dynamic
stochastic objective, but, importantly, we will not suppose that the emissions are set in a socially
optimal way. We suppose that the control A; includes emissions & as its last entry and that this
control can be expressed as an invariant function of the state vector X;. The invariance is imposed
for simplicity, but the dependence on the state vector will be important in what follows. Even if
we are dubious about whether the emissions will approximate a socially efficient outcome, we wish
to allow for some policy responses whereby future emissions depend on, say, the magnitude of the
temperature anomaly or on economic damages that emerge in the future. We allow both damages
and the temperature anomaly to be components of the state vector X;. An efficient social planner
would certainly do this, but the feedback of emissions onto endogenous state variables can occur
much more generally. A more complete analysis would impose a specific market structure and
impose explicit constraints on the policy maker recognizing the implied market responses. The
plausible assessments of exogenous scenarios arguably have such considerations in the background,
but as we will see their formal presence can have an important impact on the construction of the
SCC.

Consider the following recursive formulation of social valuation posed in the absence of model

ambiguity or misspecification aversion:

2
0=—0V(z)+U(z,a)+ p(z,a)- g‘;(x) + %trace [ai(;;/(a:)E (z, a)/}
1) [ V@) - V() Q| 2 (5)

where ¢ is the subjective rate of discount used by a fictitious social planner, the control is defined

as a = ¢ (x), and U is the instantaneous contribution to the planner’s continuation value function
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V. This relation is a version of a Feynman-Kac equation with a jump component. Intuitively,
it says that the instantaneous utility contribution, U, should exactly offset the local mean of the

discounted continuation value process.

6.2 A discrete-time representation

For a measure of the net benefits (or minus net costs), we deduce the marginal impact of an addi-
tional unit of emissions into the atmosphere. Although we will derive continuous-time formulas,
we start with a discrete time approximation with € as the gap between time points. Heuristically,

we aim to evaluate the ratio of
MV, = e—IE [Z exp (—05€) U (Xttje, Arrej) | gt] (6)

to the marginal utility of a numeraire consumption good at a date ¢t = je for some integer j. We
include he € on the right side of (6.2) to view this expression as a Reimann sum approximation

of an integral over time. Express

o0
MW = GT&E [Z 66] (Xt+j57At+j5> | gt]
o0 oU o ou
= ¢k (;) exp(—dje) [aa(XHje, At+j6)%(Xt+j6) + %(Xtﬂ'm AHJ’G)] Ritje | St)
and dX
o t+je
Ryt je dE,

is the random response of the future state vector X;, ;e to an emissions pulse & at date t. This
discounted expected value is expressed in utility units and becomes the social cost of carbon once
we divide by the marginal utility of the consumption numeraire. For linear dynamics, as is well-
known from impulse response theory, R;;yje,j = 0,1,2,... will not be random. More generally,

there are well known methods for characterization of nonlinear impulse responses for diffusions.!®

6.3 Two forms of impulse responses

As we have seen, impulse responses are inputs into the SCC computations. We consider two
alternative formulations of these responses, including one that is common in scenario analysis and

another that is familiar in dynamic stochastic equilibrium theory.

158ee, for instance, Borovicka et al. (2014) for a pedagogical treatment of nonlinear impulse response functions
for diffusions and related computations pertinent for valuation. The calculations relate closely to two well-known
mathematical tools, the method of characteristics and Malliavin differentiation.
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It is common to run “scenarios” through climate-economic models. Prominent examples in
climate science are the Representative Concentration Pathway (RCP) scenarios which are typically
specified as exogenous paths of atmospheric carbon over time. See, for example, Zickfeld et al.
(2013) (Figure 1), for the four main RCP’s for carbon concentration. In generating these and
other scenarios, the emissions or the atmospheric carbon trajectories are treated as an exogenous
input and not as something that is determined endogenously by the model. Such scenarios are
helpful in understanding temperature dynamics and making cross-model comparisons without
attempting to complete or close the dynamical system. We call these functions “scenario response
functions” (SceRF’s).

In contrast, for a completely specified dynamical system, emissions and atmospheric carbon
trajectories are determined endogenously. As these variables may feedback onto the state of the
dynamical system, there are alternative impulse responses that take into account this endogeneity.
We call these “system response functions” (SysRF’s). These impulse responses are also the ones
pertinent to represent the SCC when the full climate-economic model has a recursive represen-
tation of emissions as a function of the Markov state. These latter impulses are commonly used
when depicting the implications of dynamic stochastic equilibrium models. In what follows, we
will represent both forms of impulse responses.

For simplicity, we will abstract from the jump components, although there are direct extensions

to the more general case in which they are included in the analysis.

6.3.1 Exogenously specified scenarios

Consider first a SceRF. We suppose a block recursive structure for the dynamics:

dXt = /L(Xt, At)dt + O'(Xt, At)th
dX; = u(X)dt + 7(X¢)dWy (7)

and

Ay = P(Xy)

where X; includes states used to represent climate dynamics and environmental or economic

damages. We rewrite the first equation block in this system as:

dXy = p[Xe, p(Xy)]dt + o[ X, ¥(Xy)]dW;

to represent the Markov dynamics in the composite state vector (X;, X;). Under this specification,
the response X;,, to an emissions pulse is zero.
In this setting, alternative scenarios are alternative specifications of (jz,,). We construct

the response functions by introducing emissions “pulses” at an initial time period.
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6.3.2 Endogenous emissions

Suppose that the full state dynamics are captured by:
dX; = ,LL(Xt, At)dt + O'(Xt, At)th

where

A = P(Xy).

A special case of this is when 1) is computed as the solution to a fictitious social planner’s problem.

We represent the state dynamics as:
dXy = p[Xy, P(Xy)]dt + o[ Xy, (X)) |dW,

This specification allows for emissions to depend on the Markov state vector, including endoge-
nous states that capture temperature anomalies or other forms of climate change and economic
damages. A marginal change in emissions at date ¢ induces marginal changes in emissions in
future time periods because of some form of policy or market response. Suppose, for instance,
that economic policies that influence carbon emissions adapt to temperature anomalies in the fu-
ture. This will consequently alter the marginal impact of emissions today on future temperature
anomalies in ways that are missed by treating emissions as fully exogenous. For instance, when
we study a social planner’s problem, emissions feed back on the temperature anomaly and mute
the response of the temperature anomaly relative to the flat response featured in the Matthew’s
approximation.

This endogeneity illustrates the “interactions within and feedbacks across modules” mentioned
in the National Academies of Sciences, Engineering and Medicine (2017) report that should be

embraced in a “longer-term research” agenda.

6.3.3 Hybrid approach

A third approach is a hybrid of the first two. It borrows a well-known idea from macroeconomic
dynamics sometimes referred to as “big K little k.” Consider a pre-specified 1 giving the feedback
of a = ¢(x). Suppose that X; = X; as an equilibrium outcome. Write the dynamical system as
in (7) where

We impose the initialization: X = Xo. A hypothetically small emissions pulse alters marginally

the trajectory of X;,, but not that of X;,,. While this approach imposes internal consistency
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along an equilibrium path, this consistency is not imposed in the perturbation leading to a different
computation of the SCC. On the other hand, the exogenous scenario is constructed in a manner
that is consistent with an endogenous policy response. As part of the equilibrium, this approach
takes account of future market or policy responses when assessing plausible scenarios in a manner

that is internally consistent while preserving the exogenous perspective of an emissions scenario.

6.4 Markov solutions

We explore Markov solutions for the second two approaches as the first one, in an unconstrained
manner, seems hard to defend from a dynamical systems perspective. For the marginal change
in emissions, we are led to differentiate the right-hand side with respect to emissions. e, and to

evaluate the derivative at e = ¥(y):

2
MV (@) =5 [ bta)] + G 0) - 2 fobla)] + jrace| £ @5 Slovt@l]| - ®)

where V' solves equation (5). Recall that e is the last entry of the current period action a. Given
our continuous-time specification, MV (X;) is a per unit time measure of the marginal impact of a
change in emissions. Under a social planner’s solution MV (x) = 0, unless the emissions solution
is at a boundary.

This same logic can be modified when we proceed under the prospective of an exogenous
emissions scenario. Now, the value function V' depends on both = and # and satisfies a Feynman-
Kac equation that is the analog to (5). A marginal change in e is presumed to only impact x.

