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Abstract

We study the relation between inflation and real activity over the business cy-
cle. We employ a Trend-Cycle VAR model to control for low-frequency movements
in inflation, unemployment, and growth that are pervasive in the post-WWII period.
We show that cyclical fluctuations of inflation are related to cyclical movements in
real activity and unemployment, in line with what is implied by the New Keynesian
framework. We then discuss the reasons for which our results relying on a Trend-Cycle
VAR differ from the findings of previous studies based on VAR analysis. We explain
empirically and theoretically how to reconcile these differences.
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1 Introduction
During the period of the Great Moderation, the evidence of an empirical relationship

between real economic activity and inflation weakened, leading economists to rethink the
foundations of New Keynesian models. Recent contributions offer explanations for the
weakening of this empirical relationship (Del Negro et al., 2020 and references therein) or
modifications to the New Keynesian model to improve its empirical fit (Gust et al., 2022).
By contrast, other authors abandon the New Keynesian apparatus and develop business-
cycle theories that abstract from discussing the implications for inflation (Beaudry et al.,
2020; Basu et al., 2021) or in which shocks identified as the main drivers of business-cycle
fluctuations are reminiscent of demand shocks but have no inflationary effects (Beaudry
and Portier, 2013; Angeletos et al., 2018).

An important empirical justification for these alternative theoretical frameworks is offered
by Angeletos et al. (2020). The authors consider the U.S. post-WWII period and find a
disconnect between real activity and inflation at business cycle frequencies. In their clever
empirical analysis, the authors follow an extensive empirical literature that uses vector
autoregressions (VARs) as a “model free,” but still structural approach to the data. The
authors use a VAR to identify a “business-cycle” shock that explains the largest possible
share of variation in real activity or unemployment at business-cycle frequencies. This single
shock explains most of the business-cycle movements in various measures of real activity,
but close to nothing of the business-cycle variation of inflation. The authors conclude that
their results are at odds with the premise of the New Keynesian framework that features a
tight link between inflation and output fluctuations.

As we argue next, the approach of using a VAR to identify shocks in the frequency
domain has some limitations when the goal is to assess the business-cycle relationship
between real and nominal variables over the U.S. post-WWII period. The main reason is
that a standard fixed-coefficient VAR might be unable to correctly disentangle business-
cycle and low-frequency movements in those variables over a relatively short period of time
that features structural breaks (Clarida et al. (2000), Sims and Zha (2006), Bianchi (2013),
Bianchi and Ilut (2017)). In a VAR, a single set of parameters and reduced-form shocks
need to accommodate the variation at all frequencies observed over a relatively short period.
As a result, a procedure that uses the estimated parameters and reduced-form shocks to
identify variation at business-cycle frequency might be biased. The problem is particularly
severe if one of the variables of interest shows significant variation at low frequency, as it
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is the case with inflation. Ultimately, the identified shock might fail to capture a business-
cycle relationship between the two variables even when such a relation is in fact in the
data. To remedy this limitation of the VAR for the specific question at hand, we adopt
a more flexible model that explicitly extracts business-cycle movements in the variables of
interest. Specifically, we argue that a Trend-Cycle VAR (TC-VAR) model is better suited
to analyze the relation between inflation and real activity at business-cycle frequencies.

We start by presenting simple, but insightful, evidence that serves as motivation for our
analysis. We consider a measure of inflation—the GDP deflator—and two measures of real
economic activity—the level of real GDP per capita and the unemployment rate—over the
period between 1960 and 2019. Using a bandpass filter, we extract movements in those mea-
sures at frequencies between 6 and 32 quarters—labeled “business-cycle frequencies”—and
between 8 and 30 years—labeled “medium-cycle frequencies”. After filtering out movements
at high and low frequencies, the correlation of current inflation and real per-capita GDP
(unemployment rate) over the business cycle is positive (negative) and roughly equal to
about 0.2 (negative 0.4). The correlations become larger (in absolute value) when con-
sidering the relationship between current inflation and lagged measures of real economic
activity, peaking at about 0.45 (negative 0.45) when considering real per-capita GDP (un-
employment rate) lagged by four (two) quarters. In addition, over the medium cycle, these
estimates can be up to nearly 50% larger (in absolute value) than those over the business
cycle. This evidence is puzzling in light of the existing literature because it suggests that
inflation is related to real activity at business cycle frequencies, at least to some extent.

Motivated by this analysis, we adopt a more rigorous empirical framework and estimate
a multivariate Trend-Cycle VAR model building on the work of Watson (1986), Stock and
Watson (1988, 2007), Villani (2009) and, Del Negro et al. (2017). We consider the sample
between 1960 and 2019 using seven time series. The first four time series are commonly used
in previous studies: GDP growth, unemployment, the federal funds rate (FFR), and infla-
tion. We then include three additional time series. First, to better capture low-frequency
movements in inflation, we add ten-year-ahead inflation expectations. Agents’ long-term
inflation expectations are informative about the current level of trend inflation, even if
not necessarily good predictors of future inflation. Second, we use one-year-ahead inflation
expectations as a variable that should respond to business cycle variation in inflation and
be less affected by transitory shocks. Third, we include one-year-ahead expectations of
unemployment to inform the estimates of the latent trend of unemployment.

Given that a TC-VAR already separates trends from cycles, we identify the shock that
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maximizes the variation of the latent cyclical component of the unemployment rate, and we
study its contribution to the volatility of all cyclical components. A series of important re-
sults emerge from our analysis. First, under our baseline specification, the shock targeting
the unemployment rate explains about 70% of the unemployment cycle and between 31%

and 35% of the volatility of the inflation cycle. This is a relatively large share, suggesting
that it is important to account for the low-frequency movements in real and nominal vari-
ables when studying their cyclical relationship. Second, the unemployment-identified shock
explains about 49% of the inflation expectations cycle. This result provides further support
for the notion that business-cycle movements in inflation are in fact related to real activity,
given that expected inflation is obviously related to actual inflation, but less affected by
high-frequency fluctuations. Furthermore, the result is in line with the New Keynesian
framework, in which agents’ inflation expectations depend on the state of the economy. In
line with this reasoning, when we focus on frequencies that correspond to fluctuations in
the cyclical component with duration of at least 1.5 years, the results become stronger. In
this case, the shock identified targeting the rate of unemployment explains a higher per-
centage of the business-cycle volatility of all inflation measures compared to when all the
frequencies are considered: 34% for realized inflation and 52% for inflation expectations.

Our results are robust to a number of alternative specifications. First, the results are very
similar if we use GDP instead of unemployment to identify the real-activity shock. Second,
the results are not sensitive to the choice of more conservative, though still realistic, priors
on the standard deviation of shocks to the trend of the unemployment rate. Third, if we
dogmatically model all latent trends as constant, rather than time-varying, we find evidence
of a disconnect between nominal and real variables, thus recovering the results commonly
found when adopting a standard VAR model (Giannone et al., 2019b; Angeletos et al.,
2020). Crucially, this finding shows that the TC-VAR model is flexible enough to deliver
results in line with the existing literature, but the data do not support this evidence, given
that they present important trends that can confound the business-cycle analysis.

A TC-VAR has four clear advantages relative to the use of a VAR when identifying shocks
in the frequency domain.1 First, the inference exercise automatically separates the trends
from the cycles. Second, cyclical variation is controlled by a different set of parameters
with respect to low-frequency variation. Third, we do not need to take a stance on the

1The approach of identifying shocks in the frequency domain starting from a VAR was pioneered
by Uhlig (2003). The approach has lately adopted by many others, including Giannone et al. (2019a),
Angeletos et al. (2020) and Basu et al. (2021).
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typical length of the business cycle. This is important in light of the fact that expansions
have become progressively longer in the sample under consideration. Finally, by allowing
for changes in trend growth, trend inflation, and variation in long-run unemployment, the
model accommodates the notion that what matters for cyclical movements in inflation is the
output (or unemployment) gap, while at the same time nesting a typical VAR specification
if the data do not feature significant variation in the trend component.

A standard VAR model cannot easily capture the uncovered business-cycle relationship
between nominal and real variables even if we choose priors and sample periods to account
for low-frequency movements in the data. We borrow the framework of Angeletos et al.
(2020) and fit a VAR on U.S. data. We consider their baseline VAR model with a Minnesota
prior, as well as combining it with long-run priors à la Giannone et al. (2019a). For each
specification, we identify a shock that targets the unemployment rate at business-cycle
frequencies. In line with their results, the contribution of the shock to the variability of
inflation at the same frequencies is very low, ranging from about 8% when using a Minnesota
prior to about 11% when also assuming long-run priors.

We then lay out theoretical arguments for why the two methodological approaches reach
such different conclusions. We demonstrate that a fixed-coefficient VAR estimated over a
period of time that presents structural changes is misspecified, if the goal is trying to assess
the comovement at business-cycle frequency. The misspecification problem associated with
the use of a VAR model to describe a data generating process characterized by both low-
and high-frequency movements cannot be resolved. An econometrician would need infinite
data to reconstruct the VAR representation of a TC-VAR model. Even in that case, the
reduced-form innovations that she would recover would map into the innovations affecting
the latent persistent and stationary components as well as the error associated with the
estimates of the latent components. In reality, these issues are exacerbated by the fact that
the VAR parameters estimated over a finite sample would be distorted because a single set
of parameters needs to account for both trend and cycle fluctuations.

We provide an illustration of these issues with a simple model of unemployment and
inflation. We generate Monte Carlo simulations of the two series using a TC-VAR model.
We then present four insights based on the estimation of a VAR on the simulated data
and the subsequent identification of a shock targeting the unemployment rate at business-
cycle frequencies. First, we consider a case in which we introduce a trend only in inflation
and assume that the unemployment rate is stationary, persistent, and the only driver of
cyclical movements in inflation. We show that the explanatory power of the unemployment-
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identified shock for business-cycle movements in inflation drops dramatically as the rele-
vance of low-frequency movements in inflation rises. Second, even when we assume that
inflation does not feature a trend and it is exclusively driven by cyclical variation in the
unemployment rate, the identified shock explains small portions of the business-cycle move-
ments in inflation if the unemployment rate features low-frequency movements. Third, in
a case with trends in both inflation and unemployment, as well as a dependence of cyclical
inflation on both its own lag and cyclical unemployment, it becomes even more challenging
to successfully recover the underlying business-cycle relationship between the two series.
Finally, if the model does not feature any relation between output and inflation, a TC-VAR
would correctly uncover the absence of commovement.

Overall, our findings have implications for both the New Keynesian literature and the
recent and growing literature that proposes alternative explanations for the sources of
business-cycle fluctuations. For the former, the results support the evidence of a relation-
ship between real and nominal variables over the business cycle, while highlighting the
importance of accounting for low-frequency movements in real and nominal variables to
properly quantify that relationship. For the latter, the results suggest that the alternative
explanations for the drivers of business cycles should also propose transmission mechanisms
which are consistent with the empirical evidence on the connection between movements in
inflation and real economic activity.2

Our results are consistent with the findings of Hazell et al. (2022). These authors show
that the relation between real activity and inflation, while tenuous, can be recovered from
the data and has not undergone a structural change once controlling for long-term inflation
expectations. Their evidence is based on a cross-sectional analysis of inflation across U.S.
states, while we take a time-series approach. Ascari and Sbordone (2014) emphasize the
importance of controlling for trend inflation when analyzing the conduct of monetary policy.
Our findings also relate to the work of Hall and Kudlyak (2023) who suggest that the flat
Phillips curve is an illusion caused by assuming that the natural rate of unemployment has
little or no movement during recoveries. Finally, our analysis connects to Sargent and Sims
(1977) that shows that two dynamic factors could explain a large fraction of the variance of
a series of important macroeconomic variables, including output, employment, and prices.
Two factors are in fact necessary to control for the low-frequency movements in nominal
variables. The subsequent factor-analysis literature has repeatedly confirmed this key in-

2For an alternative theory that integrates Keynesian economics with general equilibrium theory without
relying on nominal rigidities, refer to Farmer and Platonov (2019) and Farmer and Nicolò (2018, 2019).
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sight (Giannone et al., 2006; Watson, 2004; Stock and Watson, 2011). Related branches of
the literature use unobserved component models to measure long-run inflation (Stock and
Watson, 2007; Mertens, 2016) and long-run interest rates (Laubach and Williams, 2003,
2015; Lubik and Matthes, 2015; Del Negro et al., 2017; Del Negro et al., 2019; Holston
et al., 2017; Lewis and Vazquez-Grande, 2019; and Johannsen and Mertens, 2021).

Ascari and Fosso (2021) use a methodology similar to the one adopted in this paper
to study the role of imported intermediate goods in explaining the lack of sensitivity of
inflation to a business-cycle shock in the post-Millennial period. The contribution of the
shock decreases from about 60% for the period starting in 1960 and ending in 1984 to nearly
30% for the period between 1985 and 2019. In line with our results, these estimates are
about four and six times larger than the counterparts of 17% and 5% that Angeletos et al.
(2020) find for the pre- and post-Volcker periods using a VAR and interpret as evidence of
a disconnect. Our paper provides an explanation to reconcile these differences.

In addition, our findings support the evidence that a rise in unemployment during a
recession is associated with a fall in inflation as highlighted by (Stock and Watson (2010)
for the U.S., Smets (2010) for the Euro Area). Accounting for a relevant inflation-output
relationship can improve inflation forecasts as shown in Stock and Watson (2008) for the
U.S. and Smets (2010) and Giannone et al. (2014) for the Euro Area. Similar results hold
also in data-rich environments (Bańbura et al., 2015; Crump et al., 2021).

2 Motivating evidence
In this section, we provide motivating evidence for our subsequent empirical analysis.

We aim to show that inflation and real activity are related over the business cycle once
we control for their trends. We underscore the importance of adopting a unified empirical
framework that distinguishes between business-cycle and low-frequency movements in these
variables. Moreover, given that our goal is to study the relationship between inflation and
real economic activity over the business cycle, we also want to control for higher-frequency
movements. These are especially important for the dynamics of inflation. We then use a
simple NK model to motivate the modeling choices adopted in Section 3.

2.1 Empirical evidence

We consider the inflation rate—measured as the log difference in the GDP deflator—
and two measures of real economic activity—the log level of real, per-capita GDP and the
unemployment rate—over the period 1955:Q1-2019:Q4. Using a bandpass filter (Christiano
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Figure 1: Inflation and real economic activity at business- and medium-cycle frequencies

(A) Business-cycle frequencies (6-32 quarters)
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(B) Medium-cycle frequencies (8-30 years)
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Notes: The inflation rate is defined as the log difference in the GDP deflator. For the two measures of
real economic activity, we consider the log level of real, per-capita GDP and the unemployment rate. Data
sample is from 1955:Q1 to 2019:Q4. Using the bandpass filter proposed by Christiano and Fitzgerald
(2003), we extract the corresponding filtered time series over two frequency bands: the business cycle—
defined as the period between 6 and 32 quarters—and the medium cycle—defined as the period between 8
and 30 years.
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and Fitzgerald (2003)), we extract the corresponding filtered time series over two frequency
bands: the business cycle—defined as fluctuations between 6 and 32 quarters—and the
medium cycle—defined as fluctuations between 8 and 30 years.

