
LOCALISING STRICTLY PROPER
SCORING RULES

RAMON DE PUNDER, CEES DIKS, ROGER LAEVEN, DICK VAN DIJK

IN SHORT

In many applications it is desired to focus on particular regions of the distribution.

Rules based on the conditional distribution on the region of interest are not strictly

locally proper.

Using the censored distribution instead leads to strictly locally proper scoring rules.
Censoring maintains more information than conditioning, also beneficial for power:
Localised Neyman Pearson result for localised Neyman Pearson hypotheses.

Preferable power properties in Monte Carlo results Giacomini and White test.

Smaller Model Confidence Sets in an empirical risk management analysis.

MOTIVATION

In contrast to point forecasts, density forecasts provide the full picture of the random

variable of interest. For this reason, constructing and comparing them has gained much

interest in the forecasting literature. In many applications, however, not all parts of the

distribution are of equal importance. An example is risk management, where regulators

are more interested in extreme losses (step in) than profits (send email to congratulate).

⇒ Need for a i) localisation device for scoring rules ii) retaining strict propriety.

1. Otherwise, excellent but irrelevant performance (right-tail) might overshadow poor

but crucial performance (left-tail).

2. Aminimal requirement for scoring rules is strict propriety. Hence preferably

maintained.

NON-STRICTLY LOCALLY PROPER SCORING RULES

1. Weighted likelihood score: wlog(f, y) = w(y)f (y).
Problem: improper. Assume w(y) = 1y<r and f (y) > g(y) for y < r. Then, the
expected score of f is larger than the expected score of g, even if g is the true density.

2. Conditional scoring rule: S(f, y) = w(y)S(f ]
w, y), f ]

w = fw/
∫

fwdµ
fw(y) = w(y)f (y).
Problem: non-strict. Let w(y) = 1y<r. Due to the normalisation in fw/

∫
fwdµ, any

distribution proportional to f on (−∞, r) maps onto the same
fw/

∫
fwdµ = cfw/

∫
cfwdµ, c > 0. See Panel (a).

3. Weighted CRPS: twCRPS(F, y) = −
∫ r2

r1
(F (s) − 1y≤s)2ds.

Problem: Non-localising. Due to the dependence on the CDF it takes into account

information outside [−r, r] that is not implied by the distribution on [−r, r], potentially
leading to a localisation bias. See Panel (b). Here, the twCRPS implies a score

divergence indicating g to be statistically closer to p on [−1, 1] than f . Since
p = f 6= g on [−1, 1], the twCRPS is non-localising.
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Figure 1. Proportional Laplace
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Figure 2. Localisation bias

THE CENSORED SCORING RULE

Consider the censored density for an indicator weight function w(y) = 1A(y)

f [
w(y) =

{
f (y), if y ∈ A,

F̄w, if y ∈ Ac.

where F̄w =
∫

Ac fdµ. The censored scoring rule applies the original scoring rule to

this censored density

S[
w(f, y) =

{
S(f [

w, y), if y ∈ A,

S(f [
w, ∗), if y ∈ Ac.

Observations outside A are censored, i.e. made indistinguishable, preserving the prob-

ability F̄w. By keeping this probability, censoring retains more information about the

original distribution than conditioning.

More generally, for distributions F living on the measurable space (Y , G), like

(Rd, B(Rd)), the censored scoring rule reads

S[
w(F, y) = w(y)S(F[

w, y) +
(
1 − w(y)

)
S(F[

w, ∗), dF[
w = dFw + F̄wdδ∗.

THEORETICAL RESULTS

1. Assume that the regular scoring rule S : P × Y → R̄ is strictly proper and

expectations relative to the censored versions of measures in P are also finite. Then

S[
w is strictly locally proper.

2. S[
w remains strictly locally proper for other choices than dH = dδ∗, as long as (w,H)

are such that ∃E ∈ G : Fw(E) = 0 and H(E) > 0, ∀F ∈ P ,H ∈ H ⊆ P , which is a

regularity condition in practice.

3. Consider testing the (multiple versus multiple) hypothesis

H0 : p0tAt
= f0tAt

, ∀t vs H1 : p1tAt
= f1tAt

, ∀t,

where f0t and f1t are hypothesised conditional densities for the actual densities p0t

of a stochastic process {Yt : Ω → Y}T
t=1. The Uniformly Most Powerful test is to

reject H0 if the censored likelihood ratio λ(y) = [f1][A(y)
[f0][A(y) is large enough.

Note: This Theorem generalises the famous Neyman Pearson Lemma.

MONTE CARLO
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H1 : Eft(Dt+1) > 0
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H1 : Egt(Dt+1) > 0
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H1 : Eft(Dt+1) < 0
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Figure 3. Laplace(−1, 1) vs Laplace(1, 1.1)
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Figure 4. Centre: N (0, 1) vs t(5)

One-sided rejection rates of the GW-test of equal predictive ability of the candidates ft and gt at a nominal

significance level of 0.05 based on 10,000 simulations. The DGP is either ft (left-hand side) or gt

(right-hand side). Rejections in the top panels are in favour of ft, while rejections in the bottom panels are

in favour of gt. The incorporated weight function is w(y) = 1y<r in Figure 3 and w(y) = 1−r≤y≤r in Figure

4. The number of expected observations in the region of interest is kept constant at c = 20 in Figure 3 and
c = 200 in Figure 4. The implemented scoring rules are the Logarithmic, Spherical, Quadratic scoring

rules and the Continuously Ranked Probability Score.

EMPIRICAL APPLICATION

LogS QS SphS CRPS

[ ] [ ] [ ] [ ]

RGARCH-t ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
TGARCH-t ∗ ∗ ∗ ∗ ∗
GARCH-t ∗ ∗ ∗ ∗

RGARCH-N ∗ ∗ ∗ ∗ ∗ ∗
TGARCH-N ∗ ∗
GARCH-N

MCS0.75 (∗) and MCS0.90 (∗ and ∗) based on censored ([) and conditional (]) scoring rules. The weight
function is the left-tail indicator function based on a rolling empirical quantile at level q = 0.10. As data
we use the log-returns of the S&P500, that is, yt = log(Pt/Pt−1), where Pt is the adjusted closing price on

day t. This time series consists of 6,777 observations in total, spanning from January 2, 1996, to December

30, 2022, and is obtained from Yahoo Finance. The realised measure is downloaded from the Risklab page

of Dacheng Xiu’s website.
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