The formula for the net benefit in the current state is now:

_ oU. —_ - vV o

MYV (z,T) Z%[x,w(x)] + 87($,i‘) 5 [x,@(f)]
1 2V 2V o  _
+ §trace ([a;a‘f 6(;026% ] (.TU,T)%E [x,:r,zﬂ(x)]) .
0xor’  0xoT’

where a = 9(%) and

While under the hybrid approach X; = X4, it will typically be the case that:
MV (z,x) # MV (x).

This follows because of the differences in the implied responses to emissions pulses.
While MV or MV are the net benefits (benefits minus costs), the separation of the two

components depends on the details of the planner’s problem, as we will illustrate in some example
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economies.

6.5 Uncertainty adjustment

To accommodate ambiguity and misspecification aversion, we introduce minimization into the
construction of the value function using the approaches described in Section 5. The outcome of this
minimization gives an uncertainty adjustment for valuation, which is conveniently represented as
a probability distribution. This probabilistic adjustment emerges because of our choice to include
uncertainty “inside” the decision problem. Just as external researchers confront uncertainty, so
do policymakers. The discounting module in the National Academies of Sciences, Engineering
and Medicine (2017) misses this uncertainty adjustment. Since the outcome of the minimization
depends on uncertainty in both the climate dynamics and the damage function specification,
this identifies important linkages between the different modules that are missed by the simplistic
discount rate sensitivity analyses often featured in the environmental economics literature. While
the choice of § is important, so is the decision-maker’s aversion to ambiguity and potential model

misspecification.

Remark 6.1. It is well-known in the macroeconomic literature when using aggregate consump-
tion as a mumeraire for the purposes of marginal valuation that the subjective rate of discount
is augmented with a growth adjustment that depends in part on the elasticity of intertemporal
substitution. Relatedly, in the macroeconomic-asset pricing literature, investor risk aversion al-
ters discounting by making it stochastic. The discounting depends on the exposure of the cash
flow being discounted to aggregate risk. Cai et al. (2017) include both of these considerations in
their treatment of the SCC. Our calculations extend these insights by constructing probabilistic

adjustments for model ambiguity for social valuation.

Next, we show how to make the uncertainty adjustment for valuation that incorporates ro-
bustness to model ambiguity and potential misspecification. We modify the construction of MV,
but the adjustment to MV is entirely analogous. To incorporate uncertainty, we modify the
Feynman Kac equation (5) by incorporating a minimization problem. Formally, the equation

(5) now becomes a Hamilton-Jacobi-Bellman equation pertinent for continuous-time discounted
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dynamic programming solutions with minimization:

0=
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where a = 1(z). We then use this value function solution in equation (8) to construct an uncer-
tainty adjusted version of MV .16

We next consider three example economies: the first features damage function uncertainty and
its resolution; the second features a novel uncertainty decomposition that incorporates robustness
to model ambiguity and misspecification; the third investigates the impact of uncertain advances
in the availability of less carbon-intensive technologies. While our methods for making uncertainty
adjustments for the SCC are more generally applicable, in all three cases, we feature emission
trajectories that are outcomes of social planning problems. While highly stylized, each of the

three examples illustrates novel impacts of uncertainty.

7 Uncertain damages

Our first example features how the perceived unraveling of uncertainty about economic and en-

vironmental damages influences prudent decisions.

7.1 Capital evolution

We consider an AK technology for which output is proportional to capital and can be allocated
between investment and consumption. Capital in this specification should be broadly conceived
to include human capital or intangible capital. Suppose that there are adjustment costs to capital
that are represented as the product of capital times a quadratic function of the investment-capital
ratio.

As a modeling construct, we first consider “undamaged” counterparts to consumption, output

and capital. Abstracting from damages, capital evolves as:

I

. It K 2 k
dK; = K, [M}C(Zt)dt + <I(t> dt — 5 <I(t> dt + O'k(Zt)th ] ,

Tncluding parameter learning requires additional state variables that serve as sufficient statistics for the un-
known parameter vector 6 under the base probability specification.
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where K; is the capital stock and I; is investment. The capital evolution expressed in logarithms

we(Z) + ( L ) - <It>2] P L0 o (Zy)dWF.

is:

legKt = E 5 Kt B

We let consumption, C%, and investment, I;, sum up to output, which is proportional to capital:
Ct + It = OéKt.

Next, we consider environmental damages. We suppose that the damage process that we
depicted previously shifts proportionately consumption and capital by a multiplicative factor.
For instance, the damage adjusted consumption is 5} = %, and the damage adjusted capital is
R-

t N

Without uncertainty aversion, preferences for the planner are time-separable with a unitary

elasticity of substitution. The planner’s instantaneous utility from “damaged consumption” and

emissions is given by:

(1—mn)logCy + nlog &
= (1 —n)(log Cy —log K;) + (1 — n)(log Kt — log N;) + nlog &

where we will denote the subjective rate of discount used in preferences as §. We can think of
emissions and consumption as distinct goods, or we can think of Cy as an intermediate good that
when combined with emissions determines final consumption.

Given this formulation of the model, there are two noteworthy simplifications that we exploit

in both characterizing a solution to the planner’s problem and solving it numerically.

Remark 7.1. The model, as posed, has a solution that conveniently separates. We may solve
two separate control problems: i) determines “undamaged” consumption, investment and capital
it) determines emissions, the temperature anomaly and damages. It is the latter one that is
of particular interest. Undamaged consumption, investment and capital are merely convenient

constructs that allow us to simplify the model solution.

Remark 7.2. We obtain a further simplification by letting:
E=E (- Z).

We use EN} as the control variable and then deduce the implications for &;.

Remark 7.3. In this illustration, the costs of emissions are given solely by the environmental and
economic damages. In our previous research, we followed Bornstein et al. (2017) and Casassus

et al. (2018) by including reserves as a state variable that can be augmented by an investment in
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new discoveries. See Barnett et al. (2020). While this richer specification has more substantive
interest, the emissions costs implied by this technology were quite small relative to social costs
induced by damages. For this example, we dropped this additional state variable to simplify further

our characterization of the uncertainty implications.

Remark 7.4. As Anderson et al. (2003) note, there is a preference equivalence between a concern
for model misspecification and risk aversion in the recursive utility formulation of Kreps and
Porteus (1978) and Epstein and Zin (1989) when there is a unitary elasticity of substitution as
we have assumed here. Our macroeconomic model, by design, can capture what is called “long-run
risk” in the macro-finance literature in the absence of climate change. See Bansal and Yaron
(2004). The long-run risk literature explores the valuation consequence of growth rate uncertainty
using a recursive utility model of investor preferences. The preference specification presumes a
full commitment to the baseline probabilities, but the rationale for this commitment appears to
be weak when confronting specific forms of growth rate uncertainty. The long-run risk literature
often imposes a seemingly large risk aversion parameter that arguably can look more plausible when
reinterpreted as a concern of model misspecification. In what follows, we will impose &. = 5 as our
largest value. The implied risk aversion under recursive utility is twenty one, which is certainly
large but typically not dismissed as too large in the empirical literature on long-run risk. The
Brownian drift induced by a robustness concern is quite sizable for the counterpart adjustment to the
consumption/capital dynamics. Borrowing and updating a specification of growth rate uncertainty
of Hansen et al. (2008), Hansen and Sargent (2020a) fit a simple consumption/capital model to
aggregate data designed to measure macroeconomic growth-rate uncertainty. Their model is the
undamaged version of the model we pose here, with two shocks. One shock is to the stochastic
process for growth rate productivity, and the other is an independent shock to only the capital
productivity. These shocks imply two of the consumption shocks in Bansal and Yaron (2004).7

The implied drift distortions for the stochastic capital evolution are:

B [—.715] productivity growth rate shock distortion
—.170

capital productivity shock distortion.

Given the relative magnitudes of the adjustments, it is the growth uncertainty channel that is of
particular importance to the decision-maker. Since .715 is large in comparison to the unit standard
deviation of the shock, one might dismiss our choices of &. as being too extreme.