Panel (A) of Figure 1 plots business-cycle fluctuations for inflation and real per-capita
GDP as well as for inflation and unemployment. Panel (B) of Figure 1 plots the correspond-
ing medium-cycle fluctuations. The plots offer two main empirical facts. First, inflation
appears correlated with both measures of real economic activity at both business-cycle and
medium-cycle frequencies. As expected, inflation is positively correlated with real per-
capita GDP and negatively correlated with unemployment. Second, movements in both
measures of real economic activity lead changes in the inflation dynamics at business-cycle
and medium-cycle frequencies. High (low) levels of real per-capita GDP (unemployment)
are associated with subsequent high levels of inflation, and vice versa.

To formalize the notion that cyclical fluctuations in inflation comove with real activ-
ity, Table 1 reports the correlations between current (filtered) inflation and current and
lagged (filtered) levels of real per-capita GDP and unemployment rate at time (t − j) for
j = {0, 2, 6, 8}. We consider both business-cycle and medium-cycle frequencies. Over the
business cycle, the positive (negative) correlation of inflation peaks with real per-capita
GDP (unemployment rate) lagged by four (two) quarters at about 0.45 (negative 0.45).
Over the medium cycle, the correlation of inflation with real per-capita GDP (unemploy-
ment rate) lagged by eight quarters peaks at about 0.65 (negative 0.55). These correlations
are larger (in absolute value) than the counterparts with real per-capita GDP and the rate
of unemployment lagged by four quarters over the business cycle.

The empirical evidence presented in this section motivates us to adopt a dynamic, multi-
variate framework that allows to study the relationship between inflation and real economic
activity over the business cycle while controlling for low-frequency variation in those vari-
ables. We discuss the adopted framework in the next section.

2.2 A simple theoretical framework

In this subsection, we discuss a simple NK model with three goals in mind. First, to
explain why low frequency movements in inflation can act as confounding effects for the
relation between inflation and real activity. Second, to provide a theoretical motivation
for the more flexible model used in our empirical analysis. Third, to clarify that while the
NK framework does not predict perfect positive commovement between inflation and real
activity at business-cycle frequencies, its theoretical appeal is nevertheless rooted in the
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Table 1: Correlations of inflation with lagged measures of real economic activity

Business-cycle frequencies (6-32 quarters)
j = 8 j = 6 j = 4 j = 2 j = 0

Output 0.15 0.36 0.47 0.42 0.22
Unemployment rate 0.09 -0.13 -0.34 -0.44 -0.36

Medium-cycle frequencies (8-30 years)
j = 8 j = 6 j = 4 j = 2 j = 0

Output 0.64 0.61 0.54 0.45 0.33
Unemployment rate -0.54 -0.50 -0.44 -0.36 -0.25

Notes: The inflation rate is defined as the log difference in the GDP deflator. For the two measures of
real economic activity, we consider the log level of real, per-capita GDP and the unemployment rate. Data
sample is from 1955:Q1 to 2019:Q4. Using the bandpass filter proposed by Christiano and Fitzgerald
(2003), we extract the corresponding filtered time series over two frequency bands: the business cycle—
defined as the period between 6 and 32 quarters—and the medium cycle—defined as the period between
8 and 30 years. We provide the correlations between current (filtered) inflation and current and lagged
(filtered) levels of real per-capita GDP and unemployment rate at time (t− j) for j = {0, 2, 6, 8}.

connection between the two sides of the economy. For example, it is through real activity,
that central banks can lower or lift inflation.

The model features a balanced growth path. Technology is described by the process

γa,t ≡ ln (At/At−1) = (1− ρa)γ + ρaγa,t−1 + ηa,t, ηa,t ∼ N (0, σa).

Thus, if we define detrended output as yt ≡ ln(Yt/At), output growth evolves as

dyt = ln (Yt/Yt−1) = γ + γa,t + (yt − yt−1) .

With respect to a textbook NK model, we allow for time-varying trend inflation, following
a unit-root process πτ

t = πτ
t−1 + ηπτ ,t, and assume full indexation to trend inflation:

yt = Et(yt+1)− [Rt − (rnt + Et(πt+1))] + [zb,t − Et(zb,t+1)] , (1)

πt − πτ
t = βEt(πt+1 − πτ

t+1) + κ yt + zp,t, (2)

Rt = (rnt + πτ
t+1) + ϕπ(πt − πτ

t ) + ϕyyt, (3)

where πt is inflation and Rt is the nominal interest rate. The model implies long-run mone-
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Figure 2: Selected impulse responses
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Notes: The figure plots the impulse responses to shocks to TFP (ηa), mark-up (ηp), household
preferences (ηb), and the inflation target (ηπτ ). The standard deviation of the TFP, mark-up, and demand
shocks is calibrated to induce a one-percent change (in absolute value) of output growth. For the inflation
target shock, we assume 5 consecutive shocks (of 0.2 percentage points each) starting in period 1. The
y-axes are expressed in percentages.

tary neutrality and it is similar to a case provided in Chapter 4 of Woodford (2003), except
that indexation is with respect to trend inflation as opposed to lagged inflation (see also
Hazell et al. (2022)). We do not discuss the origins of fluctuations in trend inflation or
the possibility of asymmetric information between agents and the central bank (Bianchi
et al. (2021)). Price markup shocks (zp,t) and preference shocks (zb,t) follow an autoregres-
sive process zi,t = ρizi,t + ηi,t where ηi,t ∼ N (0, σi) for i = {p, b}. In addition, potential
output—defined as the level of output prevailing under flexible prices and in absence of
markup shocks—coincides with the level of output along the balanced growth path. There-
fore, yt also denotes the output gap. Finally, the natural rate of interest (rnt ≡ ρaγa,t)
responds to highly persistent productivity shocks that the central bank accommodates.

We calibrate the model to conventional values in the literature. We set the discount factor
(β) and the Calvo probability of keeping prices unchanged to 0.99 and 0.6 respectively and
assume a unitary Frisch elasticity. The central bank’s responses to inflation and output
gap are 1.5 and 0.15, respectively. We assume that productivity shock is highly persistent
by setting ρa to 0.99. To introduce a slight degree of inertia in the model, we set the
autoregressive coefficients of markup shocks (ρp) and preference shocks (ρb) to 0.35.

Figure 2 reports the responses of output, inflation, and output growth to the four shocks.
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The standard deviations of the TFP, mark-up, and demand shocks are normalized to induce
a one-percent change (in absolute value) of output growth. For trend inflation, we assume
five consecutive shocks of 0.2 percentage points each. A productivity shock generates a
persistent increase in output growth, while cyclical output and inflation do not respond, as
the movements in natural rate of interest completely offset the effects of the shock. As shown
in the second row, a price markup shock induces negative commovement between detrended
output and inflation. After the contemporaneous one-percent decrease, output growth turns
positive as the economy goes back to its long-term trend. In contrast, the responses to the
preference shock—reported in the third row—indicate a positive comovement between the
cycles of output and inflation. Finally, a change in trend-inflation (last row) moves inflation
but not real activity.

This model, while clearly stylized, provides some key insights that are useful to interpret
the flexible TC-VAR used in our empirical analysis below. First, the focus should be on
the possibility of commovement between inflation and the cyclical component of output,
as opposed to the cyclical component of output growth. Second, cyclical movements of
output and inflation are unaffected by persistent productivity shocks that instead generate
low frequency movements in output growth. Third, shocks to trend inflation generate low-
frequency movements in nominal variables, with no effects on the real economy. Third,
agents’ long-term inflation expectations are informative about the current level of trend
inflation, even if not necessarily good predictors of future inflation. Finally, the model
can account for both positive and negative commovement between detrended output and
inflation because markup shocks push output and inflation in opposite directions. However,
the preliminary evidence presented in Subsection 2.1 suggests a positive commovement
between cyclical inflation and output, and a dominant role of demand-size fluctuations.

3 The Trend-Cycle VAR model
In this section, we present the TC-VAR used to model the joint dynamics of GDP, un-

employment, the FFR, and inflation, as well as three expectations measures: the one-year-
ahead unemployment expectations and the one- and ten-year-ahead inflation expectations.

Our baseline specification has four trends and six cycles. Unemployment ut evolves as

ut = τu,t + cu,t, (4)

where τu,t and cu,t are the trend and cyclical components, respectively.
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In line with the typical approach employed in structural macroeconomic models, we
assume that real per-capita GDP follows a process of the form Yt = Ȳt exp(cy,t), where cy,t

represents the cyclical movements of real GDP around a stochastic trend Ȳt. As a result,
real per-capita GDP growth, gt ≡ log (Yt/Yt−1), can be expressed as

gt = τg,t + (cy,t − cy,t−1) , (5)

where τg,t ≡ log
(
Ȳt/Ȳt−1

)
is the trend component of GDP growth. It is worth emphasizing

that we model the cycle in real GDP, as opposed to GDP growth, because what matters
for inflation and unemployment dynamics is the output gap, not output growth.

Additionally, one-year-ahead unemployment expectations share a common trend with the
realized unemployment rate, while also following a separate cyclical component

ue,1y
t = τu,t + ce,1yu,t . (6)

Assuming the Fisher relation holds in the long run, the FFR evolves as

ft = (τr,t + τπ,t) + cf,t, (7)

where τr,t and τπ,t are the trend of the real interest rate and inflation, respectively. Realized
inflation and the one- and ten-year-ahead inflation expectations are decomposed as

πt = τπ,t + cπ,t + (ηπ,t − ηπ,t−1) , (8.1)

πe,1y
t = τπ,t + ceπ,t, (8.2)

πe,10y
t = τπ,t + δceπ,t + ηe,10yπ,t , (8.3)

thus sharing a common trend τπ,t. We assume that the cyclical component for expected
inflation, ceπ,t, is shared across the one- and ten-year-ahead inflation expectation surveys.
Because the ten-year inflation expectation πe,10y

t is fairly stable over time, we estimate its
loading with the belief that it is less than one δ < 1. This parameterization is consistent
with the definitions of one-year-ahead and ten-year-ahead inflation expectations that mea-
sure expected average inflation over the respective horizons. We allow for idiosyncratic
errors in the ten-year-ahead inflation expectations, ηe,10yπ,t . Finally, we allow for an i.i.d.
measurement error in the log-level of the GDP deflator, ηπ,t, which implies that, after
taking log difference, realized inflation features a negative moving average measurement
error component. Below, we show that the results are robust to pervasive changes in these
modeling assumptions.
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For ease of exposition, we collect observables and state variables in vectors

zt =
{
gt, ut, u

e,1y
t , ft, πt, π

e,1y
t , πe,10y

t

}′
, τt = {τg,t, τu,t, τr,t, τπ,t}′ , ct =

{
cy,t, cu,t, c

e,1y
u,t , cf,t, cπ,t, c

e
π,t

}′
,

ηt =
{
ηπ,t, η

e,10y
π,t

}′
, ετ,t = {ετ,g,t, ετ,u,t, ετ,r,t, ετ,π,t}′ , εc,t =

{
εc,y,t, εc,u,t, ε

e,1y
c,u,t, εc,f,t, εc,π,t, ε

e
c,π,t

}′
.

The dynamics of the trend τt and cyclical component ct are given as3

τt = τt−1 + ετ,t, (9.1)

ct = Φ1ct−1 + Φ2ct−2 + ...+ Φpct−p + εc,t. (9.2)

We assume ηt = εη,t and that shocks are independent and identically distributed as

εt =

ετ,tεc,t

εη,t

 ∼ N


00
0

 ,

Στ 0 0

0 Σc 0

0 0 Ση


 ,

where the matrices Στ , Σc, and Ση are conforming positive definite matrices, Σs = E (QsQ
′
s)

for s = τ, c, η, and N (·, ·) denotes the multivariate Gaussian distribution. We do not
restrict covariance matrix Στ to be diagonal. This implies that while the trends follow
random walks, they are not assumed to be independent of each other.

The model can be recast into a state-space representation.4 Using generic notation, let
us begin with n observables which can be decomposed into nτ trends and nc cycles, where
0 < nτ ≤ n and 0 < nc ≤ n.
Measurement equation. Allowing for a vector of observation errors ηt, the vector of
observables zt can be expressed as

zt = Λxt = Λτxτ,t + Λcxc,t + Ληxη,t, (10)

where xt = {xτ,t, xc,t, xη,t}′, xτ,t = τt, xc,t =
{
ct, ct−1, . . . , ct−(p−1)

}′, xη,t = {ηt, ηt−1}′ and
p denotes the lags of the stationary cyclical components. The n × nτ matrix Λτ captures
(n− nτ ) cointegrating relationships, while Λc = [Λc,0, . . . ,Λc,p−1] and Λη = [Λη,0,Λη,1].
State-transition equation. The vector of states xt evolves as

xt = Φxt−1 +Rεt, (11)
3In his pioneering work, Watson (1986) emphasizes that models with stochastic, rather than determinis-

tic, trends are more flexible and apt for most economic time series. Moreover, casting a detrending problem
using a latent trend allows for the use of state-of-the-art methods such as the Kalman filter described in
Durbin and Koopman (2001) and the backward smoothing algorithm of Carter and Kohn (1994).

4Appendix A details the construction of the state-space representation for our baseline specification.
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or equivalently, xτ,t

xc,t

xη,t

 =

I 0 0

0 Φc 0

0 0 Φη


xτ,t−1

xc,t−1

xη,t−1

+

I 0 0

0 Rc 0

0 0 Rη


ετ,tεc,t

εη,t

 ,

where

Φc =



Φ1 Φ2 . . . Φp

I 0 0 . . . 0

0 I
. . . . . . ...

... . . . . . . . . . 0

0 . . . 0 I 0


, Rc =



I

0
...
0

0


, Φη =

[
0 0

I 0

]
, Rη =

[
I

0

]
.

The initial conditions are distributed as

xτ,0 ∼ N
(
τ , Vτ

)
, xc,0 ∼ N

(
0, Vc

)
, (12)

where Vτ is an identity matrix, and Vc is the unconditional variance of c0 consistent with
(11) and thus a function of the VAR coefficients φ = {Φ1, . . . ,Φp}′ and variance Σc.