While we find the comparison between misspecification and risk aversion in the presence of

growth rate uncertainty to be revealing, an uncomfortable feature of the long-run risk formulation

" These shocks imply two of the consumption shocks in Bansal and Yaron (2004). Bansal and Yaron also include
a shock to stochastic volatility that we abstract from here and consider implications for changing the intertemporal
elasticity of substitution.
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in the macro asset pricing literature is that the long-run risks are a “black box.” In what follows,
we will step back from the dual interpretation of risk aversion and abstract from misspecification
implications for the undamaged consumption or capital evolution. The implied Brownian motion
distributions for the climate dynamics will turn out to be considerably smaller than the growth

rate shock distortion reported here.

7.2 HJB equations and robustness

We now describe our approach to solving the model and incorporating concerns about robustness
and ambiguity aversion. The uncertainty that we consider has a single jump point after which the
damage function uncertainty is revealed. This leads us to compute continuation value functions
conditioned on each of the damage function specifications. These continuation value functions
then are used to summarize post-jump outcomes when we compute the initial value function. We
describe the Hamilton-Jacobi-Bellman (HJB) equations for each of these steps in what follows.
Some further details about the computations and and parameter settings are provided in Appendix
B.

7.2.1 Post-jump continuation value functions

We first compute the value functions pertinent after the Poisson event that reveals that the
damage function curvature is realized. While the damage specification uncertainty is resolved
with this event, there remains climate model uncertainty.

The state variables are the temperature anomaly, and the exogenous Brownian uncertainty.
Recall that after the Poisson event, the argument of the function I' is Y; = Y; — Y, + 7, where
7 is the date of the Poisson event. We abuse notation a little bit by letting y denote a potential
realization of Y;. Since —Y, + ¥ is time invariant post-jump, both Y; and Y; share the same
increment. Moreover, Y, = 7, which is a pertinent boundary condition for the post-jump value
functions.

We solve the optimization problems for the continuation value functions ¢,, conditioned on
each of the damage functions, m = 1,2, ..., M. The ¢,,’s are then computed conditioned on each of
the damage functions, m = 1, 2, ..., M. Because the optimization problem is well-posed whenever
y = 0, we only care about the range in which y > 7. In our computations we use twenty equally
spaced values for 3"

In formulating the HJB equation, we include robustness considerations as described in Section
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5 where £, and &, are penalty parameters. The HJB equation conditioned on a ¢y, is given by:

0 =maxmin min  — ¢, (y) + nloge
€ h w3 we=1
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In this calculation, the 7,’s are the climate model probabilities, and the w,’s are the alternative
probabilities that we consider when making a robust adjustment. A jump happening in the
model is equivalent to an increase in y to . After a jump, the model follows one of the m damage
specifications with y reinitialized at the threshold. For computational purposes, the ¢,,(7)’s are a
fixed set of numbers imposed in the HJB computation. For a given w and h, the minimization over
€ has a quadratic objective and can be solved quasi-analytically. For a given €, the minimization
problem for h is quadratic and can also be solved analytically. Similarly, the minimizing w,’s

satisfy:

1 [dénm(y) . - 1 L
ot wtew (— | oo+ T by by o - e )

The expression on the right side requires scaling in order that the resulting wj;’s sum to one. We
exploit the resulting formulas in our recursive computations. We solve (9) for the M continuation

value functions that we use in our analysis.

7.2.2 Pre-jump value function

The pre-jump value function has a similar structure with two exceptions: i) we include the
intensity function discussed earlier and ii) we introduce robustness concerns for both the intensity

and distribution over the alternative 75" coefficients. Given these modifications, we include:

Tm (1 —9m + gm IOggm) Tm,
1

P M=

M
j(y) Z ImTm [¢m(y) - ¢(y)] + gr‘j(y)
m=
in the HJB equation and to minimize with respect to the non-negative g,,’s. The continuation

value functions ¢,, are all evaluated at y = ¥ in this HJB equation pertinent for the pre-jump

analysis. This occurs because immediately after a Poisson event is triggered, the damage function
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I" is evaluated at the threshold point 3.

We now illustrate the impact of uncertainty about the magnitude and timing of damages from
climate change along with uncertainty in the carbon-temperature dynamics.

Our specifications of aversion to climate model ambiguity and damage function misspecifica-
tion are expressed in terms of the two penalty parameters, £, and &.. We use these parameters
to restrain the search over alternative probabilities. The outcome of this search is an uncertainty
adjusted probability measure that is of interest for two reasons. First, it shows implied probabil-
ities that are most problematic to the decision-maker. Should these appear to be too extreme,
then the penalization used in the decision problem is not severe enough. This type of inspection
follows common practices for robust Bayesian methods following the proposal of Good (1952).
Second, these altered probabilities provide an adjustment for social valuation implied by model

ambiguity and misspecification uncertainty.

7.3 Robust adjustments to climate model uncertainty

For the 144 carbon-climate dynamic models, we take as our baseline probabilities an equal weight-
ing of all of the models. While it is straightforward to explore a whole family of values for &,,
in the calculations that follow, we set £, = .01. To determine whether or not this is a reason-
able choice of £, to use in our analysis, we examine the implied distortion to the probability
distribution of 8, values resulting from our choice as compared to the baseline prior probability
distribution. Both the original prior probability distribution (red histogram) and the distorted
probability distribution (blue histogram) of 6, values are given in Figure 2. The increased concern
about uncertainty over the geo-scientific inputs leads to a shift to the right in the 8, probabil-
ity distribution, highlighting increased concerns about worst-case climate dynamics, while still
maintaining a spread in the weights on the values of 6, and not loading all the weight on the
far right tail. We, therefore, view this shift in the distribution as reasonable to entertain. The
implied mean distortion is about 0.26 for the unknown parameter #. While the concerns about
geo-scientific uncertainty are state-dependent, the distortion in the probability distribution for
remains roughly constant over the course of our simulations.

There is an additional mean shift in this temperature distribution that is induced by misspec-
ification concerns. This shift is negligible for &, = 5 and only about .07 for &, = 1. Its impact
is much for substantial for the low penalty, & = 0.3 with an implied mean shift of about 0.23.

These distortions show very little sensitivity to the state dynamics.
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Figure 5: Histograms of climate sensitivity parameters. The red histogram is the outcome of
equally weighting all 144 climate models. The blue histogram is the outcome of the minimization
in the recursive formulations of our social planners problem.

7.4 Robust adjustments to damage function uncertainty

We next consider the penalty parameter &, that governs concerns about misspecifying the Poisson
jump process, including both the jump intensity and the probability distribution conditioned on
a jump. Recall that we use this process to capture uncertainty of the steepness in the damage
function and timing of when this steepness becomes known to the decision-maker. This uncertainty
is only pertinent prior to the realization of the Poisson event. We report results for three different
values of this parameter &, = 5,&, = 1,£, = .3 in Figure 6. The distorted histogram for the lowest
value, & = .3, is arguably extreme, although the other two choices seem considerably harder to

dismiss.
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Figure 6: Distorted probabilities of damage functions. Baseline probabilities for damage functions
are 1/20 (red bars), and the blue bars are robust adjustments to the probabilities induced by
model misspecification concerns (left panel: & = 5, center panel & = 1, right panel: & = 0.3).
These histograms are the outcome of recursive minimizations. These distortions are close to being
constant as the temperature anomaly increases up to the Poisson jump date.

Finally, in Figure 7, we display the probabilities that a jump will occur prior to the specified
dates along the socially efficient trajectory for emissions. Again, we impose & = 1. The jump is
pretty much assured to happen by about one hundred years out, at which point the temperature
anomaly is 2 degrees Celsius. On so-called “business as usual” trajectories, the jump probabilities

will converge to one much more quickly than what is displayed in this figure:

1.0
0.8
0.6
0.4 1

0.2 1

0.0

Years Years

Figure 7: The left panel shows the probabilities that a jump will occur prior to the date given on
the horizontal axis. The right panel shows the simulated pathway for the temperature anomaly
and the points where the anomaly reaches y = 1.5 and § = 2.0 (black dashed lines).

7.5 Emission and anomaly trajectories

To show the effects of concerns about damage function uncertainty on policy decisions of the

planner, we explore the behavior of emissions for different amounts of aversion to uncertainty. In

35



Figure 8, we report the pre-jump control laws for € as a function of the temperature anomaly, and
vy, for three values of &, in Figure 8. While the e, in contrast to €, also depends multiplicatively on
the exogenous state vector, it is the dependence of the temperature anomaly that is of particular
interest. For comparison, this figure also includes the control law for € when the planner has
full commitment to the baseline probabilities. We confine the domain of the control laws to
temperature anomalies between 1.1 and 1.5 degrees Celsius. After the temperature anomaly
reaches 1.5, the probability of a jump occurring becomes non-zero.

As we see, even in advance of gaining more information about damage function curvature,
the fictitious planner embraces a substantial level of precaution due to the concerns about the
unknown future damage state. In light of uncertainty concerns, the control law for emissions
is about twenty percent lower when &. = 1 than the control law based solely on the baseline
probabilities. We also see that, as the value of &, is decreased, the caution is amplified and the
choice of emissions is lowered even further. It follows that the emission trajectories for the lower

control laws necessarily reach the y = 1.5 threshold later starting from a common initial condition.
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Figure 8: Emissions as a function of the temperature anomaly for different penalty configurations.
The thresholds are y = 1.5 and ¥ = 2.0. We limit the domain of the function to be 1.1 — 1.5
because for larger temperature anomalies the Poisson event may be realized.

While the 1.5 and 2 degree thresholds have dominated much of the policy discussion, there
is debate as to the extent to which these are firmly backed up by evidence. For this reason, in
Figure 9 , we report the consequences of shifting the thresholds we use in our computations to

y = 1.75 and § = 2.25. The results for emissions are very similar, except that in comparison to
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Figure 8, the control laws are shifted to the right as should be expected because of delay in when

the more extreme damage function curvature is manifested.
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Temperature anomaly

Figure 9: Emissions as a function of the temperature anomaly for different penalty configurations.
The thresholds are y = 1.75 and § = 2.25. We limit the domain of the function to be 1.1 —1.75
because for larger temperature anomalies the Poisson event may be realized.

Returning to our original specification, when the temperature anomaly reaches values of y €
[y, 7] = [1.5,2], the Poison event revealing the full damage function will at some point be realized.
Once it is revealed, the emissions trajectories will jump to either a higher or a lower level depending
on how much damage function curvature is realized. We report the initial emissions, post-jump, in
Figure 10 as a function of «3 governing the curvature of the damage function for large temperature
anomalies. Importantly, this function is highly convex. The realization of a very low damage
function curvature is good news for the planner, resulting in an increase in emissions in contrast
to many of the other damage function specifications that could be realized. For the damage
functions with even a little more curvature, there is a large reduction in emissions as reflected in
the steep slope of the function of optimal emissions choices for small values of v3. The emissions
choices are increasingly more concentrated at similar values for higher curvature, as seen in the

much flatter slope for the larger values of .
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Figure 10: Emissions choices, conditioned on a jump having occurred, for different realized damage
function parameters 3 upon realization of the jump.

7.6 Temperature anomalies

Given the probabilistic nature of the Poisson event, the emissions and resulting temperature
anomalies behave probabilistically, even abstracting from Brownian motion risk. While the plan-
ner has uncertainty about these probabilities, we find it revealing to report the distributions under
the baseline specification. We show the implied temperature anomaly distributions conditioned

1.18 We extend the simulation out one hundred

on the Poisson event being realized in Figure 1
years to ensure that the no jump probability is essentially zero. The vast majority of temperature
anomaly values are less than the 2.0 degree threshold, though there is a small right tail going
beyond that and a small right peak leading up to it. This relatively constrained distribution of
temperature anomalies is driven largely by the initial caution exercised by the planner and the
continued caution for most of the damage function realizations. A small fraction of realizations
of the damage function curvature parameter 3 result in higher temperature anomalies than 2.0
degrees because the planner is willing to increase emissions after the Poisson event reveals “good

news.”

18The number of outcomes in the histograms is determined by the number of values of 44*, which is twenty, and
the time discretization used in the simulation.
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Figure 11: Histogram of possible temperature anomaly values for the scenario where &, = 0.01,
& = 1. The temperature anomaly values are for year 100. The simulation is done under the
baseline probabilities and abstracts from the Brownian motion shocks.

7.7 Social cost of carbon

We use the SCC of carbon evaluated at the socially efficient trajectory as the barometer for the
economic externality induced by climate change. The planner equates marginal social costs and

benefits of emissions. We represent the marginal benefits in units of damaged consumption so

that: N
SCC, = 77(Ct> _ n(C) _

(1—17) (a) (1—mn) (N) &

where the right-hand side variables are evaluated along the socially efficient trajectory. Taking

logarithms, we get:
log SCCy = logn — log(1 — n) + (log Cy — log Ny) — log &

As we noted previously, “undamaged consumption” evolves in a manner consistent with a long-run
risk model familiar from macro asset pricing. The logarithm of consumption grows stochastically
along a linear trajectory with variation increasing approximately linearly over the growth horizon.

Our focus instead will be on the behavior of:

logn —log(1 —n) — (log ]\th> —log&;. (10)
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where log N, excludes the exogenous stochastic contribution to log N;, which is common across
our specifications of the robustness parameter &,.. The variation of this measure over time depends
entirely on the temperature anomaly trajectory prior to reaching the lower threshold y. In the
figures that follow we report this dependence.

Since emissions depend on the temperature anomaly, under the planner’s solution there is an
important distinction between the SceRF and the SysRF discussed in Section 6.3. The SceRF
for the temperature anomaly behaves in accordance with the Matthew’s approximation whereby
emissions today have a permanent impact on the future temperature anomaly. The SysRF in-
corporates the dependence of emissions on the temperature anomaly, and it is the SysRF that
is embedded in the SCC computation for the social planner’s problem. While this dependence
is a direct outcome of the planner’s problem, more generally the plausibility of future emissions
trajectories should be tied to the potential policy responses as we experience the impact of climate
change.

To deduce the emissions contribution, we differentiate the HJB equation (9) with respect to é

and solve for g:

dp(y) < LoWy), 5. (1—1) 2 _
:_dyy;wwz_ (dy)yz s|%é + 577 (71+72y);wz9£+72|€2€ (11)

™3

for 0 < y. For the planner’s problem, since marginal benefits are equated to marginal costs, we
may use either side of this equation to measure the emissions contribution to the SCC.

Figure 12 shows the log SCC for the baseline case of &, = o0, &, = o0 (red line), and three cases
of increasing concerns about damage function uncertainty: & = 5 (green line), & = 1 (yellow
line), and & = 0.3 (blue line) where £, = .01 for all three cases. The results use the socially
efficient emissions trajectories for the different values of &.. The log SCC values are calculated
using formulas (1) and (11). In Figure 12, we see substantial values of the log SCC in each case.
The magnitudes are amplified as we increase concerns about damage function misspecification (by
decreasing the value of &.). In particular, as a function of the temperature anomaly, the SCC for
& = 1 is between and twenty and thirty percent higher than when we abstract from robustness
concerns. Although not reported here, changing the thresholds to be y = 1.75 and y = 2.25
effectively shifts the curves in Figure 12 degrees to the right with a corresponding smaller SCC

at the initial temperature anomaly of y = 1.1.

7.8 Summary

In this example economy, the social planner adopts an emissions policy that is cautious at the
outset even though considerably more information about potential damages will be available in the

future. The damage function uncertainty is resolved by a single Poisson event that becomes more
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Figure 12: log(SCC) as functions of temperature anomaly under different penalty configurations.
The SCC is state-dependent, and we focus on the domain for which the anomaly is less than 1.5
degrees. The values in logarithms are translated by the initial period logarithm of consumption.

likely the larger the temperature anomaly. Once this event is realized, there is an asymmetric
response. For a small fraction of the damage functions with the most modest curvature, emissions
immediately increase. These are “good news events” and are determined endogenously within
our model. For a much larger fraction of damage function specifications, the emissions responses
continue to be modest, although the magnitude of these responses depend on the curvature of the
damage function that is revealed. The implied social costs of carbon increase by about twenty
percent due to the combined damage function and carbon-climate model uncertainty prior to
the realization of the Poisson event. This impact can be larger or smaller depending on the
social planner’s aversion to ambiguity and model misspecification. While acknowledging the
simplified nature of the model used for our computations, our results demonstrate the importance
of accounting not only for different uncertainty channels, but also for the information dynamics

when designing optimal climate policy.