4 Inference
In this section, we describe the data, the priors, and the methodology employed in our

empirical analysis.

4.1 Data

We estimate the TC-VAR model using the following seven quarterly time series which
are expressed at annualized rates: i) the growth rate of real, per-capita GDP gt; ii) the
unemployment rate ut; iii) the median four-quarter-ahead unemployment rate expectations,
ue,1y
t , from the SPF; iv) the FFR ft by treating observations at the zero lower bound

(ZLB) as missing following Del Negro et al. (2017); v) the inflation rate πt, measured as
the log difference in GDP deflator (PGDP); vi) the median four-quarter-ahead average
PGDP inflation expectations, πe,1y

t , from the SPF; vii) a measure of average ten-year-
ahead inflation expectations, πe,10y

t , which, following Del Negro and Schorfheide (2013), we
construct by combining survey expectations on average ten-year-ahead CPI inflation from
the SPF and Blue Chip Economic Indicators survey, and adjusting it for the historical
difference between CPI and PGDP inflation. We use the period between 1955:Q1 and

14



1959:Q4 as pre-sample and estimate the TC-VAR model over the period from 1960:Q1 to
2019:Q4. Appendix B provides the definitions, data sources and transformations.

4.2 Priors and initial conditions

For the assumptions about initial conditions and prior distributions, we mainly follow the
approach of Del Negro et al. (2017). We consider standard priors for covariance matrices
Στ and Σc and for the VAR coefficients φ = {Φ1, . . . ,Φp}′

p (Στ ) = IW
(
κτ , (κτ + nτ + 1)Στ

)
, (13.1)

p (Σc) = IW
(
κc, (κc + nc + 1)Σc

)
, (13.2)

p (ϕ|Σc) = N
(
ϕ,Σc ⊗ Ω

)
I (ϕ) , (13.3)

where ϕ = vec(φ), ϕ = vec
(
φ
)
, and IW = (κ(κ+ n+ 1)Σ) corresponds to the inverse

Wishart distribution with mode Σ and k degrees of freedom, and I(ϕ) is an indicator
function that equals 0 if the VAR in (11) is explosive and 1 otherwise.

We center the prior distribution for the initial conditions of the trends τ0 in (12) to the
pre-sample mean of the corresponding variables. The priors for the initial conditions of
the annualized trend of real GDP growth and of unemployment are set to 1% and 5%,
respectively. For the trend of the real interest rate and inflation, the priors for the initial
condition are centered at 0.1% and 2.5%.

To specify the prior for the covariance matrix of the shocks to the trends Στ in (13.1), we
assume that those shocks are a priori uncorrelated. We then set the standard deviation for
the expected change in the annualized trend of real GDP growth to 1% over a time period
of 40 years. For all the remaining variables, we assume a 1% standard deviation for the
expected change in their trends over 20 years. As in Del Negro et al. (2020), we assume a
tight prior by setting κτ to 100.

The shocks to the cyclical components Σc in (13.2) are also assumed to be uncorrelated
a priori. We calibrate the standard deviation of the shocks affecting the stationary com-
ponent of the (annualized) real, per-capita GDP growth and the unemployment rate to 5%

and 1.1%, reflecting their pre-sample standard deviations. The standard deviation of the
shocks affecting the cycle of the nominal interest rate and inflation are also set to their
pre-sample standard deviations of 0.8% and 1.5% respectively. We also need to specify
assumptions for the priors on the standard deviation of the cyclical component of the one-
year-ahead unemployment rate expectations and the cyclical component that is common
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for the two inflation expectations measures. Because these surveys are not available for
the pre-sample period, we assume the standard deviations of the one-year-ahead unemploy-
ment rate expectation to be 0.9%, thus smaller than the pre-sample counterpart of 1.1% of
realized unemployment rate. Similarly, we set the prior for the standard deviation of the
common cyclical component of inflation expectations to 1.2%, therefore smaller than the
pre-sample counterpart of 1.5% for realized inflation. As in Kadiyala and Karlsson (1997)
and Giannone et al. (2015), we set κc = nc + 2.

For the prior of the VAR coefficients ϕ in (13.3), we assume a conventional Minnesota
prior with hyperparameter for the overall tightness equal to 0.2 in line with Giannone et al.
(2015). Because the cyclical component in (9.2) is assumed to be stationary, we then center
the prior for each variable’s own lag to 0, rather than 1, as in Del Negro et al. (2017). We
report additional details on the Bayesian inference in Appendix C.

4.3 Identifying shocks that drive business-cycle fluctuations

As discussed in the Introduction, the TC-VAR model delivers a decomposition between
trends and cycles. Given that the cyclical components are already cleaned of movements
at frequencies other than business cycles, we do not need to remove the low-frequency
variation by using spectral analysis. Instead, we look for the combination of reduced-
form shocks that explains the largest possible share of unemployment or output cycles,
without having to take a stance on which frequencies correspond to the business cycle. In
our baseline analysis, we ask how much the unemployment-identified or output-identified
shock contributes to the volatility of the cyclical component of the other variables, with a
special focus on inflation and inflation expectations. As a robustness check, we also ask if
the results are sensitive to further removing high-frequency movements in the cycles. In
this second case, we ask how much the unemployment-identified shock contributes to the
volatility of the cyclical component of the other variables at frequencies that correspond
to fluctuations with duration of at least 1.5 years. Thus, in this second methodology we
take into account that the cyclical component of the variables could present some residual
high-frequency movements that are not related to the business cycle.

5 Results
In this section, we present the main results of the paper. We first present the decom-

position of the variables in trends and cycles. We then proceed to analyze how much
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the unemployment-identified shocks can explain of the cyclical variation of inflation and
inflation expectations and how it propagates through real and nominal variables.

5.1 Estimated latent trends and cycles

Panel (A) of Figure 3 plots the data (red lines) used for the estimation of the VAR with
common trends over the 1960-2019 period as well as the posterior median of their latent
trends (blue lines) and the corresponding 90-percent posterior-coverage intervals (shaded
blue area). Panel (B) of Figure 3 plots the posterior median of the latent cycles (blue lines)
and the corresponding 90-percent posterior-coverage intervals (shaded blue area).

The results confirm some stylized facts about the US economy that are commonly ac-
cepted. First, in the 1960s and 1970s the U.S. economy experienced an increase in trend
inflation. This was possibly caused by the attempt of policymakers to counteract a break in
productivity that manifested itself with an increase in the natural rate of unemployment or
to partially accommodate the inflationary pressure resulting from a large increase in spend-
ing that occurred starting from the mid-1960s. These two stylized facts are captured by an
increase in the trend components of inflation and unemployment rate during those years.
The appointment of Volcker marked a change in the conduct of monetary policy. Trend
inflation declined, and so did the long-term inflation expectations. Note that even if we do
not impose any restriction on the mapping from the trend component of inflation to long-
term inflation expectations, the two variables largely coincide. Thus, including long-term
inflation expectations helps in separating trend and cycle fluctuations. In addition, the
trend unemployment rate rose during the Great Financial Crisis to levels consistent with
estimates of the natural rate of unemployment reported by Hall and Kudlyak (2023) and
based on the New Keynesian model of Galí et al. (2011). Instead, trend inflation remained
roughly unchanged over that period because of anchored long-term inflation expectations.

The behavior of the cycles is reported in panel (B) of Figure 3. From this figure, a clear
pattern emerges, consistent with our understanding of how the economy behaves over the
business cycle. The unemployment rate increases during recessions and smoothly declines
over time as the economy recovers. Based on a cursory look at the cycles, inflation seems to
behave as the New Keynesian framework would suggest: Declining during a recession, when
the unemployment rate is high, and increasing during an expansion when the unemployment
rate is low. This is especially visible when focusing on inflation expectations at the one-year
horizon: its cyclical component behaves very much like inflation, but it is smoother.
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Figure 3: Data, trends and cycles
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(B) Cycles
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Notes: The figure plots the data (red lines) used for the estimation of the TC-VAR model over 1960-2019
period as well as the posterior median of their latent trends (blue lines) in panel (A) and latent cycles
(blue lines) in panel (B) and the corresponding 90-percent posterior-coverage intervals (shaded blue areas).
NBER recessions are denoted by shaded grey areas.

5.2 Inflation and unemployment over the business cycle

We now move to formally study the relation between the real economy and inflation over
the business cycle. We use the estimated TC-VAR to identify the unemployment cycle
shock using the method described in Subsection 4.3. Specifically, the shock is identified by
maximizing its contribution to the volatility of the cyclical component of unemployment.
As explained above, we consider two cases. In the first case, the shock is chosen to maximize
the fraction of the volatility over all the frequencies of the cycle, while in the second case
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Table 2: Variance contributions of unemployment shock

All frequencies (0−∞ quarters)

Unempl. Output Unempl. FFR Inflation Inflation
exp.(1y) exp.

71.8 58.2 68.6 63.6 30.7 49.2
[60.0,84.5] [47.6,70.1] [56.0,80.3] [39.4,78.9] [11.8,50.5] [24.8,70.0]

All-but-short-run frequencies (6−∞ quarters)
Unempl. Output Unempl. FFR Inflation Inflation

exp.(1y) exp.
72.8 57.8 71.7 64.4 34.4 52.3

[60.7,86.1] [46.9,70.3] [58.7,85.1] [39.4,79.9] [13.2,55.3] [27.2,74.1]

Notes: The shock is identified by maximizing its contribution to the volatility of the cyclical component of
realized unemployment rate. We consider two cases. In the first case, the shock is chosen to maximize the
fraction of the volatility over all the frequencies of the cycle, while in the second case we exclude frequencies
that imply cycles less than 1.5 years. We report the median contribution and the corresponding 68-percent
posterior-coverage interval of the identified shock to the variance of the cycle of all variables over the
corresponding frequencies.

we exclude frequencies that imply cycles less than 1.5 years.
The top panel of Table 2 reports the median and the 68% posterior-coverage interval for

the contribution of the identified shock to the variance of the cycle of all the other variables.
In the second panel, we repeat the exercise by excluding frequencies that imply cycles less
than 1.5 years. Not surprisingly, the shock can explain a large share of the fluctuations
of the unemployment cycle. However, the shock can also explain a sizable fraction of the
cyclical component of inflation. In the baseline scenario, the unemployment-identified shock
can explain around 30% of the inflation cycle. When excluding cycles shorter than 1.5 years,
the unemployment-identified shock explains nearly 35% of inflation variability. These are
large shares when considering that the unemployment shock explains around 72%, rather
than the entirety, of unemployment fluctuations.

The results are even stronger when focusing on the cyclical component of inflation expec-
tations: approximately 49% in the baseline scenario—or 52%, in the alternative scenario—
of the business-cycle variability of underlying inflation is explained by the unemployment-
identified shock. Given that the cycle of inflation expectations appears to be a smoother
version of the cycle of realized inflation, this result corroborates the finding that inflation
moves in a way consistent with the New Keynesian framework over the business cycle.

19



Table 3: Variance contributions of GDP-identified business cycle shock

All frequencies (0−∞ quarters)

Output Unempl. Unempl. FFR Inflation Inflation
exp.(1y) exp.

65.1 63.6 60.5 43.1 31.5 42.3
[57.6,75.9] [46.2,76.7] [43.1,73.3] [11.3,83.6] [10.3,62.1] [12.0,79.9]

All-but-short-run frequencies (6−∞ quarters)
Output Unempl. Unempl. FFR Inflation Inflation

exp.(1y) exp.
65.4 63.0 61.7 44.9 35.9 49.0

[57.7,76.9] [45.9,77.7] [44.1,76.3] [11.3,85.0] [11.1,66.6] [13.6,84.0]

Notes: The shock is identified by maximizing its contribution to the volatility of the cyclical component
of real GDP (in loglevels). We consider two cases. In the first case, the shock is chosen to maximize the
fraction of the volatility over all the frequencies of the cycle, while in the second case we exclude frequencies
that imply cycles less than 1.5 years. We report the median contribution and the corresponding 68-percent
posterior-coverage interval of the identified shock to the variance of the cycle of all variables over the
corresponding frequencies.

When comparing the results of the baseline and alternative cases, we find that the con-
tribution for inflation and inflation expectations goes visibly up when removing the short
cycles. This implies that there is likely to be some residual high-frequency variation in
these variables that it is not related to the business cycle. In addition, the shock explains
about 64% of the volatility of cyclical nominal interest rate over both frequency bands.
Combined with the previous two findings, this result implies that the shock also explains
the volatility of the cyclical component of the real interest rate, defined as the difference
between the FFR and expected inflation.

Finally, the identified shock explains a large portion of the volatility of cyclical real GDP
over all frequencies and also when excluding frequencies associated with the first 6 quarters
of the cycles. The shock also explains a share of the volatility of the cyclical component of
expected unemployment rate similar to the corresponding share for realized unemployment.
All these findings support the evidence that the identified shock is the main driver of the
U.S. real business-cycle.

The results are similar when using GDP to identify the business cycle shock. Table
3 reports the median contribution—and the corresponding 68-percent posterior-coverage
interval—of the shock identified targeting the cycle of real GDP to the variance of the
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Figure 4: Forecast error variances of unemployment shock
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Notes: The figure shows the contribution of the unemployment-identified shock to the forecast error vari-
ance of the cyclical component of all the variables at different time horizons. The figure plots the posterior
median (blue lines) and the corresponding 68-percent posterior-coverage intervals (shaded blue area).

cycles of all the variables. As before, we consider two cases. In the first case, we identify
the shock and compute its contributions based on all frequencies of the cycles. In the second
case, we consider frequencies that imply fluctuations of at least 1.5 years. As in the case
of unemployment, the shock can explain a large share of the cyclical fluctuations of real
GDP. In line with the results for the unemployment-identified shock in Table 2, the shock
also explains a sizable fraction of the cyclical component of realized and expected inflation
as well as realized and expected unemployment rate. Additionally, the contribution of the
output-identified shock for the variability of the realized and expected inflation increases
noticeably when movements at frequencies shorter than 1.5 years are excluded. Given that
the results are similar across the two specifications, in the rest of the paper we focus on
the unemployment-identified shock.

In Figure 4, we show the contribution of the unemployment-identified shock to the forecast
error variance of the cyclical component of all the variables at different time horizons. The
explanatory power of the shock reaches about 80% and 90% of the cyclical movements in
unemployment and output after the first five years and about 70% of the movements in
the nominal interest rate at any horizon. Moreover, the shock explains a large portion of
the movements in inflation, reaching about 30% after five years. The result for inflation
and inflation expectations is consistent with the motivating evidence of Section 2.1 that
shows that inflation cycles lag output cycles. This percentage rises to about 50% after
the first few years for inflation expectations. These results are in line with the shock’s
contributions reported in Table 2 and clearly point to the large explanatory power of the
unemployment-identified shock for the business-cycle movements in all inflation measures.
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Figure 5: Impulse responses to unemployment shock
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Notes: The figure shows the response to the unemployment-identified shock of the cyclical component of
all the variables over a period of 20 quarters. The figure plots the posterior median (blue lines) and the
corresponding 68-percent posterior-coverage intervals (shaded blue area).