8 Uncertainty decomposition

An advantage to the more structured approach implemented as smooth ambiguity is that it
allows us to “open the hood” so to speak on uncertainty. We build on the work of Ricke and
Caldeira (2014) by exploring the relative contributions of uncertainty in the carbon dynamics

versus uncertainty in the temperature dynamics. We depart from their analysis by studying the
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relative contributions in the context of a decision problem and we include robustness to model
misspecification as a third source of uncertainty. This latter adjustment applies primarily to the
damage function specification. We continue to use the social cost of carbon as a benchmark
for assessing these contributions. We perform these computations using the model developed
in the previous section, although the approach we describe is applicable more generally. For
the uncertainty decomposition, we hold fixed the control law for emissions, and hence also the
implied state evolution for damages, and explore the consequences of imposing constraints on
minimization over the probabilities across the different models.

Recall that we use climate sensitivity parameters from combinations of 16 models of tem-
perature dynamics and 9 models of carbon dynamics. A parameter § corresponds to climate-
temperature model pair. Let © denote the full set of L = 144 pairs, and let P; for j = 1,2,...J
be a partition of the positive integers up to L. The integer J is set to 9 or 16 depending on
whether we target the temperature models or the carbon. For any given such partition, we solve
a constrained version of the minimization problem (4) by targeting the probabilities assigned to

partitions while imposing the benchmark probabilities conditioned on each partition.

. ov Jf )
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are the baseline conditional probabilities for partition j. We only minimize the probabilities across
partitions while imposing the baseline conditional probabilities within a partition.

We impose &, = o0 when performing this minimization and let £, = .01 as in section 7. We
perform additional calculations where we let . = 1 and £, = o0 in order to target damage function
uncertainty rather than temperature or climate dynamics uncertainty.!® The two states in our
problem are z = (y,n), and we look for a value function of the form V(y,n) = é(y) + @n
while imposing that é = €(y). For each partition of interest, we construct the corresponding HJB
equation that supports this minimization.

Since we are imposing the control law for emissions but constraining the minimization, the
first-order conditions for emissions will no longer be satisfied. Recall formula (8) from section 6
with adjustments for uncertainty. In the absence of optimality, the net benefit measure MV (x) is

not zero with the minimization constraints imposed. Consistent with the SCC computation from

9While the robustness adjustment also applies to the climate dynamics, as we saw in the previous section, this
adjustment was small relative to the ambiguity adjustment.
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the previous section, we use
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for our cost contributions in the SCC decomposition.

We obtain the smallest cost measure when we preclude minimization altogether while solving
for the value function and the largest one when we allow for full minimization with & = 1 and
&, = .01. We have three intermediate cases corresponding to temperature dynamic uncertainty,
climate dynamic uncertainty and damage function uncertainty. The smallest of these measures
corresponds to a full commitment to the baseline probabilities. We form ratios with respect to
the smallest measure, take logarithms and multiply by 100 to convert the numbers to percentages.
Importantly, we change both probabilities and value functions in this computation.

We report the results in Figure 13. From this figure, we see that the uncertainty adjustments
in valuation account for twenty to thirty percent of the social cost of carbon. The contributions
from temperature and carbon are essentially constant over time with the temperature uncertainty
contribution being substantially larger. The damage contribution is initially below half the total
uncertainty, but this changes to more than half by the time the temperature anomaly reaches the

lower threshold of 1.5 degrees Celsius.
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Figure 13: Uncertainty decomposition for the logarithm of the marginal value of emissions (scaled
by 100). These computations impose &, = .01 and &, = 1. The figures report log differences be-
tween marginal values of the different components relative to baseline probability counterparts.
The uncertainty partitions account separately for temperature dynamics ambiguity, carbon dy-
namics ambiguity and robustness to damage function misspecification.

Remark 8.1. The uncertainty decomposition we implement depends on the underlying emissions
trajectory we impose. For the reported computations, we used the planner’s solution for when
all uncertainty components are considered. Since our planner cares about uncertainty, robustness
considerations lead our planner to avoid excessive exposure to uncertainty when possible. In our
particular setting, with uncertainty aversion, the planner will prefer to avoid being vulnerable to
damage function uncertainty, which can be achieved in part by delaying when the potentially steep
slope of the damage function becomes operative. Yet, the exposure components of uncertainty can
look very different for, say, business-as-usual trajectories of emissions or even socially optimal
trajectories of emissions that do not incorporate concerns about uncertainty. Thus, our decom-
positions are of potential interest for emissions trajectories other than those chosen as part of a

solution to an uncertainty averse planner’s problem.

9 Carbon abatement technology

While the model posed in section 7 illustrated how the unfolding of damages should alter policy,

the economic model was not designed to confront transitions to fully carbon-neutral economies.
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There have been several calls for such transitions with little regard for the role or impact of
uncertainty. We now modify the model to allow for green technology in decades to come.

We next consider a technology that is close to the Dynamic Integrated Climate-Economy
(DICE) model of Nordhaus (2017). See also Cai et al. (2017) and Cai and Lontzek (2019) for a
stochastic extension (DSICE) of the DICE model.2’ For our setting, we alter the output equation

from our previous specification as follows:

I Cy Ji
-+t =+ =«
K, K, K,
where:
&t 0 &t
e Jad [1 - (aAth)] aki ) S M (12)
Kt 0 Oéél‘t(t 2 )\t

To motivate the term J;, express the emissions to capital ratio as:

where 0 < ¢4 < 1 is abatement at date t. The exogenously specified process A gives the emissions
to output ratio in the absence of any abatement. By investing in ¢, this ratio can be reduced,

but there is a corresponding reduction in output. Specifically, the output loss is given by:
Jt = OéKtﬁ(Lt)g

Equation (12) follows by solving for abatement ¢; in terms of emissions.2! The planner’s prefer-

ences are logarithmic over damaged consumption:
log C; = log Cy — log N; = (log Cy — log K;) — log Ny + log K.

In contrast to the previous specification, the planner’s value function for this model is no longer
additively separable in (y, k), although it remains additively separable in log damages, n.

For the purposes of illustration, we consider two “Poisson events” that reduce both (¢, \¢), rep-

20 Among other stochastic components, the DSICE incorporates tipping elements and characterizes the SCC
as a stochastic process. From a decision theory perspective, DSICE focuses on risk aversion and intertemporal
substitution under an assumption of rational expectations.

21 The link to the specification used in Cai and Lontzek (2019) is then:

Ot = A\t
P =014
0 = 02
Mt = Lt
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resenting technological innovations that decrease the cost of abatement and improve the emissions-
to-output ratio. The first jump cuts (¢, A¢) in half, and the second jump sets (J¢, Ar) = (0,0),
indicating a transition to a purely carbon-neutral economy. Both events have the same constant
intensity, which we set so that the expected arrival time is twenty years. The stochastic specifi-
cation of damages remains the same as in the previous models. Not surprisingly, these two new
Poisson events change substantially our calculations. In our discussion that follows, we highlight
a few of the important differences.

The penalty parameters &, and &, are not necessarily transportable across the different models.
Instead, it is sensible to loosen the penalty settings for more complicated economic environments
to achieve probability distortions of comparable magnitudes. In our calculations, we increased
&, = .02, making the implied distorted distribution for the climate sensitivity parameter similar to
the one we computed for section 7. We again explore three settings for the robustness parameter
(& = 2.5,5,7.5), and we explore which of the three Poisson events is of most concern to the social
planner. Appendix C provides more detail about the parameter values we use and the approach
to computation.

Figure 14 shows the baseline jump probabilities and along with the implied distorted proba-
bilities for the three robustness settings. Since the second technological jump necessarily follows
the first, the probabilities reported in the middle panel take as a starting point, the date at which
the first technology advance is realized. Comparing the probabilities across the different plots,
it is clear that the probabilistic specification of the first green technology advance is of the most
concern to the planner. In particular, when we set &, = 2.5, the probability slanting is arguably
extreme implying probabilities that are about seventy percent lower than the baseline probabil-
ities. But even when &, = 5, there is about a twenty-five percent reduction in the probabilities
relative to the baseline. The reductions are notably smaller for the other two Poisson events.
Given the prospect of advances in green technology, damage function uncertainty concerns are
less concerning to the planner than the technological uncertainty. Notice that in this economy,

the technological advancements make it much more plausible to avoid the more severe damages.??