Finally, Figure 5 plots the median response—and corresponding 68-percent posterior-
coverage intervals—of each cyclical component to the unemployment-identified shock over
a period of 20 quarters. The resulting interpretation of the unemployment-identified shock
is in line with a demand shock in a canonical New-Keynesian model. The unemployment
rate decreases about 2% percent on impact and subsequently returns to its initial level
after about 2.5 years. The response of the one-year-ahead unemployment rate expectations
is quantitatively and qualitatively similar to that of the unemployment rate. Considering
real GDP (in loglevels), the shock causes an increase by nearly 3% on impact, and its effect
gradually vanishes after about 2 years. When considering the nominal variables, the shock
leads to a contemporaneous increase of about 0.2% (0.1%) in the cyclical component of
realized (expected) inflation and a subsequent decline to the initial level of inflation after
about 4 (5) years. In response to the identified shock that boosts real economic activity
and increases realized and expected inflation, the nominal interest rate peaks at nearly .7%

after about a year and gradually returns to its initial value thereafter.
To summarize, the responses of the real side of the economy are consistent with the

findings of Angeletos et al. (2020) who point to the presence of a main shock driving the
fluctuations of real economic activity over the business cycle. However, differently from
their findings, the unemployment shock that we identify has significant effects also on the
nominal side of the economy.
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5.3 Robustness checks

We briefly discuss the results of a wide range of robustness checks detailed in Appendix
D. All variations show compelling evidence that the main results are robust.

Bivariate specification. Appendix D.1 documents that our main findings do not de-
pend on the richness of our baseline specification. We explore two versions of a simple
bivariate system that rely on baseline data concerning realized and one-year-ahead average
expected inflation. The difference lies in one version incorporating the unemployment rate
alongside its one-year-ahead survey expectation, while the other version is based on data
related to real GDP growth. For each version, we make three sets of assumptions about
measurement errors and combine these with six sets of priors with varying tightness con-
cerning the standard deviation of shocks to inflation trends and either the unemployment
rate or real GDP growth. Overall, the results corroborate the evidence that real activ-
ity and inflation are strongly related over the business cycle and that the richness of our
baseline specification solely improves the quantitative assessment of this nexus.

Baseline specification. In Appendix D.2, we consider three robustness checks that
validate our results based on the baseline specification. First, we highlight the importance of
properly capturing low-frequency movements in real and nominal variables for the question
at hand. Considering a constrained specification of our baseline model in which all trends
are assumed constant, the shock’s contribution to the volatility of inflation is well within
the range of estimates provided in Angeletos et al. (2020), about 9% of the volatility of the
realized inflation cycle and about 7% of the volatility of expected inflation. Second, the
exclusion of the negative MA component as measurement error for realized inflation does
not undermine our findings. Third, our baseline results are not sensitive to the choice of
two sets of alternative priors that reduce, to a different degree, the standard deviation of
the shock to the trend unemployment rate.

Alternative specifications. We also consider three alternative specifications to model
expectations, while leaving unchanged the decomposition assumed for the other variables.
In Appendix D.3, we provide the details and discuss the results for these three alternative
specifications. The main results are robust to all considered alternative specifications. Here,
we briefly explain how these specifications differ from our baseline.

First, we consider a specification that is more parsimonious than our baseline specifica-
tion. We assume that realized unemployment and one-year-ahead unemployment expec-
tations share a common cyclical component cu,t. Similarly, inflation and one-year-ahead
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inflation expectations share one common cyclical component, cπ,t. Because ten-year-ahead
inflation expectations are fairly stable over time, we treat them as a proxy for trend inflation.
Lastly, we allow for idiosyncratic errors for both inflation expectations. This alternative
specification is more parsimonious than the baseline one because, while considering the
same number of trends, it allows for four, rather than six, cyclical components.

In contrast to the first alternative specification, the second specification is more flexible
than the baseline. Under this alternative specification, the decompositions of unemploy-
ment in (4) and one-year-ahead unemployment rate expectations in (6) are identical to those
assumed under the baseline case. However, we consider a more flexible decomposition for
the two inflation expectations measures. Specifically, the two measures follow separate, id-
iosyncratic cyclical components, while both sharing a common inflation trend with realized
inflation decomposed as under the baseline in (8.1). As a result, this specification allows
for seven, rather than six, cyclical components, one for each observable.

The third and final alternative specification verifies the robustness of the results to the use
of the one-year-ahead unemployment rate expectations for the estimation of the TC-VAR
model by excluding measurement equation (6) for unemployment expectations.

6 VARs and the link between inflation and real activity
In this section, we show that the use of a standard VAR, as opposed to a TC-VAR,

can lead to very different conclusions about the link between real activity and inflation
over the business cycle. This is because the VAR parameters need to account at the same
time for the low-frequency and business-cycle frequency variation observed in the data
with a finite number of observations. We check whether this discrepancy disappears when
imposing alternative priors or when considering a sample that presents less low-frequency
variation. We find that while these extensions help, the results are still quite different from
our baseline analysis based on the TC-VAR.

We proceed to estimate a VAR model with two lags using Bayesian methods. We consider
two sets of priors. In one case, we follow Angeletos et al. (2020) and use a Minnesota prior.
In the other case, we combine a long-run prior à la Giannone et al. (2019a) with the
Minnesota prior. The cointegrating relationships that we assume in this second case are in
line with those of Giannone et al. (2019a) and are described in Appendix E.1. We allow
for separate shrinkage for each active row of the matrix that captures the cointegrating
relationship among the variables. Hyperparameters for the priors are optimized following
Giannone et al. (2019a). We then identify the business cycle unemployment shock in
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Table 4: Variance contributions of unemployment shock: 1955-2019

Unemployment Output Investment Consumption Hours
Minnesota 91.9 71.4 74.4 47.3 75.1

[88.3, 94.5] [66.9, 77.5] [69.4, 79.5] [37.9, 54.4] [70.7, 78.8]

Minnesota 92.4 72.8 74.6 49.7 75.9
+ Long-run [88.7, 94.7] [68.6, 76.1] [70.7, 77.6] [44.2, 58.4] [73.1, 79.4]

TFP Labor share Inflation FFR
Minnesota 19.2 15.1 7.6 36.3

[11.3, 28.1] [9.8, 22.7] [3.9, 17.9] [26.5, 45.4]

Minnesota 18.5 14.9 11.5 38.2
+ Long-run [10.2, 24.4] [11.0, 21.6] [5.9, 17.8] [32.2, 45.9]

Notes: The shock is identified by maximizing its contribution to the volatility of the unemployment rate
over business-cycle frequencies (6-32 quarters). We report the median contribution and the corresponding
68-percent posterior-coverage interval of the identified shock to the variance of all the variables over the
same frequencies.

the frequency domain using the method described in Subsection 4.3. Table 4 reports the
contribution of the shock for each of the variables of the VAR over the same frequencies.

Alternative priors. We first revisit the results obtained by Angeletos et al. (2020) by
allowing for different priors. We extend the estimation sample by two years so that the
periods match those of our baseline analysis, 1955:Q1-2019:Q4. As detailed in Section I of
their paper, the data consist of quarterly observations on unemployment, real GDP, invest-
ment, consumption, hours worked per person, utilization-adjusted total factor productivity
(TFP ), the labor share, inflation, and the FFR.5

The results in Table 4 indicate that, even when combining the Minnesota and long-
run priors, we still recover the evidence of a disconnect between real and nominal variables.
While the identified shock explains nearly 8% of the volatility of inflation over the business-
cycle when only using Minnesota priors, its contribution slightly increases to about 11%
when those priors are combined with long-run priors à la Giannone et al. (2019a). These
results are in line with those obtained from a vast variety of specifications that Angeletos
et al. (2020) consider, including vector error correction models.

Alternative samples. We now consider a sample that is arguably less affected by time-
5We drop labor productivity because it can be measured by the ratio between output and hours worked.

25



Table 5: Variance contributions of unemployment shock: 1984-2008

Unemployment Output Investment Consumption Hours
Minnesota 92.8 54.3 55.3 34.9 69.4

[85.5, 95.6] [43.2, 67.7] [44.8, 67.9] [21.0, 49.5] [61.3, 79.5]

Minnesota 92.8 52.7 55.9 33.1 69.6
+ Long-run [87.7, 95.3] [42.2, 66.6] [45.8, 66.1] [21.3, 53.4] [61.7, 78.1]

TFP Labor share Inflation FFR
Minnesota 9.4 11.6 15.8 63.2

[3.5, 22.1] [3.7, 21.3] [7.3, 39.3] [56.9, 73.9]

Minnesota 9.6 9.9 16.3 63.5
+ Long-run [3.4, 21.5] [3.1, 17.5] [7.7, 29.1] [54.9, 72.3]

Notes: The shock is identified by maximizing its contribution to the volatility of the unemployment rate
over business-cycle frequencies (6-32 quarters). We report the median contribution and the corresponding
68-percent posterior-coverage interval of the shock to the variance of all variables over the same frequencies.

varying trends: 1984:Q1-2008:Q4. We once again consider the two alternative assumptions
about the priors. As expected, the results in Table 5 show that restricting the sample to
the period of the Great Moderation improves the contribution of the identified shock on
inflation. However, such contribution is still small (about 16%) regardless of the priors.
Dogmatic priors. As a final check, we explore whether dogmatic priors combined with the
1984-2008 sample can help in recovering results more similar to our baseline analysis. The
objective is to understand whether the discrepancy can be narrowed with the help of specific
priors. We consider several different combinations of hyperparameters such that the two
Minnesota and long-run priors can be either not imposed, optimized, or set dogmatically.
For this exercise, it is important to notice that we are imposing the same degree of shrinkage
for each active row of the matrix that captures the cointegrating relationships.

Table 6 reports the contribution of the unemployment-identified shock on inflation at
business-cycle frequencies. The results are straightforward to understand. When only
dogmatic Minnesota priors are imposed (see lower left corner of Table 6), the inflation
variance contribution of the unemployment shock is nearly zero. It is not exactly zero
because the shocks are correlated even when the individual series follow a random-walk
process. However, the opposite case of dogmatic long-run priors (see upper right corner of
Table 6) leads to a contribution of the unemployment shock to inflation volatility of about
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Table 6: Inflation variance contribution of unemployment shock: 1984-2008

No long-run Optimized long-run Dogmatic long-run
No Minnesota 25.2 26.2 33.1

[9.2, 42.6] [13.3, 52.4] [11.0, 49.0]

Optimized Minnesota 20.1 26.2 33.1
[11.0, 31.5] [13.3, 52.4] [11.0, 49.0]

Dogmatic Minnesota 2.0 26.2 –
[0.4, 5.6] [13.3, 52.4]

Notes: The shock is identified by maximizing its contribution to the volatility of the unemployment rate
over business-cycle frequencies (6-32 quarters). We report the median contribution and the corresponding
68-percent posterior-coverage interval of the shock to the variance of all variables over the same frequencies.
For long-run priors, we are imposing same degree of shrinkage for each active row of the matrix that captures
the cointegrating relationship among the variables.

33%.6 This is an interesting finding. It suggests that a VAR might recover results similar
to the TC-VAR if (1) tight priors are chosen to reflect the long-run relationships suggested
by economic theory and (2) a sample not subject to sever low-frequency variation is chosen.
Not properly accounting for those features in the data could lead to imprecise conclusions
about how real activity and inflation are connected over the business cycle.
Using the same data as in the TC-VAR. As a final exercise, we bring our attention
back to the data used in Section 5 and described in Subsection 4.1. We focus on the period
of the Great Moderation between 1984 and 2008 and examine the extent to which the
estimated VAR model can reproduce empirical evidence provided by our baseline TC-VAR
model.7 We estimate the model using only a Minnesota prior (“Minnesota”) or combining
it with long-run priors (“Minnesota+Long-run”).8 The cointegrating relationships that we
impose across variables are reported in Appendix E.2. We report the results in Table 7.
Even in this case, the evidence suggests the need of going beyond the VAR dynamics to
examine the relation between real activity and inflation over the business cycle.

6The number 26.2% in the middle of Table 6 does not coincide with 16.3% in Table 5 is because we are
imposing the same degree of shrinkage for each active row of the matrix that captures the cointegrating
relationship among the variables in Table 6 but not in Table 5 which allows for separate shrinkage.

7Relative to the baseline specification, we drop the ten-year-ahead inflation expectations as it is not
straightforward to impose long-run relationships across two inflation expectations series.

8The application of recent techniques—such as those proposed by Demetrescu and Salish (2023)—may
furtherhelp in aligning the results based on VAR models with those from our approach.
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Table 7: Variance contributions of unemployment shock: 1984-2008

Unempl. Output Unempl. FFR Inflation Inflation
exp.(1y) exp.(1y)

Minnesota 86.8 57.2 71.4 70.8 15.3 23.6
[79.0, 93.0] [45.9, 73.1] [61.0, 81.6] [61.8, 78.8] [5.2, 26.2] [13.4, 35.1]

Minnesota 84.1 64.3 72.2 72.2 16.6 26.9
+ Long-run [80.1, 90.4] [49.9, 74.2] [59.4, 81.6] [64.7, 78.2] [5.3, 27.9] [13.5, 47.1]

Notes: The shock is identified by maximizing its contribution to the volatility of the unemployment rate
over business-cycle frequencies (6-32 quarters). We report the median contribution and the corresponding
68-percent posterior-coverage interval of the shock to the variance of all variables over the same frequencies.

7 Reconciling VAR and TC-VAR Results
In this section, we provide theoretical arguments that motivate the adoption of a TC-

VAR model, rather than a standard VAR model, for the results presented in Section 5. In
Subsection 7.1, we show that a fixed-coefficient VAR model estimated over a period of time
that presents structural changes is misspecified, if the goal is trying to assess the comove-
ment at business-cycle frequency. The misspecification problem associated with the use of
a VAR model to describe a data generating process characterized by both low- and high-
frequency movements cannot be easily resolved.9 Even if an econometrician could correctly
reconstruct the VAR representation of the TC-VAR model, the parameter estimates of the
misspecified model would confound low-frequency movements associated with the trend
with those at business-cycle frequencies related to the cycle. Moreover, the reduced-form
innovations that she would recover would not only map into the innovations affecting the
latent persistent and stationary components. By contrast, the reduced-form innovations
would also capture the error associated with the estimates of the latent components. Of
course, in reality, these issues would be exacerbated by the fact that the VAR parameters
estimated over a finite sample would be distorted because a single set of parameters would
need to account for both trend and cycle fluctuations.

In Subsection 7.2, we generate data from a Monte Carlo simulation of a bivariate TC-VAR
model and show that a VAR model does not succeed in capturing the assumed cyclical re-
lationship between the two variables, even with a long data sample. Finally, we consider an

9Watson (1986) discusses the equivalence between an unobserved component model and its autoregres-
sive, integrated, moving average (ARIMA) representation, thus pointing to the misspecification problem
characterizing a VAR representation of a TC-VAR model.
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univariate trend-cycle autoregressive (TC-AR) model of U.S. inflation based on Stock and
Watson (2007) and derive analytically its infinite-order autoregressive (AR) representation.

7.1 Trend-Cycle models and their VAR(∞) representation

Our goal is to map the state-space representation in (14) introduced in Section 3 into a
VAR model. In doing so, we follow the approach proposed in Fernández-Villaverde et al.
(2007). For convenience, we report the state representation in (10) and (11) here:

zt = Λxt, (14.1)

xt = Φxt−1 +Rεt, (14.2)

where εt = Qwt, E (wtw
′
t) = I, and E (εtε

′
t) = Σ. For all the specifications considered

in our analysis, the overall number of shocks of the TC-VAR model is strictly larger than
the number of observables. Equivalently, dim (wt) = (nτ + nc + nη) > n = dim (zt). As a
result, the ‘poor man’s invertibility condition’ proposed in Fernández-Villaverde et al. (2007)
cannot be tested because it requires the number of shocks and observables to coincide. We
therefore seek to find the ‘innovations representation’ of (14).

Because the innovations representation results from the application of the Kalman filter
to the state-space representation, we first ensure the suitability of the filter for our purpose
and more specifically its asymptotic stability and convergence. Clearly, these properties of
the filter depend on the properties of (14) and should not be taken for granted in our setup:
In the transition equation (14.2), the cyclical components are assumed to be stationary,
while trends follow unit-root processes. However, we follow Anderson and Moore (1979)
who suggest to verify two conditions: i) the pair (Φ,RQ) is stabilizable; ii) the pair (Φ,Λ′)

is detectable—or equivalently, the pair (Φ′,Λ′) is stabilizable.10 For all the specifications
of the TC-VAR model that we consider in Section 3, both conditions are satisfied for each
draw obtained from the model estimation.

Having verified the suitability of the Kalman filter, we follow Fernández-Villaverde et al.
(2007) to derive the innovations representation. We express the representation in (14) as

xt+1 = Axt +Bwt+1, (15.1)

zt+1 = Cxt +Dwt+1, (15.2)
10We provide the definition of stabilizability in Appendix F.1. For further details, refer to Burridge and

Wallis (1983), Sargent (1988), Anderson et al. (1996) and Hansen and Sargent (2008, 2013) among others.
We refer the reader to pp. 76-82 and Appendix C in Anderson and Moore (1979) for the details on the
conditions mentioned here and the definition of stabilizability.
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where A = Φ, B = RQ, C = ΛA, D = ΛB and E (wtw
′
t) = I. Defining the linear

projection of xt on zt ≡ {zj}tj=1 as x̂t ≡ E (xt|zt), the one-step-ahead error associated
with the forecast of zt+1 as D̂t+1νt+1 and the term updating the estimator of the state for
the next period x̂t+1 as B̂t+1νt+1, the application of the Kalman filter to (15) delivers the
innovations representation

x̂t+1 = Ax̂t + B̂t+1νt+1, (16.1)

zt+1 = Cx̂t + D̂t+1νt+1, (16.2)

where x0 ∼ (x̂0,Ω0), the covariance matrix Ω0 is positive semi-definite, and νt is a vector
of mean-zero, normal and uncorrelated white-noise innovations such that E (νtν

′
t) = I.

Notably, under this representation, the number of shocks and observables coincide. Also,
because the innovation νt is fundamental for zt by definition, it is uncorrelated with zt−s

and ultimately νt−s for any s ≥ 0.
The innovations representation in (16) shows that, with a finite sample {zt}Tt=1 where

T < ∞, it is not possible to derive a VAR representation because the matrices B̂t and
D̂t depend on time t. As a result, we consider the limit case for T approaching infinity.
Because the asymptotic stability and convergence of the Kalman filter hold, the matrices B̂t

and D̂t also converge to their time-invariant counterparts B̂ and D̂.11 Therefore, we derive
the infinite-order VAR representation by solving (16.2) for νt+1 and combining with (16.1)[

I −
(
A− B̂D̂−1C

)
L
]
x̂t+1 = B̂D̂−1zt+1, (17)

where L denotes the lag operator. The asymptotic properties of the Kalman filter also
guarantee that all the eigenvalues of the matrix

(
A− B̂D̂−1C

)
are all strictly inside the

unite circle in modulus (Anderson and Moore, 1979). Therefore, we solve equation (17) for
x̂t+1 and plug the solution in the time-invariant version of equation (16.2) to obtain the
following VAR(∞) representation

zt+1 = C
[
I −

(
A− B̂D̂−1C

)
L
]−1

B̂D̂−1zt + D̂νt+1

=
∞∑
s=0

C
(
A− B̂D̂−1C

)s
B̂D̂−1zt−s + D̂νt+1, (18)

where we have used the fact that the inverted matrix in square brackets in the first equation
is a square summable polynomial in L.

11Appendix F.2 provides the details on the equations for matrices B̂ and D̂.
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Equation (18) allows us to reach three important conclusions. First, the state-space rep-
resentation of the TC-VAR model in (14) maps into the infinite-order VAR representation
in (18) under the assumption that infinite data are available. As a result, a finite-order
VAR with finite data cannot capture the dynamics described by the decomposition of the
observables zt into trends and cycles. Second, even if infinite data were available, equation
(18) clarifies that estimates of the autoregressive parameters associated with the VAR(∞)
representation confound movements of zt+1 that are driven by both the trend and cycle.
Equivalently, the VAR(∞) representation cannot disentangle movements of zt+1 at low
frequencies from those at cyclical frequencies. Finally, as shown in Fernández-Villaverde
et al. (2007), the innovations associated with the VAR(∞) representation, D̂νt+1, capture
not only the shocks to the latent trends and cycles, Dwt+1, but also the error associated
with the estimate of those latent components, C (xt − x̂t). In Appendix F.3, we provide a
simple analytical example based on an unobserved components model of U.S. inflation by
Stock and Watson (2007) to show the intuition for these results.

These results are not meant to establish the unconditional superiority of a TC-VAR over
a VAR. Over the past four decades, economists have used VARs as extremely flexible econo-
metric models capable of uncovering a variety of enlightening empirical results. However,
for the specific question of assessing the strength of the relation between inflation and real
activity over the business cycle, a TC-VAR appears to be a more effective tool.

7.2 Monte Carlo simulations of a bivariate TC-VAR model

To provide some examples for the theoretical results in Subsection 7.1, let us assume that
the data generating process for unemployment and inflation, zt = {ut, πt}′, is described by
the measurement equation zt = τt + ct, where the dynamics of the trend τt and cyclical
component ct can be modeled as:

τt = τt−1 + ετ,t, (19.1)

ct = Φ1ct−1 + εc,t, (19.2)

where τt = {τu,t, τπ,t}′, ct = {cu,t, cπ,t}′, ετ,t = {ετ,u,t, ετ,π,t}′ and εc,t = {εc,u,t, εc,π,t}′. In this
example, we assume that (19.2) is[

cu,t

cπ,t

]
=

[
ρuu 0

−(1− ρππ)κ ρππ

][
cu,t−1

cπ,t−1

]
+

[
εc,u,t

εc,π,t

]
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implying that, while the cyclical component of unemployment only depends on its lag,
the cyclical component of inflation depends on its lag as well as on the lagged cyclical
component of unemployment. We assume that the shocks are iid :

εt =

[
ετ,t

εc,t

]
∼ N

([
0

0

]
,

[
Στ 0

0 Σc

])
, Στ =

[
στ,u 0

0 στ,π

]
, Σc =

[
σc,u 0

0 σc,π

]
.

Within this framework, we consider four cases of interest. In the first case, unemploy-
ment does not feature low-frequency variation and it is only driven by its business-cycle
movements, while inflation also features changes in the trend. We consider different degrees
of low-frequency variation for inflation, while always maintaining the assumption that its
cycle is affected by cyclical movements in unemployment. Specifically, for unemployment,
we set the autoregressive parameter ρuu to 0.95 and normalize the standard deviation of the
shock to the cycle σc,u to 1. Because we assume that unemployment is not subject to low-
frequency movements, we turn off the shocks to its trend (στ,u=0). Focusing on inflation,
we assume that its cyclical movements are only driven by the corresponding movements
of unemployment, thus assuming ρππ = 0, κ = 1, and σc,π = 0. However, to capture the
degree to which the low-frequency movements drive inflation dynamics, we consider three
values for the standard deviation of the shock to the inflation trend (στ,π). Relative to the
normalized standard deviation of the shock to the cyclical component of the unemploy-
ment rate, the standard deviation of the shock to inflation trend is one order of magnitude
smaller (στ,π = 0.1), equivalent (στ,π=1) or twice as large (στ,π=2). For each calibration,
we produce several, long Monte Carlo simulations that we use to estimate a VAR model,
identify the shock targeting the unemployment rate at business-cycle frequencies, and ul-
timately compute the median contribution of the identified shock to the variance of both
series over the same frequencies.12

For each calibration of the standard deviation of the shock to inflation trend, Table 8
reports the median and 68% posterior-coverage intervals of the median contributions of the
identified shock. As expected, the identified shock fully explains the cyclical movements
of the unemployment rate regardless of the chosen calibration. However, the explanatory
power of the unemployment-identified shock for inflation depends on the importance of the
low-frequency variation in inflation. The higher the low-frequency variation, the lower the

12We generate 500 Monte Carlo simulation of 50, 000 observations of which we keep the last 1, 000 for
each simulation. We choose the lags with the lowest Bayesian Information Criterion (BIC), use a Minnesota
prior as in Angeletos et al. (2020), and keep the last 1, 000 of 50, 000 draws to identify the shock.
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Table 8: Variance contribution of unemployment shock (data simulated with στ,u = 0)

Unemployment Inflation
στ,π = 0.1 100.0 98.8

[100.0, 100.0] [98.7, 98.9]
στ,π = 1 100.0 17.9

[100.0, 100.0] [15.3, 20.4]
στ,π = 2 100.0 4.5

[100.0, 100.0] [3.3, 6.1]

Notes: The shock is identified by maximizing its contribution to the volatility of the unemployment rate
over business-cycle frequencies (6-32 quarters). We report the median and the corresponding 68-percent
posterior-coverage interval of the median contributions of the shock to the variance of all variables over
the same frequencies. To simulate the data, we use the following calibrations. For the unemployment rate,
we set ρuu = 0.95, σc,u = 1 and στ,u = 0. For the inflation rate, we set ρππ = 0, κ = 1, and σc,π = 0 and
στ,π = {0.1, 1, 2}.

degree to which the unemployment-identified shock explains business-cycle movements in
inflation. This conclusion holds even with long data samples and in presence of strong
assumptions about the cyclical relationship between the unemployment rate and inflation.
In line with our results above, the identification of the shock at business-cycle frequencies
does not succeed in extracting the cyclical relationship between unemployment and inflation
because the fixed-coefficient VAR fails to separate cycle and trend innovations in inflation.

For brevity, the results of the other three cases are briefly presented here, while the details
are discussed in Appendix F.4. In the second case, we introduce low-frequency movements
in the unemployment rate, while the inflation rate only follows the cyclical component
of the unemployment rate. In the third case, the underlying true data generating process
features trends in both inflation and unemployment. The results for these two cases confirm
the importance of explicitly controlling for low-frequency movements in both inflation and
unemployment rate to appropriately extract their business-cycle relationship. In the fourth
and last case, output and inflation cycles are assumed to be unrelated, and we ask whether
the TC-VAR would correctly recover the truth. To this end, we simulate a model with
independent persistent processes for inflation and output and then fit the TC-VAR on the
simulated data. We find that a bivariate TC-VAR model correctly recovers the disconnect
between the two simulated series. Thus, the fact that the model has the flexibility of
separating trends from cycles does not mean that it would automatically try to recover
commovement between the two.
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8 Conclusions
In recent years, a series of papers have called into question the validity of the New

Keynesian framework. One important argument is the observation that inflation seems to
be disconnected from business-cycle movements in real activity. In this paper, we used a
Trend-Cycle VAR model to study the relation between inflation and the real economy over
the business cycle. The Trend-Cycle VAR model has the virtue of removing low-frequency
movements in inflation and real activity that can contaminate inference about the VAR
parameters and innovations. We show that at business-cycle frequencies, fluctuations of
inflation are in fact related to movements in real activity, in line with what implied by the
New Keynesian framework. We explain why evidence based on VARs can be misleading.
We see three distinct directions for future research: first, to investigate the drivers of
low-frequency movements in the macroeconomy; second, to allow for the possibility of
multiple shocks at business-cycle frequencies to separate demand-driven and supply-driven
fluctuations; third, to apply the same methods to study the cyclical behavior of other key
macroeconomic variables that feature a strong trend component, such as the employment-
to-population ratio (Fukui et al. (2023)) and the share of employment in middle-skilled jobs
(Jaimovich and Siu (2020)).
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A The State-space Representation
Section 3 presents the state-state representation in (10) and (11) and reported below

in (20)

zt = Λτxτ,t + Λcxc,t + Ληxη,t, (20.1)

xt = Φxt−1 +Rεt, (20.2)

where Λ = [Λτ ,Λc,Λη], Λc = [Λc,0, . . . ,Λc,p−1] and Λη = [Λη,0,Λη,1]. For our baseline
specification, these matrices are constructed as

Φ =


I4×4 04×6 04×6 04×2 02×2

06×4 Φ1 Φ2 06×2 02×2

06×4 I6×6 06×6 06×2 02×2

02×4 02×6 02×6 02×2 02×2

02×4 02×6 02×6 I2×2 02×2

 , R =


I4×4 04×6 04×2

06×4 I6×6 06×2

06×4 06×6 06×2

02×4 02×6 I2×2

02×4 02×6 02×2

 ,

εt =

 ετ,t

εc,t

εη,t

 , Σ =

 Στ 04×6 04×2

06×4 Σc 06×2

02×4 02×6 Ση

 ,

Λ =
[
Λτ,0 Λc,0 Λc,1 Λη,0 Λη,1

]
,

Λτ,0 =



1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

0 0 0 1

0 0 0 1


, Λc,0 =

 I5×5 05×1

0 1

0 δ

 , Λc,1 =

[
−1 01×5

06×1 06×5

]
,
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Λη,0 =


04×1 04×1

1 0

0 0

0 1

 , Λη,1 =


04×1 04×1

−1 0

0 0

0 0

 .