22To provide further confirmation of this interpretation, the initial emissions are a little higher for this model
than the ones from section 7 that are depicted in Figure 9. They now range between 6.9 and 8.1, depending on the
value of &,.
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Figure 14: Distorted probability of the Poisson events for technology changes and damages under
different penalty configurations. The simulation uses the planner’s optimal solution. The left panel
shows the distorted jump probabilities for the first technology jump. The middle panel shows the
distorted jump probabilities for the second technology jump. The right panel shows the distorted
jump probabilities for the damage function curvature jump. The baseline probabilities for the
right panel are computed using the state dependent intensities when we set &, = &, = .

Figure 15 reports the probability distortions for the damage function and climate sensitivity
models. Here, we have imposed &, = .02 and &, = 5.0. Note that the damage function probability
distortions are relatively modest, consistent with our previous discussion. The climate model

distortions, by design, are of similar magnitude as those reported previously in Figure 5.
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Figure 15: Distorted probabilities of damage functions and climate models. These computations
impose &, = .02 and & = 5.0. Baseline probabilities are given by the red bars, and the blue
bars are robust adjustments to the probabilities induced by model uncertainty concerns. The
left panel shows the damage function probabilities and the right panel shows the climate model
probabilities. The histograms are the outcome of recursive minimizations with the distortions
calculated at year 40 of the simulation.

To summarize, it is the probability of the first technological advance that is of the biggest
concern to the social planner. In particular, uncertainty in the environmental and economic
damages induced by climate change is now less problematic given the potential advances in green

technology.
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The possibilities of technological improvements appearing sometime in the future together
with the extra ability to mitigate emissions by paying a cost dampens the strong precautionary
behavior of the fictitious planner that we found before. This finding points out the importance
of adding an R & D sector for the development of more productive green technologies and to
open the door to policies that subsidize these sectors as has been explored in other studies.??
Since R & D investments can be highly speculative, the methods in this paper would allow for an

investigation of the consequent uncertainties in addition to the ones explored here.

10 Denouement

We draw our paper to end by taking inventory on what we see as the valuable messages. During
the course of writing and presenting this paper, we have received a variety of comments, some
of which have helped us set the stage for future research, and others that are based on a po-
tential misunderstanding about where our research is positioned relative to other discussions of

prospective emissions and the social cost of carbon.

10.1 Quantitative storytelling

We have used highly stylized models to help us better understand how uncertainty should impact
prudent policymaking. There are two interrelated reasons for the stylized nature of our exercise:
one is to preserve tractability, and the other is to ensure that mapping from model inputs to
conclusions is transparent. The models we use in this paper have obvious flaws and limitations,
but the resulting analyses are intended to point to where more ambitious models might contribute
to the knowledge base.

Calibrating such highly stylized models is a bit like walking on a tightrope. We want the
findings to have credibility, with results that are not driven by perverse or extreme parameter
settings. But the models we are parameterizing deliberately omit elements of both the climate and
economic dynamics. We view this research as an initial step in what we hope will be a research
agenda that will become even more substantively ambitious as we explore increasingly complex

dynamic models and the associated uncertainties.

10.2 SCC

Our choice in this paper to feature solutions to planners’ problems has important ramifications
for interpreting our measurement of the social cost of carbon relative to the modular approaches
that we discussed previously. As we noted, others have also featured planners’ approaches in

part motivated by the Pigouvian approach for taxing externalities. The planner’s solution pins

#See, for instance, Acemoglu et al. (2016).
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down the contingency rule for emissions expressed in terms of the Markov states. Since the
planner internalizes the impact of carbon emissions on damages, this has important ramifications
for emissions trajectories and the SCC measured as a shadow price of emissions relative to a
consumption numeraire. For instance, even the lower bound temperature anomaly y where the
damage function jumps begin to occur in our analysis will not be crossed for somewhere between
fifty and seventy-five years when simulating this path going forward for our first model. This
pushes the potentially extreme damage realizations far into the future relative to say, “business-
as-usual” trajectories. The SCCs are substantial relative to other computations based on solutions
to planners’ problems and made larger because of the explicit adjustments for model ambiguity and
robustness to potential misspecification. Recall that our approach to uncertainty quantification
results in a two-parameter characterization depending on the two forms of aversion. While we
reported sensitivity to misspecification aversion in the paper, we show the impact of additional
concerns about model ambiguity in our accompanied notebook. Increasing ambiguity aversion in
ways that are arguably plausible increases further the uncertainty contribution to about thirty-five
percent. But these are for an illustrative model with no backup or green technology, the inclusion
of which would alter substantially both the emissions trajectory and the SCC. In fact, this is what
happens in the second model we consider. An interested reader can see these additional results
and others in an online notebook we constructed to supplement this paper.2* We mention such
numbers to convey that the planner in our examples is responding aggressively to climate change,
but such numbers are not good candidates for numerical values to post on EPA webpages because
of the preliminary and stylized nature of the models including the uncertainty inputs into the
computations.?’

While there is path uncertainty in our model because of shocks that impinge on the dynamical
economic system, our approach does not include the multiple exogenous scenarios and accompa-
nying uncertainty across the scenarios that are part of the modular approaches. The practical
connection of the computation of the SCC computed from a social optimum to taxation is limited
because it ignores the presence of other taxes and other constraints on policymaking including
cross-country coordination. Nevertheless, in our view, the socially efficient allocation remains
interesting as a benchmark to compare with existing policy outcomes. Within this context, we
find the SCC to be a revealing barometer for the importance of uncertainty.

As explained in NYSERDA and RFF (2021) and elsewhere, the modular approach advocated
by some for the purposes of regulation is local in nature. It is computed as a local or a small

change around an existing allocation. While perhaps suggestive, this approach does not quantify

240ur online notebook, which includes these supplemental results and the code used to derive our model solutions,
is available at https://climateuncertaintyspillover.readthedocs.io/en/latest/.

25 As readers of Koonin (2021) and of the challenges by climate scientists to some of its claims such those noted in
Mills et al. (2021), we expect rather heterogeneous views about plausible uncertainty bounds to use in quantitative
investigations like ours.
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the impact of global changes in policy. As this local construct of an SCC is also forward-looking, it
depends on the prospective future emissions and the damages that they might induce. The actual
computations depend on emissions scenarios. These are alternative emission pathways, typically
imposed exogenously. The differences in the socially efficient emissions process and the array
of emission scenarios can have an important impact on the SCC calculation. The treatment of
uncertainty for this local approach typically a) is static in nature, b) presumes, at least implicitly,
a priori probabilities across a small array of scenarios, and c) is outside the decision problem.
The outcome is a histogram of SCCs instead of an SCC that incorporates uncertainty. Thus, this
local construct of the SCC is very different from the one used in our paper, all the more so given
common implementations.26

The methods we describe could be applied to local measures of the SCC, provided that emis-
sions scenarios be specified recursively in ways amenable to the application of dynamic program-
ming methods. Importantly, there is more to discounting than the choice of a single constant
discount rate. As featured in Barnett et al. (2020), these uncertainty adjustments can be most
conveniently represented as a change in the probability measure used for evaluation. These types
of adjustments lead naturally to important interactions in the components of the commonly
employed modular approach. SCC measurements designed to incorporate uncertainty within a

decision-making or policy-design framework cannot be easily modularized.

10.3 Damage functions

Our damage function specifications, like many other ones in the integrated assessment literature,
should be taken with a “grain of salt” so-to-speak. They are ad hoc primarily to support tractable
illustration. As we mentioned previously, Pindyck (2013) and Morgan et al. (2017) raise valid
points about the quantitative implications of integrated assessment models (IAM’s) in part be-
cause of the ad hoc nature of the damage functions. Most recently, Carleton and Greenstone
(2021) have a valuable discussion of what is missed by this approach and the need to incorporate
a broader range of empirical evidence. To incorporate such evidence in an internally consistent
manner would require much more elaborate models than the ones we have used here. Such efforts
would also be accompanied by a rather substantial degree of model uncertainty.

Our specification of damage possibilities included thresholds that could trigger more extreme
damages. This formulation is intended to include contributions from environmental tipping points
as well as reductions in economic opportunities, which adds to the challenge of how to bound

uncertainties in meaningful ways. Productive discussions of our work, while still in progress,

26The National Academies of Sciences, Engineering and Medicine (2017) report suggests investigating sensitivity
to discount rates. With discount rates as low as two percent, some of the scenario paths must be projected far out
into the future to compute present discounted values. It is well known that present-value calculations can be highly
sensitive to assumptions about the distant future. Of course, recursive methods do not escape this challenge but
address it by positing dynamic evolutions rather than paths.

50



included important reminders that the announced thresholds such as a 2 degree or 1.5 degree
anomaly have been set as rather arbitrary policy guides and are not firmly grounded with scientific
evidence. We find our probabilistic use of such thresholds coupled with robustness concerns to be
revealing, but there is little doubt that further modeling and measurement would strengthen the
analysis.

> or formal limits on the

Many recent policy discussions have focused on “carbon budgets,’
cumulative amount of C'O, emissions that should be allowed in the future based on specific
temperature thresholds. While carbon budgets allow for simplicity in communication, they are
hard to defend in the presence of uncertainty as to the timing and magnitude of temperature
responses to carbon emissions. A temperature threshold can be viewed as a very special type
of damage function whereby losses are negligible prior to reaching the threshold and very severe
(infinite) after the threshold is crossed. But, again, uncertainty about the transition dynamics for
future temperature changes as they respond to current emissions requires a commitment to capture
capture carbon in the atmosphere to avoid exceeding the threshold. Though we have already
noted the somewhat arbitrary nature of a single temperature threshold, we could approximate
socially efficient responses to such a threshold within the framework of our models. This could be
done by restricting the upper and lower temperature thresholds to be the same and embracing a
steeply curved damage function. The embracing of a single steeply curved damage function could
emerge formally as part of a robustness response to damage function uncertainty. Specifically, it
could be viewed as the outcome of an extreme form of robustness where degenerate bounds have
been placed on the probabilities over the alternative specifications for damage function curvature.
Thus, a simple extension to our analysis could approximate a single temperature threshold decision
criterion.

Previous commentaries have expressed valid modeling concerns about how to capture adap-
tation to climate change. As adaptation is inherently a dynamic process, to accommodate it in a
meaningful way requires both evidence and a model to interpret the evidence while opening the
door to an additional source of model uncertainty. Private sector adaptation to climate change is
an important extension of ours in other analyses, but we should also expect policies to adapt to
observed changes in the environment that partially resolve the damage function uncertainty. A
modular approach that treats uncertainty in emissions trajectories to be independent of damage
function uncertainty seems ill-conceived, once we take a more dynamic interactive perspective.
Such considerations suggest that sensitivity analyses in the specification of baseline probabilities
of the type that we propose would be a revealing way to addressing this potential dependence.

Our model of damage function “learning” is purposefully simplified to illustrate some impor-
tant points. The stark way in which information is revealed is no doubt extreme, but one needs
only to read the recent IPCC Sixth Assessment Report to see claims that observed damages to

climate are speeding up our ability to learn about climate change. In our example economy,
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in spite of the one-shot nature of the learning, the social planner adopts caution in advance of
becoming more fully informed about damage functions. It is too costly to delay action until after
the uncertainty is resolved. Also, there is an asymmetric response to the revelation of the damage
function curvature. As with any form of rational learning, there is a potential for good news. In
this case, the good news is that there might be less damage function curvature than was feared.
In our computations, this news response is only really notable for a small portion of the good
news realizations. Our purpose in this example is to illustrate the potential importance of going
beyond what some in environmental economics, such as Nordhaus (2018), call “learn, then act,”

and instead to incorporate informational dynamics into the analysis.

10.4 Technology

One concern from our model is the use of a Cobb-Douglas specification and the energy input share
of fossil fuels that we use with that specification. As in Barnett et al. (2020), we use empirical
estimates of the energy input share from Finn (1995), adjusted by the approximate proportion
of fossil fuel energy consumption, for our value of the energy input share of fossil fuels. This
parameter value allows us to match the optimal emissions choice for the solution to the model
without climate impacts to the annual emissions of 10 GtC/yr measured by Figueres et al. (2018).
In addition, the value is similar to the mean value for the fossil fuel income share found recently
by Hassler et al. (2019). Importantly, even with this energy share value, uncertainty is still of
first-order importance. Larger energy input share values would serve to amplify the importance
of uncertainty for the SCC.

While the Cobb-Douglas specification allows us to simplify the computations and exploit
numerically value function separability, a flaw in this specification is that it allows for the planner
to reduce energy usages freely without incurring any abatement costs. Our second model follows
the DICE literature by introducing explicitly abatement into the production technology whereby
output is reduced when deviating from a fixed proportions technology. This allows us to further
evaluate the impacts of uncertainty when adjusting carbon emissions is somewhat costly. This
model opens the door to more interesting discussions of technological change and exploring the
impact of greener technologies that might arrive in the future. As there is uncertainty about the
arrival of cleaner technologies, this model includes an additional channel whereby uncertainty has
an important impact on the analysis.?”

Each of the models we presented was designed to “tell an interesting quantitative story.” While
we explored the uncertainty within each setup, we could have had our decision maker entertain

both models simultaneously as possibilities. Instead, we find it more productive to push further

2TIn contrast to our earlier work, Barnett et al. (2020), and some other contributions to the climate-economics
literature, we also abstracted from production or resource extraction costs for fossil fuels. This was done for
pedagogical simplicity since these costs are typically internalized in the productive process.
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the computational boundaries in studying a more ambitious model of technology with interesting

special cases.

11 Conclusion

In many dynamic settings, our understanding of the true underlying model relevant for economic
decision-making is limited because existing evidence is weak along some important dimensions.
As a result, the design and conduct of policy occurs in settings in which policy outcomes are
uncertain. We offer the economics of climate change as an example, but there are many others.
We turned to decision theory under uncertainty to serve as a guide for how we conduct uncertainty
quantification as it contributes to the design of policy. Furthermore, we showed how different forms
of uncertainty impact our quantification, how information about environmental and economic
damages revealed in the future influence current policies, and how different sources of uncertainty
contribute to the SCC in the presence of model and ambiguity and misspecification concerns.
Our analysis in this paper is made simpler here by posing the resource allocation problem
as one faced by a single policy maker or social planner. To push closer to a realistic policy
setting, multiple decision-makers come into play, including alternative policy makers as well as
private sector consumers and investors. Since these different agents confront uncertainty from
different perspectives, their uncertainty concerns are expressed in different ways. Moreover, in
more realistic policy settings, political constraints prevent first-best solutions. While we fully
appreciate the need to extend our analysis of uncertainty to address these modeling challenges,
we have little reason to doubt that the uncertainty considerations should remain as first-order

concerns and not be shunted to the background as they often are in policy discussions.
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Appendix A Carbon and Temperature Model Sets

As mentioned previously, we use 16 models of temperature dynamics from Geoffroy et al. (2013)
and nine models of carbon dynamics models from Joos et al. (2013). We briefly describe the
model experiments used in these papers, list the models we include in our analysis, and provide
details for the reader to find additional information about these models and model experiments.

Geoffroy et al. (2013) approximates the temperature dynamics of 16 different models using a
two-layer energy-balance model (EBM) to study properties of atmosphere-ocean general circula-
tion models (AOGCMSs). Table 1 lists the model name for each of the 16 models used in their
and our analysis and direct the reader to Geoffroy et al. (2013) and Seshadri (2017) for additional
details about each of the models.

The Geoffroy et al. (2013) EBM model uses the following specification:

dTs

Csﬁ =F — ")/Ts — EX(TS — TO)
d1°
& (TO TS

F =535 (log COy — log 002)

where T is the surface temperature, T° is the ocean temperature, COy is atmospheric carbon

dioxide, and C'Os is the preindustrial benchmark. The construction of F' comes from the “Arrhe-

nius” equation (Arrhenius (1896)). The EBM model is solved for explicit solutions, calibrated to
fit the responses of 16 AOGCMs that participated in the CMIP5, and then validated by using
the AOGCM responses to the linear forcing experiments of one percent of COs per year. The
parameters they estimate in this simplified representation differ depending on the model used in
the calibration of the approximation, providing a measure of the heterogeneity and uncertainty
present in models of temperature dynamics. We use this specification along with Geoffroy et al’s
estimates of the 16 temperature dynamics models in our simulations to capture the carbon-to-
temperature component of climate model uncertainty.