B Data
The following data series are from the Federal Reserve Economic Database (FRED)

maintained by the Federal Reserve Bank of St. Louis:

• Real GDP per capita, A939RX0Q048SBEA, quarterly frequency. We transform the
series by taking quarterly growth rates at annual rate and express these rates in
percentages.

• Unemployment rate, UNRATE, monthly frequency. We transform the series by taking
quarterly averages.

• Inflation, GDPDEF, quarterly frequency. We transform the series for the GDP price
index by taking quarterly growth rates at annual rate and express these rates in
percentages.

• Effective federal funds rate, FEDFUNDS, monthly frequency. Because the series is
already expressed at annual rate, we take quarterly averages.

The following data series are available from the Real-Time Data Research Center main-
tained by the Federal Reserve Bank of Philadelphia:13

• One-year-ahead inflation expectations, INFPGDP1YR, quarterly frequency. The se-
ries corresponds to the median forecast for one-year-ahead annual average inflation
measured by the GDP price index. The series starts in 1970:Q2.

• Ten-year-ahead inflation expectations. We follow Del Negro and Schorfheide (2013)
to construct this time series. Specifically, we combine longer-run inflation expec-
tations from the SPF and the Blue Chip Economic Indicators survey. We use the
ten-year-ahead Consumer Price Index (CPI) inflation expectations from the Blue
Chip survey—from 1979:Q4 to 1991:Q3 and available twice a year—and those from

13The data may contain missing observations. More details are available at the webpage:
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/inflation-forecasts.
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the SPF (INFCPI10YR)—available each quarter starting from 1991:Q4. To com-
bine the measures, we subtract from the ten-year-ahead CPI inflation expectations
the historical average difference between CPI and GDP annualized inflation over the
estimation period.

• One-year-ahead unemployment rate expectations, UNEMP6 , quarterly frequency.
The series corresponds to the median forecast for one-year-ahead unemployment rate.
The series starts in 1968:Q4.

C Estimation Details

C.1 Settings

For all the considered specifications, we assume that the cyclical components evolve ac-
cording to a VAR model with two lags (p = 2) following the baseline approach of Angeletos
et al. (2020). For each estimation, we adopt the Gibbs sampler described in Appendix
C.2. We use 50,000 draws to estimate the TC-VAR model. We then discard the first
25,000 draws and keep one in every 25 draws, thus leaving 1,000 draws, to use for the
identification of the shocks.

C.2 Gibbs Sampler

We assume that some element of Ση is known. We collect parameters that need to be
estimated in

Θτ = {Στ}, Θc = {Φ1,Φ2,Σc}, Θe = {δ,Ση}.

We use the Gibbs sampler to estimate the model unknowns. We rely on the state-space
representation of (10) and (11). For the jth iteration,

• Run Kalman smoother to generate τ j1:T and cj0:T conditional on Θj
τ ,Θ

j
c: This is ex-

plained in Subsection C.2.1.

• Obtain posterior estimates of Θj+1
τ ,Θj+1

c ,Θj+1
e from the MNIW conditional on τ j1:T

and cj0:T : This is explained in Subsection C.2.2.
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C.2.1 Kalman smoother

We rely on the state-space representation in equations (10) and (11). Conditional on the jth
draw of Θj

τ ,Θ
j
c, we apply the standard Kalman filter as described in Durbin and Koopman

(2001). Suppose that the distribution of

xt−1|{z1:t−1,Θ
j
τ ,Θ

j
c} ∼ N(xt−1|t−1, Pt−1|t−1).

Then, the Kalman filter forecasting and updating equations take the form

xt|t−1 = Φxt−1|t−1

Pt|t−1 = ΦPt−1|t−1Φ
′ +RΣR′

xt|t = xt|t−1 + (ΛPt|t−1)
′(ΛPt|t−1Λ

′)−1
(
zt − Λxt|t−1

)
Pt|t = Pt|t−1 − (ΛPt|t−1)

′(ΛPt|t−1Λ
′)−1(ΛPt|t−1).

In turn,
xt|{z1:t,Θj

τ ,Θ
j
c} ∼ N(xt|t, Pt|t).

Next, the backward smoothing algorithm developed by Carter and Kohn (1994) is applied
to recursively generate draws from the distributions xt|(Xt+1:T , Z1:T ,Θ

j
τ ,Θ

j
c) for t = T −

1, T − 2, . . . , 1. The last element of the Kalman filter recursion provides the initialization
for the simulation smoother:

xt|t+1 = xt|t + Pt|tΦ
′P−1

t+1|t
(
xt+1 − Φxt|t

)
(21)

Pt|t+1 = Pt|t − Pt|tΦ
′P−1

t+1|tΦPt|t

xj
t ∼ N(xt|t+1, Pt|t+1), t = T − 1, T − 2, ..., 1.

In sum, we obtain smoothed estimates of τ j1:T and cj0:T .

C.2.2 Posterior draw

We treat the smoothed estimates of τ j1:T and cj0:T as data points. The objective is to draw
Θj+1

τ and Θj+1
c .

VAR coefficients. For ease of exposition, we omit the superscript j below. For t ∈
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{2, ..., T}, we express the VAR as

c′t =
[
c′t−1 c′t−2

]
︸ ︷︷ ︸

w′
t

[
Φ′

1

Φ′
2

]
︸ ︷︷ ︸

β

+ϵ′c,t, ϵc,t ∼ N(0,Σc). (22)

Define X = [c2, ...cT ]
′, W = [w2, ..., wT ]

′, and ϵc = [ϵc,2, ..., ϵc,T ]
′ conditional on the initial

observations. If the prior distributions for β and Σc are

β|Σ ∼ MN
(
β,Σ⊗ (V βξ)

)
, Σc ∼ IW (Ψ, d), (23)

then because of the conjugacy the posterior distributions can be expressed as

β|Σ ∼ MN
(
β,Σ⊗ V β

)
, Σc ∼ IW (Ψ, d) (24)

where

β =
(
W ′W + (V βξ)

−1
)−1(

W ′X + (V βξ)
−1β
)
, (25)

V β =
(
W ′W + (V βξ)

−1
)−1

,

Ψ = (X −Wβ)′(X −Wβ) + (β − β)′(V βξ)
−1(β − β) + Ψ,

d = T − 2 + d.

We follow the exposition in Giannone et al. (2015) in which ξ is a scalar parameter con-
trolling the tightness of the prior information in (23). For instance, prior becomes more
informative when ξ → 0. In contrast, when ξ = ∞, then it is easy to see that β = β̂, i.e.,
an OLS estimate.

In sum, we draw βj+1 and Σj+1 from (24). Hence, we obtain Θj+1
c = {Φj+1

1 ,Φj+1
2 ,Σj+1

c }.

Trend component variances. Conditional on τ j1:T , the objective is to draw Θj+1
τ =

{Σj+1
τ }. For ease of exposition, we omit the superscript j below. Define X = [τ2, ..., τT ]

′

and W = [τ1, ..., τT−1]
′. Similarly as before we draw from

Στ ∼ IW (Ψ, d), Ψ = (X −W )′(X −W ) + Ψ, d = T − 1 + d. (26)

Parameters for survey expectations. Conditional on τ j1:T and cj1:T , the objective is to
draw Θj+1

e = {δj+1,Σj+1
η }. For ease of exposition, we omit the superscript j below. Define

5



X = [πe,10y
1 − τπ,1, ..., π

e,10y
T − τπ,T ]

′ and W = [ceπ,1, ..., c
e
π,T ]

′. We draw δj+1 and Σj+1
η from

posterior distributions expressed in (24).

D Robustness Checks
This appendix provides more details on the robustness checks presented in Subsection

5.3.

D.1 Robustness checks via bivariate specification
This appendix documents that our main finding does not depend on the richness of our

baseline specification. To this end, we explore two versions of a simple bivariate system.
Both versions rely on baseline data concerning realized and one-year-ahead average ex-
pected inflation. The difference lies in one version incorporating the unemployment rate
alongside its one-year-ahead survey expectation, while the other version is based on data
related to real GDP growth. Realized and expected data for nominal or real variables
share a common trend and a common cycle—while accounting for model-consistent expec-
tations.14 As in our baseline, the trends follow unit-root processes and the cycles a VAR(2)
model. For both versions, we make three sets of assumptions about measurement errors.
We consider the case in which only survey expectations have measurement errors, the case
when also realized inflation is subject to those errors, and ultimately a case with measure-
ment errors for all series. We estimate each bivariate model using six sets of priors, varying
in the tightness concerning the standard deviation of shocks to inflation trends and either
the unemployment rate or real GDP growth.

A bivariate TC-VAR model. Let us denote inflation by π and a real variable—either
unemployment rate or real GDP growth—by s. We assume that trends and cycles evolve
as[

τs,t

τπ,t

]
=

[
1 0

0 1

][
τs,t−1

τπ,t−1

]
+

[
ϵτ,s,t

ϵτ,π,t

]
, ϵτ,t ∼ N(0,Στ ), (27)[

cs,t

cπ,t

]
=

[
ρ1ss ρ1sπ

ρ1πs ρ1ππ

][
cs,t−1

cπ,t−1

]
+

[
ρ2ss ρ2sπ

ρ2πs ρ2ππ

][
cs,t−2

cπ,t−2

]
+

[
ϵc,s,t

ϵc,π,t

]
, ϵc,t ∼ N(0,Σc).

14We have chosen this approach to maintain parsimony, avoiding the introduction of additional inde-
pendent components for survey expectations.
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More compactly, 
τt

ct

ct−1

ηt

ηt−1

 =


I 0 0 0 0

0 ρ1 ρ2 0 0

0 I 0 0 0

0 0 0 0 0

0 0 0 I 0




τt−1

ct−1

ct−2

ηt−1

ηt−2

+


ϵτ,t

ϵc,t

0

εη,t

0

 . (28)

For convenience, denote

γt = ργt−1 + εc,t (29)

where

γt =

[
ct

ct−1

]
, ρ =

[
ρ1 ρ2

I 0

]
, εc,t =

[
ϵc,t

0

]
. (30)

The state-transition equation becomes
τt

γt

ηt

ηt−1

 =


I 0 0 0

0 ρ 0 0

0 0 0 0

0 0 I 0




τt−1

γt−1

ηt−1

ηt−2

+


ϵτ,t

εc,t

εη,t

0

 , εη,t ∼ N(0,Ση). (31)

The measurement equation is

zt =
[
Λτ Λγ Λη,0 Λη,1

]
xt. (32)

Specifications. We explore two scenarios: one where we incorporate the unemployment
rate and inflation into the estimation, and another where we utilize real GDP growth and
inflation. In both cases, we enhance the model by including their respective 4-quarter-ahead
survey expectations:

• Unemployment and inflation: zt = (ue
t , π

e
t , ut, πt)

′; define e′s = [1, 0, 0, 0] and e′π =

[0, 1, 0, 0].

• GDP growth and inflation: zt = (get , π
e
t , gt, πt)

′; define e′s = [1, 0,−1, 0] and e′π =

[0, 1, 0, 0].
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We impose

Λτ =


1 0

0 1

1 0

0 1

 , Λγ =


e′sρ

4

1
4
e′π(ρ

4 + ρ3 + ρ2 + ρ1)

e′s

e′π

 , (33)

and consider the following three cases for Λη:

(M1) Measurement errors for survey expectations

Λη,0 =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 , Λη,1 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 . (34)

(M2) Measurement errors for survey expectations and inflation

Λη,0 =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

 , Λη,1 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

 . (35)

(M3) Measurement errors for all series

• Unemployment and inflation

Λη,0 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , Λη,1 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

 . (36)

• GDP growth and inflation
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Λη,0 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , Λη,1 =


0 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 −1

 . (37)

Priors. We consider six sets of priors for (27)

p(Στ ) = IW(κτ , (κτ + nτ + 1)Στ ). (38)

Specifically, with respect to (38), we set κτ to 100 and vary

(P1) diag(Στ ) = [1/120, 1/120];

(P2) diag(Στ ) = [1/80, 1/80];

(P3) diag(Στ ) = [1/40, 1/40];

(P4) diag(Στ ) = [1/120, 1/60];

(P5) diag(Στ ) = [1/80, 1/40];

(P6) diag(Στ ) = [1/60, 1/40].

We set the measurement error variance priors as follows: κτ = 100 as before, and we impose
diag(Σ̄η) = [3.0, 3.0, 3.0, 3.0].

Results. For each estimated specification, we identify the shock with the largest con-
tribution to the volatility of the cyclical component of realized unemployment rate or real
GDP. Table 9 reports the median contribution and the corresponding 68-percent posterior-
coverage interval of the identified shock to the variance of the cycle over all the frequencies
of the cycle. Out of the 36 estimated specifications, the median contribution of the iden-
tified shocks ranges between 33.6% and 95.3%. These results corroborate the evidence of
a strong empirical nexus between real activity and inflation over the business cycle. The
richness of our baseline specification solely improves the quantitative assessment of this
nexus.

D.2 Robustness checks within baseline specification
In this appendix, we check the robustness of our results based on the baseline specification.
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Table 9: Variance contributions of the unemployment/GDP shock to inflation

Unemployment shock GDP shock

(M1) (M2) (M3)

(P1) 83.35 95.04 53.34
[66.35, 90.93] [89.81, 97.04] [20.97, 76.97]

(P2) 82.06 92.83 42.30
[68.34, 92.57] [85.31, 97.01] [10.79, 70.28]

(P3) 76.04 91.70 33.89
[38.16, 93.96] [81.07, 96.87] [11.24, 66.22]

(P4) 87.67 90.47 58.09
[66.75, 93.74] [74.04, 95.61] [19.74, 84.58]

(P5) 85.99 95.27 46.03
[66.16, 93.02] [88.42, 97.93] [5.53, 81.01]

(P6) 81.67 94.24 41.40
[57.04, 91.56] [85.08, 97.83] [16.19, 75.41]

(M1) (M2) (M3)

(P1) 33.56 72.18 41.80
[20.58, 48.37] [56.04, 87.50] [27.57, 61.63]

(P2) 50.29 65.13 66.08
[33.64, 71.81] [48.96, 82.47] [41.18, 83.11]

(P3) 54.06 62.91 65.42
[35.36, 72.04] [44.74, 81.81] [46.40, 82.23]

(P4) 43.78 53.95 53.80
[26.21, 60.75] [33.83, 73.27] [40.04, 72.82]

(P5) 42.87 53.55 55.84
[27.01, 61.19] [33.73, 71.16] [41.48, 70.77]

(P6) 45.86 57.86 53.79
[33.31, 65.21] [43.56, 77.81] [38.24, 73.09]

Notes: The shock is identified by maximizing its contribution to the volatility of the cyclical component
of realized unemployment rate or real GDP. The shock is chosen to maximize the fraction of the volatility
over all the frequencies of the cycle. We report the median contribution and the corresponding 68-percent
posterior-coverage interval of the identified shock to the variance of the cycle of inflation over the corre-
sponding frequencies.