Joos et al. (2013) use a carbon cycle-climate model intercomparison analysis to study the
impulse response time-scales of Earth System models. From their analysis, we use the impulse
response functions of nine models based on a 100GtC emission pulse added to a constant C'Os
concentration of 389 ppm.?® All of the models we use are Earth System Models of Intermediate
Complexity, except for the reduced form model Bern-SAR. We list the model name for each of the
models used in our analysis in Table 2 below. We direct the reader to Appendix A in Joos et al.

(2013) for detailed descriptions of these and other models used in their intercomparison analysis.

28We thank Fortunat Joos for graciously providing the data for these and other response experiments on his
website: https://climatehomes.unibe.ch/~joos/IRF __intercomparison/results.html.
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Temperature Dynamics Models
BCC-CSM1-1
BNU-ESM
CanESM2
CCSM Carbon Dynamics Models
CNRM-CM5 Bern3D-LPJ (reference)
CSIRO-Mk3.6.0 Bern2.5D-LPJ
FGOALS-s2 CLIMBER2-LPJ
GFDL-ESM2M DCESS
GISS-E2-R GENIE (ensemble median)
HadGEM2-ES LOVECLIM
INM-CM4 MESMO
IPSL-CM5A-LR UVic2.9
MIROC Bern-SAR
MPI-ESM-LR
Table 2: List of carbon dynamics models from Joos et al.
MRI-CGCM3 (2013) used in our analysis.
NorESM1-M

Table 1: List of temperature dynamics
models from Geoffroy et al. (2013) and
Seshadri (2017) used in our analysis.
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Appendix B Value Function Components for Section 7 Model

In Section 7, we discussed a climate economics HJB equation in the state variable y. This HJB
equation uses a quasi-analytical simplification for the damages state n of the form ¢(y) — %n,
which derive using the “guess and verify” method. This is part of a larger system that can
be solved with two additional subsystems of equations. The three subsystem solutions, when

combined, give a solution to the composite HJB equation of the planner.

B.1 Climate economics system parameters

Parameter Value

¢ [2.23 0 0]

" .000177

Yo .0044

g A3ml) m=1,2,...,20
i .032

) .01

Table 3: Climate economics system parameters

To understand better the implications of the ¢ specification note that for a constant emissions path,
the implied standard deviation associated with the coefficient of the Matthew’s approximation is

446 at twenty five years, .315 for fifty years and .223 for one hundred years.

B.2 Consumption-capital dynamics

The undamaged version of the consumption capital model, by design, has a straightforward so-
lution. We use the “guess and verify” method to derive a solution for this subsystem, guessing a

value function of vy logk + ((z). The HJB equation for this component is:

0 =maxmhin —0 [vklogk + ¢(2)] + (1 —n) [log (o — 7) + log k] + %]h\z

Uk(22)|2]

+ vy, [,uk(z) yi-Z (i) + op(2)'h —

2
2
G0 [-(2) 01 ] + Gorace o) 235 (1)

From this equation, we derive the constant scaling the capital component of the value function

v, and can see that it must be )
VE = ;T,

J
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Solving for the first-order conditions, we see that the first-order condition for h is

&b + opur + O'Z% =0,
0z

and the first-order conditions for the investment-capital ratio is

—(1-=mn) <1> + oy (1 — ki) = 0.

o —1

Notice that the equation for the optimal h is therefore

1 oC

and that the investment-capital ratio is constant. While there are two solutions for the first-order
conditions for ¢, only one is positive. In our illustration we set = .115 and k = 6.667.

The solution for h will be state dependent if we allow for o, or o, to depend on z or if
there is nonlinearity in the drift specifications. Such dependence is common in the macro finance
literature as a form of stochastic volatility. In the computations that follow, we will abstract from

this dependence and impose linear dynamics for z. We impose that
pr(z) = —.043 + .04 (e - 2)

and
oy = .01 [.87 .38] AWk

where dWF is a two dimensional subvector of the Brownian increment vector dWW. The evolution

for the process ¢ - Z is given by a continuous-time autoregression:
d (o Z4) = =056 (- Z)dt + [0 055] v}
In this case ((z) = (o + (1tk - z where (7 satisfies
—0¢1 + vg(.04) + (1 (—.056) = 0.

The implied solution for A is constant and equal to:

1| .85
h=——
& [3.58]

The implied consumption dynamics in this setting are consistent with the ones given in Hansen
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and Sargent (2020a):2

dlog Cy = 0194 + .04Zdt + 01| .87 38] - W}

B.3 Contribution of ¢, - z

There is one remaining contribution to the planner’s HJB equation for each of our models. Note
that while log ¢y - z is included in the objective of the planner, this term has not been accounted

for in our solution so far. Thus there is a third contribution, 5 to the value function that solves:

mgn —0((2) — nlog(ey - 2) + [gg(z)] Npz(2) + o2(2)h] + %h'h
1 , 0%
+ itrace [az(z) W(Z)UZ(Z)] = 0. (13)

To support this value function separation we impose that ¢,-Z and ¢ - Z are independent processes
with ¢, - Z constructed as a function of the dWW¥ increments and ¢, - Z constructed in terms of the

dW* increments. Moreover, we assume that

o) [§§<z>] 0 (14)

where ¢ is the solution to HJB equation [%(2)]

As a special case suppose that ¢, - Z; evolves as Feller square root process with mean one:

d(y - Z1) = =x(ty - Zy — 1)dt + /1y - ZiS - dAWY.

where ¢ - ¢ = 0. Then the solution of interest to equation (13) can be expressed as a functional
equation in the scalar argument ¢, - z . Given the separability, this value function contribution is
used for the figures that we produce.

As part of a “guess and verify” solution method we add the three value function components
and the three components for the minimizing h together along with the proposed solutions for the
investment capital ratio ¢ and for scaled emissions €. In fact there may be good reasons to relax
assumption (14) and combine the climate economics HJB contribution and that coming from (13)

into a single HJB equation to be solved instead of two lower-dimensional functional equations.

Hansen and Sargent (2020a) represent the dynamics in terms of a time unit of one quarter instead of one year,
and they report a different but observationally equivalent orthogonalization of the Brownian increments.
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Appendix C Value Function Components for Section 9 Model

The HJB equation for the model in Section 9 depends on the state variables y and k. As with the
previous model, this HJB equation uses a quasi-analytical simplification for the damages state n,
as well as a separable subsystem for the exogenous forcing state z. The value function that solves
the HJB equation is of the form o(y, k) — %n + ((z), which is derived using the “guess and verify”
method. The two subsystem solutions, one for ¢(y,k) — 3n and one for ((z), when combined,

give a solution to the composite HJB equation of the planner.

C.1 HJB equations details

As was the case for the model in Section 7, this model has pre- and post-jump values functions.
These HJB equations are similar in structure to those shown in the previous model. However, in
this case there are additional layers for two reasons: (i) the potential for two different technology
jumps related to the abatement technology; (ii) the lack of separability between y and k due to the
functional form of abatement technology. As a result, we must compute numerous continuation
value functions based on post-jump outcomes across multiple dimensions, as well as a pre-jump
value function. We denote the pre-damage jump value functions as ¢;(y, k) and the post-damage
jump value functions as ¢;,,(y, k) where i denotes the number of technology jumps that have
already occurred, and thus the values for (A, 9), so that i € {0,1,2}. We denote the intensity

rate for each technology jump as H, given that it is constant and equal for each jump scenario.

C.2 Additional parameters values and initial conditions

We provide a table of the consumption-capital parameters and the abatement technology param-
eters here. Except for the parameters pertaining to abatement, which were not included in the

previous model, the parameters for this model match those given in Appendix B.

Parameter Value

0 3.0

(Y0, No) (.0453, .1206)
H .05

Table 4: Abatement parameters
The initial values for the abatement technology (¢, Ag) are based on the implied values for

2020 from Cai and Lontzek (2019). We set the initial value of capital so that our initial GDP
matches the 2020 World GDP value of $85 trillion in the World Bank National Accounts data.
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Therefore, Ko = 739.13. We set the initial value of atmospheric temperature anomaly to match

recent estimates provided by the IPCC. Therefore, Yy = 1.1 degrees Celsius.
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