D.2.1 Importance of time-varying trends

Our main results highlight the importance of properly capturing low-frequency movements
in real and nominal variables. By treating the latent trends as time-varying objects, our
model is able to assess the relationship between those variables at business-cycle frequencies.
To elucidate this point, we consider a constrained specification in which all trends are
assumed constant. Specifically, we leave unchanged all other assumptions about priors
and initial conditions and simply set the standard deviation of shocks to the trends to
zero. Table 10 reports the contributions of the identified shock to the volatility of the
cyclical components of the unemployment rate as well as the remaining variables over the
same frequencies. Note that now the shock only explains about 9% of the volatility of the
realized inflation cycle and about 7% of the volatility of expected inflation. The estimate
of the shock’s contribution to the volatility of inflation is well within the range of estimates
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Table 10: Variance contributions of unemployment shock: When trends are constant

Business-cycle frequencies (6− 32 quarters)

Unempl. Output Unempl. FFR Inflation Inflation
exp.(1y) exp.

89.7 46.6 92.5 44.7 9.2 7.3
[86.7,92.4] [39.9,54.5] [89.5,94.6] [37.0,53.2] [4.9,14.9] [3.4,12.5]

Notes: The shock is identified by maximizing its contribution to the volatility of the cyclical component
of realized unemployment rate over business-cycle frequencies (6-32 quarters). We report the median
contribution and the corresponding 68-percent posterior-coverage interval of the identified shock to the
variance of the cycle of all variables over the same frequencies.

provided in Angeletos et al. (2020). The similarity of our findings under this scenario to
those of Angeletos et al. (2020) is not surprising. Once the latent trends are assumed to
be constant, our model collapses to a VAR model, with the only distinction that output is
modeled in deviations from a linear trend and the other variables are demeaned.

D.2.2 No measurement errors for inflation

Our baseline specification includes a negative MA component as measurement error for
realized inflation. This modelling choice aims at capturing and purging our results from
some of the high-frequency movements of inflation due to energy prices. In this subsection,
we verify that the exclusion of measurement errors for realized inflation does not undermine
our findings. In contrast, we show that the main results carry over, supporting the inclu-
sion of those measurement errors to sharpen the empirical evaluation of the business-cycle
relationship between nominal and real variables.

Relative to our baseline specification, we consider a specification that removes the MA
component of the measurement error for realized inflation. We estimate the model with the
priors specified in Section 4.2 and identify the shock by targeting the cyclical component
of the unemployment rate over all the frequencies of the cycle. Panel (A) of Table 11
reports the median—and the 68% posterior-coverage interval—for the contribution of the
identified shock to the variance of the cycle of all variables. Not surprisingly, the shock
can explain a large share of the fluctuations of the unemployment-rate cycle. However,
the shock can also explain a sizable fraction of the cyclical component of realized inflation.
The unemployment-identified shock can explain around 43% and nearly 69% of the cyclical
movements of realized and expected inflation, respectively. If we identify the shock by
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Table 11: Robustness checks within baseline specification

All frequencies (0−∞ quarters)

Unempl. Output Unempl. FFR Inflation Inflation
exp.(1y) exp.

A. No measurement errors for inflation
74.8 80.0 79.5 20.7 43.7 68.8

[66.1,83.9] [64.9,88.9] [68.7,88.0] [5.7,48.1] [19.5,68.4] [29.1,92.9]

B. Alternative priors
Conservative 68.6 59.3 66.0 57.2 30.5 45.3
priors [58.6, 81.3] [46.9, 74.2] [54.8, 79.3] [26.3, 81.7] [10.6, 55.6] [15.3, 76.2]

Tight 67.0 62.6 65.0 48.0 28.4 38.7
priors [57.6, 78.1] [45.9, 79.2] [55.1, 77.8] [12.8, 79.7] [9.9, 61.4] [9.4, 78.4]

Notes: The shock is identified by maximizing its contribution to the volatility of the cyclical component of
realized unemployment rate over all the frequencies of the cycle. We report the median contribution and
the corresponding 68-percent posterior-coverage interval of the identified shock to the variance of the cycle
of all variables over the corresponding frequency.

targeting the cyclical component of the real GDP or we exclude frequencies that imply
cycles less than 1.5 years, the results suggest a slightly stronger empirical relationship.

D.2.3 Alternative priors

We now show that our baseline results with time-varying trends are not sensitive to the
choice of alternative priors for the standard deviation of the shock to the trend unemploy-
ment rate. In our baseline specification, we set the standard deviation for the expected
change in the trend unemployment rate to 1% over a time period of 20 years. We now con-
sider two alternative priors: a “Conservative” prior which sets that standard deviation to 1%
over a period of 30 years and a “Tight” prior which assumes the same standard deviation but
over a period of 40 years. Panel (B) of Table 11 reports the median contributions—and the
associated 68-percent posterior-coverage intervals—of the unemployment-identified shock
to the variability of each cyclical component under the two alternative priors. Setting an
increasingly tighter prior on the standard deviation of the shock to the trend unemployment
rate does not affect the results. The shock explains between about 60 - 70% of the cyclical
components of the real variables. Similarly, the shock’s contributions on the variability
of the cyclical components of the nominal variables are also robust to the choice of either
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prior. We also obtain slightly stronger results for the case in which the shock is identified
over all frequencies of the cycle excluding those that imply cycles less than 1.5 years.

D.3 Alternative specifications

In this appendix, we present details on the three alternative specifications considered in
Subsection 5.3 and, for each alternative, we describe the assumptions about initial condi-
tions and priors used for the model estimation, and report the corresponding results.

D.3.1 Parsimonious specification

Specification and priors. In this alternative, we consider a more parsimonious specifi-
cation than the baseline. We assume that realized unemployment rate and one-year-ahead
unemployment rate expectations evolve as

ut = τu,t + cu,t, (39.1)

ue,1y
t = τu,t + cu,t + ηe,1yu,t , (39.2)

thus sharing the common cyclical component cu,t. We allow for observation error on the
one-year-ahead unemployment expectations. We decompose the inflation measures as

πt = τπ,t + cπ,t + ηπ,t − ηπ,t−1, (40.1)

πe,1y
t = τπ,t + cπ,t + ηe,1yπ,t , (40.2)

πe,10y
t = τπ,t + ηe,10yπ,t . (40.3)

Therefore, we assume one common cyclical component for inflation, cπ,t, which is shared
across realized inflation and the one-year-ahead inflation expectation. We assume that ten-
year-ahead inflation expectations proxy for the trend component but does not include any
cyclical component. Lastly, we allow for idiosyncratic errors for both inflation expectations.

In this case, the vectors of observables, trends and shocks to the trends are unchanged
relative to the baseline, while we re-define the other vectors as

ct = {cy,t, cu,t, cf,t, cπ,t}′ , ηt =
{
ηπ,t, η

e,1y
π,t , η

e,10y
π,t

}′
, εc,t = {εc,y,t, εc,u,t, εc,f,t, εc,π,t}′ .

Evidently, this alternative specification is more parsimonious than the baseline because,
while considering the same number of trends, it allows for four, rather than six, cyclical
components.

13



Table 12: Parsimonious specification: Variance contributions of unemployment shock

All frequencies (0−∞ quarters)

Unempl. Output FFR Inflation
74.7 81.6 44.7 39.2

[64.0,85.6] [70.2,90.2] [19.2,73.6] [24.3,54.2]

All-but-short-run frequencies (6−∞ quarters)
Unempl. Output FFR Inflation

75.8 82.7 44.6 44.9
[64.9,86.3] [71.1,90.9] [19.6,72.3] [28.0,59.8]

Notes: The shock is identified by maximizing its contribution to the volatility of the cyclical common
component of the unemployment rate. We consider two cases. In the first case, the shock is chosen to
maximize the fraction of the volatility over all the frequencies of the cycle, while in the second case we
exclude frequencies that imply cycles less than 1.5 years. We report the median contribution and the
corresponding 68-percent posterior-coverage interval of the identified shock to the variance of the cycle of
all variables over the corresponding frequencies.

Initial conditions and priors. Under this alternative specification, we leave unchanged
the assumptions on the initial conditions of the trends and the prior for the standard
deviation of the shocks to the trend components. As a result, the prior covariance matrix
of the shocks to the trends is diagonal with the following elements on the main diagonal
diag

(
Στ

)
= [1/40, 1/20, 1/20, 1/20]. Finally, we need to set the prior for the standard

deviation of the shocks affecting the four cyclical components. For real GDP and nominal
interest rate, we keep the same priors as under the baseline. For the common cyclical
components of unemployment rate and inflation, we set those priors to the pre-sample
standard deviations of the respective realized measures of unemployment rate and inflation.
Therefore, the prior covariance matrix of the shocks to the cycles is diagonal and such that
the value on the main diagonal approximately correspond to diag

(
Σc

)
= [25, 1.3, 0.6, 2.2].

Results. We estimate the alternative specification of the TC-VAR model using the state-
space representation in (10) and (11) and subsequently identify the shock targeting the
common cyclical component of unemployment rate. We report in Table 12 the contributions
of the identified shock to the volatility of each cyclical components. Even in this case, the
results are in line with those of the baseline specification. When the shock is identified over
all frequencies, it accounts for about 39% of the cyclical volatility of the cyclical common
component of inflation. When we identify the shock excluding frequencies that imply cycles
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less than 1.5 years, the same contribution of the shock rises to nearly 45%.

D.3.2 Flexible specification

Specification and priors. Under this alternative specification, the decompositions of
realized unemployment rate in (4) and one-year-ahead unemployment rate expectations in
(6) are identical to those assumed under the baseline. However, we consider the following
more flexible decomposition for the two inflation expectations measures

πe,1y
t = τπ,t + ce,1yπ,t , (41.1)

πe,10y
t = τπ,t + ce,10yπ,t . (41.2)

Hence, the two inflation expectation measures follow separate, idiosyncratic cyclical com-
ponents, while both sharing a common inflation trend with realized inflation decomposed
in (8.1). For this alternative specification, the vectors of observables, measurement error,
trends and shocks to the trends are unchanged relative to the baseline. However, the vectors
of the cyclical components and the associated disturbances are re-written as

ct =
{
cy,t, cu,t, c

e,1y
u,t , cf,t, cπ,t, c

e,1y
π,t , c

e,10y
π,t

}′
, εc,t =

{
εc,y,t, εc,u,t, ε

e,1y
c,u,t, εc,f,t, εc,π,t, ε

e,1y
c,π,t, ε

e,10y
c,π,t

}′
,

therefore allowing for seven, rather than six, idiosyncratic cyclical components.
Initial conditions and priors. Under this alternative specification, we keep the same
assumptions on the initial conditions of the trends and the standard deviation of the shocks
to the trends as under the baseline, that is diag

(
Στ

)
= [1/40, 1/20, 1/20, 1/20].

For the shocks to the cyclical components, we assume the same priors as under the
baseline for real GDP growth, realized and expected unemployment rate, nominal interest
rate and inflation. Because the measures of one- and ten-year-ahead inflation expectations
are not available for the pre-sample period, we set the standard deviations of the shocks
to those cyclical components to about 1.2% and 1% respectively, thus smaller than the
pre-sample counterpart of 1.5% for realized inflation. As a result of these assumptions, the
prior covariance matrix of the shocks to the cycles is diagonal and such that the values on
the main diagonal approximately correspond to diag

(
Σc

)
= [25, 1.3, 0.8, 0.6, 2.2, 1.4, 1.0].

Results. We estimate the proposed alternative specification of the TC-VAR model and
identify the shock targeting the cyclical component of realized unemployment rate. In
Table 13, we report the shock’s contributions to the volatility of the cyclical components of
all variables. The results show that the findings under the baseline specification carry over.
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Table 13: Flexible specification: Variance contributions of unemployment shock

All frequencies (0−∞ quarters)

Unempl. Output Unempl. FFR Inflation Inflation Inflation
exp.(1y) exp.(1y) exp.(10y)

67.6 60.1 65.5 51.2 17.5 33.8 12.3
[58.2,78.6] [49.0,71.6] [54.8,76.7] [27.3,71.7] [7.6,33.7] [16.5,54.7] [4.8,26.9]

All-but-short-run frequencies (6−∞ quarters)
Unempl. Output Unempl. FFR Inflation Inflation Inflation

exp.(1y) exp.(1y) exp.(10y)
68.6 60.0 68.8 51.8 20.2 38.9 18.4

[58.8,80.0] [48.5,71.9] [57.2,80.5] [26.4,73.0] [8.4,38.0] [19.2,62.0] [7.3,40.3]

Notes: The shock is identified by maximizing its contribution to the volatility of the cyclical component of
realized unemployment rate. We consider two cases. In the first case, the shock is chosen to maximize the
fraction of the volatility over all the frequencies of the cycle, while in the second case we exclude frequencies
that imply cycles less than 1.5 years. We report the median contribution and the corresponding 68-percent
posterior-coverage interval of the identified shock to the variance of the cycle of all variables over the
corresponding frequencies.

In fact, the shock explains nearly 34% of the volatility of the cyclical component of one-
year-ahead inflation expectations which we consider as a measure of underlying inflation.
When excluding movements in cyclical components at frequencies higher than 1.5 years,
the results point to an increase to about 39% in the explanatory power of the identified
shock for the cyclical component of underlying inflation.

D.3.3 Specification with no unemployment rate expectations

Specification and priors. Under the third and final alternative specification, we exclude
the measurement equation (6) for the expectations of the one-year-ahead unemployment
rate, while leaving all the other decompositions as under the baseline. As a result, only the
vectors of observables, cyclical components and the associated disturbances are modified
as follows

zt =
{
gt, ut, ft, πt, π

e,1y
t , πe,10y

t

}′
, ct =

{
cy,t, cu,t, cf,t, cπ,t, c

e
π,t

}′
, εc,t =

{
εc,y,t, εc,u,t, εc,f,t, εc,π,t, ε

e
c,π,t

}′
.

Initial conditions and priors. Even under this alternative specification, we keep the
same assumptions on the initial conditions of the trends and the standard deviation of the
shocks to the trends as under the baseline, that is diag

(
Στ

)
= [1/40, 1/20, 1/20, 1/20].
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Table 14: No unemployment rate expectations: Variance contributions of unemployment
shock

All frequencies (0−∞ quarters)

Unempl. Output FFR Inflation Inflation
exp.

71.2 80.4 56.2 44.5 51.5
[61.2,81.5] [69.4,88.1] [21.8,81.9] [29.8,57.7] [25.3,71.2]

All-but-short-run frequencies (6−∞ quarters)
Unempl. Output FFR Inflation Inflation

exp.
72.2 81.2 55.7 49.8 57.4

[62.2,82.4] [70.5,88.7] [21.9,81.6] [34.1,62.7] [28.5,77.6]

Notes: The shock is identified by maximizing its contribution to the volatility of the cyclical component
of the unemployment rate. We consider two cases. In the first case, the shock is chosen to maximize the
fraction of the volatility over all the frequencies of the cycle, while in the second case we exclude frequencies
that imply cycles less than 1.5 years. We report the median contribution and the corresponding 68-percent
posterior-coverage interval of the identified shock to the variance of the cycle of all variables over the
corresponding frequencies.

For the shocks to the cyclical components, we simply drop the assumption on the stan-
dard deviation for the cyclical component of the one-year-ahead unemployment rate ex-
pectations, while keeping the other assumptions as under the baseline. The resulting prior
covariance matrix of the shocks to the cycles is diag

(
Σc

)
= [25, 1.3, 0.6, 2.2, 1.4].

Results. After estimating the TC-VAR model under the assumptions of the proposed
alternative specification, we identify the shock targeting the cyclical component of real-
ized unemployment rate. Table 14 reports the contributions of the identified shock to the
volatility of the cyclical components of all variables. The results verify the robustness of
our main findings to the exclusion of the one-year-ahead unemployment rate expectations
for the estimation of the TC-VAR model. In fact, the shock explains about 44% and 51%
of the volatility of the cyclical component of realized inflation and one-year-ahead infla-
tion expectations respectively. Excluding movements in cyclical components at frequencies
higher than 1.5 years, the contribution of the shock to the cyclical components of realized
and expected inflation reaches about 51% and 57% respectively.
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E Details on Long-run Priors

E.1 Long-run priors for Angeletos et al. (2020)

As detailed in Section I of Angeletos et al. (2020), their data consist of quarterly obser-
vations on the following macroeconomic variables: real, per-capita levels of GDP (Yt),
investment (It), consumption (Ct); unemployment rate (ut); hours worked per person
(ht); the level of utilization-adjusted total factor productivity (TFPt); the labor share
(wtht/Yt); the inflation rate (πt), as measured by the rate of change in the GDP defla-
tor; and the nominal interest rate (Rt), as measured by the FFR. When estimating the
VAR model using the long-run priors, we consider the arbitrary ordering of the observ-
ables zt = {Yt, It, Ct, ut, ht, TFPt, wtht/Yt, πt, Rt}′. We assume that the following matrix
H captures the cointegrating relationships in the long run

H =



1 1 1 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 −1 1


.

E.2 Long-run priors for VAR model in Section 6

When estimating the VAR model on our data and using the long-run priors, we consider
the arbitrary ordering of the observables zt =

{
gt, ut, ft, πt, π

e,1y
t , ue,1y

t

}′
. We assume that
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the following matrix H captures the cointegrating relationships in the long run

H =



1 0 0 0 0 0

0 1 0 0 0 1

0 1 0 0 0 −1

0 0 1 −1 0 0

0 0 1 1 1 0

0 0 0 −1 1 0


. (42)

F Supplementary Material to Section 7

F.1 Definition of stabilizability

Definition 1 The pair (A,B) is stabilizable if any of the following conditions holds:

• There exists no left eigenvector of A associated with an eigenvalue having nonnegative
real part that is orthogonal to the columns of B;ν∗A = λν (Re[λ(A)] ≥ 0)

ν∗B = 0
⇒ ν = 0.

• rank [λI − A B] = dim(A) for all Re[λ(A)] ≥ 0.

F.2 Matrices for time-invariant innovations representation

As shown in Fernández-Villaverde et al. (2007), the time-invariant matrices B̂ and D̂

satisfy the following equations:

Ω = AΩA′ +BB′ − (AΩC ′ +BD′) (CΩC ′ +DD′)
−1

(AΩC ′ +BD′)
′
, (43.1)

K = (AΩC ′ +BD′) (CΩC ′ +DD′)
−1

, (43.2)

D̂D̂′ = DD′ + CΩC ′, (43.3)

B̂ = KD̂. (43.4)

F.3 The AR representation of a univariate TC-AR model

In this appendix, we provide an intuitive, analytical example that considers the unob-
served components model used by Stock and Watson (2007) to test whether the U.S. infla-

19



tion process experienced a structural change since the beginning of the Great Moderation.
Inflation is described by the following state-space representation

πt = Λττπ,t + Ληηπ,t, (44.1)

τπ,t = Φττπ,t−1 +Rετ,π,t, (44.2)

where
Φτ = 1, R = 1, Λτ = 1, Λη = 1,

and ετ,π,t = Qwτ,π,t, Q = στ , ηπ,t = σηwη,π,t such that E (wtw
′
t) = I where wt =

{wτ,π,t, wη,π,t}′. Defining zt = πt and xt = τt, the representation in (44) coincides with
(10) and (11) where, following the notation in Anderson and Moore (1979), we appended
the measurement error ηπ,t directly in (10) as opposed to redundantly defining it in the
transition equation (11). Thus, we verify two conditions: i) the pair (Φτ ,RQ) is stabiliz-
able; ii) the pair (Φ′

τ ,Λ
′
τ ) is stabilizable. Because Φτ has only one (unit-root) eigenvalue,

then
rank [I − Φτ RQ] = rank [0 στ ] = 1,

and
rank [I − Φ′

τ Λ′
τ ] = rank [0 1] = 1.

Therefore, the asymptotic properties of the Kalman filter hold, and we can derive the
AR(∞) representation of (44). In particular, we write (44) as in (15) where

A = 1, B =
[
στ 0

]
, C = 1, D =

[
στ ση

]
,

assuming that the shock to the trend is ετ,π,t = στwτ,π,t and the measurement error is
ηπ,t = σηwη,π,t and E (wtw

′
t) = I where wt = {wτ,π,t, wη,π,t}′. Defining στ̂ ≡ Ω as the

variance of the error associated with the estimate of the trend, (τπ,t − τ̂π,t), we can use the
equation (43) in Appendix F.2 to derive the time-invariant matrices B̂ and D̂ as

σ2
τ̂ =

1

2

(
−σ2

τ +
√
σ4
τ + 4σ2

τσ
2
η

)
> 0, (45.1)

K = 1− δ, (45.2)

D̂D̂′ =
(
σ2
τ̂ + σ2

τ + σ2
η

)
, (45.3)

B̂ = (1− δ)
(
σ2
τ̂ + σ2

τ + σ2
η

)1/2
, (45.4)
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Table 15: Variance contribution of unemployment shock (data simulated with στ,π = 0)

Unemployment Inflation
στ,u = 0.1 100.0 98.8

[99.9, 100.0] [98.7, 98.9]
στ,u = 1 99.3 14.3

[98.7, 99.7] [11.9, 16.8]
στ,u = 2 99.6 3.2

[99.0, 99.9] [2.2, 4.4]

Notes: The shock is identified by maximizing its contribution to the volatility of the unemployment rate
over business-cycle frequencies (6-32 quarters). We report the median and the corresponding 68-percent
posterior-coverage interval of the median contributions of the shock to the variance of all variables over the
same frequencies. To simulate the data, we use the following calibrations. For the unemployment rate, we
set ρuu = 0.95, σc,u = 1 and στ,u = {0.1, 1, 2}. For the inflation rate, we set ρππ = 0, κ = 1, and σc,π = 0
and στ,π = 0.

where δ = σ2
η/
(
σ2
τ̂ + σ2

τ + σ2
η

)
< 1. Finally, using (18) and (45), we map the state-space

representation in (44) into the infinite-order autoregression, AR(∞),

πt+1 =
∞∑
s=0

C
(
A− B̂D̂−1C

)s
B̂D̂−1πt−s + D̂νt+1

=
∞∑
s=0

C (A−KC)s Kπt−s + D̂νt+1,

= (1− δ)
∞∑
s=0

δsπt−s +
(
σ2
τ̂ + σ2

τ + σ2
η

)1/2
νt+1, (46)

where νt ∼ N (0, 1). Equation (46) shows that, even with infinite data, the estimation of
the AR(∞) representation leads to parameter estimates and VAR residuals that confound
the standard deviation of both the measurement error ση and the innovations to the trend
στ with the standard deviation στ̂ resulting from the error associated with the estimate of
the trend, (τπ,t − τ̂π,t).

F.4 Bivariate TC-VAR model: An alternative case

In this appendix, we provide details for the three alternative cases discussed in Sub-
section 7.2. In the first case of this appendix, we introduce low-frequency movements in
the unemployment rate, while the inflation rate only follows the cyclical component of the
unemployment rate. The unemployment-rate cycle evolves as in the previous case—that
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Table 16: Variance contribution of unemployment shock

Unemployment Inflation
100.0 2.2

[99.9, 100.0] [1.1, 3.7]

Notes: The shock is identified by maximizing its contribution to the volatility of the unemployment rate
over business-cycle frequencies (6-32 quarters). We report the median and the corresponding 68-percent
posterior-coverage interval of the median contributions of the shock to the variance of all variables over
the same frequencies. To simulate the data, we use the following calibration. For the unemployment rate,
we set ρuu = 0.95, σc,u = 1 and στ,u = 1. For the inflation rate, we set ρππ = 0.5, κ = 1, σc,π = 0, and
στ,π = 1.

is ρuu = 0.95 and σc,u = 1. However, we also allow shocks to the trend unemployment
rate and consider three calibrations for its standard deviation στ,u = {0.1, 1, 2}. For the
inflation rate, we assume that its process is fully explained by the cyclical component of the
unemployment rate. This assumption is evidently unrealistic but is chosen to ensure that
the innovations to the cyclical component of the unemployment rate are the only source of
fluctuations for inflation. Implementing this assumption requires turning off the shocks to
both the trend and cyclical components of inflation—that is, στ,π = σc,π = 0—and setting
the autoregressive parameter ρππ to zero and κ = 1. As a result, the simulated inflation
rate evolves as πt = −cu,t−1.

Table 15 reports the median and 68% posterior-coverage intervals of the median contri-
butions of the identified shock. The unemployment-identified shock explains nearly the
entirety of the business-cycle movements in unemployment for all calibrations, but smaller
portions of movements in inflation as the unemployment rate is increasingly driven by low-
frequency movements. Thus, the shocks that are recovered by the procedure do not coincide
with the structural shocks produced by the true data generating process. By construction,
the identified shocks explain a large fraction of unemployment variation at business cycle
frequency, but this assessment is based on the VAR parameter estimates, not the true
parameters of the TC-VAR generating the data.

In the second case, we introduce trends in both inflation and unemployment and assume
that cyclical inflation is persistent and not exclusively driven by cyclical unemployment
rate. Specifically, for the unemployment rate, we set ρπ = 0.95 and σc,u = 1 for its
cyclical component and στ,u = 1 for its trend component, implying the presence of low-
frequency movements. For inflation, we set ρπ = 0.5, κ = 1, and σc,π = 0, resulting in a
cyclical component of inflation that is driven by its lag and cyclical unemployment rate.
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Table 17: Variance contribution of unemployment shock (with TC-VAR model)

Unemployment Inflation
98.8 5.7

[96.9, 99.5] [3.2, 20.2]

Notes: The shock is identified by maximizing its contribution to the volatility of the cyclical component of
the unemployment rate over all frequencies (0-∞ quarters). We report the median and the corresponding 68-
percent posterior-coverage interval of the median contributions of the shock to the variance of all variables
over the same frequencies. To simulate the data, we use the following calibration. For the unemployment
rate, we set ρuu = 0.95, σc,u = 1 and στ,u = 0. For the inflation rate, we set ρππ = 0.95, κ = 0, σc,π = 1
and στ,π = 0.

Additionally, στ,π = 1, thus introducing an inflation trend.
Table 16 reports the median—and the corresponding 68-percent posterior-coverage interval—

of the median contributions of the identified shock to the variance of all variables over
business-cycle frequencies. The contribution of the unemployment-rate shock to inflation
at business-cycle frequencies is only 2.2%. Intuitively, under this alternative calibration,
the inflation rate depends not only on its trend and the persistence of its cyclical component
but also on the business-cycle and low-frequency movements in unemployment rate. Con-
sequently, the estimated VAR confounds all these effects, implying no explanatory power
of the unemployment-identified shock on inflation at business-cycle frequencies. To con-
clude, even if the long simulations were generated under the assumption that the cyclical
components of unemployment rate and inflation were related, the identified shock does not
capture this feature of the simulated data.

In the last case, we show that, if the data are generated by a model in line with the findings
of Angeletos et al. (2020), the flexible TC-VAR model does not produce a counterfactual
relationship between nominal and real variables. We assume that the unemployment rate
and inflation follow two independent (κ = 0), highly persistent (ρuu = ρππ = 0.95) processes
whose shocks are uncorrelated. Trends are absent in this specification. For each simula-
tion, we estimate the TC-VAR model and evaluate the contribution of the unemployment-
identified shock to the variability of the cyclical components of the model.15

15To speed up the estimation of the TC-VAR model on all the simulated data, we consider 100 (rather
than 500) Monte Carlo simulation of 50, 000 observations of which we keep the last 500 (rather than 1, 000)
for each simulation. To estimate each TC-VAR model, we use the first 100 observations as pre-sample to
define both the initial conditions for the trend components and the diagonal elements of the prior covariance
matrix of the shocks to the cycles. We set the two diagonal elements of the prior covariance matrix of the
shocks to the trends to 1/40. This prior is the most flexible among those for the bivariate specification in
Appendix D.1. As in our baseline, we assume two lags of the VAR describing the evolution of the cyclical
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Table 17 reports the median and the corresponding 68-percent posterior-coverage interval
of the median contributions of the identified shock to the variance of the cyclical compo-
nents of the unemployment rate and inflation over all frequencies. Although the simulated
unemployment rate and inflation are highly persistent, the TC-VAR model points to a
disconnect between nominal and real variables over the business cycle. While flexible, our
model does not induce counterfactual relationships.

components. For each simulation, we identify the shock by targeting the cyclical unemployment rate.
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