References

Strike while the Iron is Hot:

Optimal Monetary Policy with a Nonlinear Phillips Curve

Peter Karadi^{1,4} Anton Nakov^{1,4} Galo Nuño^{2,4} Ernesto Pasten³ Dominik Thaler¹

 ^{1}ECB \cdot $^{2}\text{Bank}$ of Spain \cdot $^{3}\text{Central Bank}$ of Chile \cdot $^{4}\text{CEPR}$

19 September 2024

The views here are those of the authors only, and do not necessarily represent the views of their employers.

Motivation

- ► The recent inflation surge featured
 - Increase in the frequency of price changes (Montag and Villar, 2023) US
 - ▶ Increase in Phillips curve slope (Benigno and Eggertsson, 2023; Cerrato and Gitti, 2023) US
- Optimal monetary policy is mainly studied in models, in which the Phillips curve is linear and the frequency is held constant (Galí, 2008; Woodford, 2003)
- What does optimal monetary policy look like with a nonlinear Phillips curve and endogenous variation in frequency? How should CBs respond to a large inflation surge?

What do we do?

- ▶ We use the standard state-dependent pricing model of Golosov and Lucas (2007)
- Solve it nonlinearly using a new algorithm over the sequence space
- Positive analysis under a Taylor rule
 - Trace the responses to shocks of different sizes
 - Assess the nonlinearity of the Phillips curve
- Normative analysis: Ramsey optimal policy
 - Optimal long-run inflation
 - Trace the optimal responses to shocks
 - Characterize the (nonlinear) targeting rule after large cost-push shocks

What do we find?

- ▶ In this model the Phillips curve is nonlinear: it gets steeper as frequency increases
- ▶ In response to small shocks, optimal monetary policy is similar to the one under Calvo
- ▶ In response to efficiency shocks, there is divine coincidence, as in Calvo
- Different responses to small and large cost-push shocks. Optimal policy leans aggressively against inflation when frequency rises: "it strikes while the iron is hot"

Literature

- Nonlinear Phillips curve (Benigno and Eggertsson, 2023; Cerrato and Gitti, 2023)
 - Microfounded by state-dependent price setting

(Golosov and Lucas, 2007; Gertler and Leahy, 2008; Auclert et al., 2022)

- In the presence of large aggregate shocks (Karadi and Reiff, 2019; Alvarez and Neumeyer, 2020; Costain et al., 2022; Alexandrov, 2020; Blanco et al., 2024)
- Optimal policy in a menu cost economy
 - Optimal inflation target (Burstein and Hellwig, 2008; Adam and Weber, 2019; Blanco, 2021)
 - Small shocks, large shocks, optimal nonlinear target rule (comp. Galí, 2008; Woodford, 2003)
 - Focus on aggregate shocks (unlike Caratelli and Halperin, 2023, who study sectoral shocks)

- Heterogeneous-firm DSGE model with fixed costs of price-adjustment
- Households: consume a Dixit-Stiglitz basket of goods, and work HH
- Firms: produce differentiated goods using labor only and are subject to aggregate TFP shocks and idiosyncratic "quality" shocks. They have market power and set prices optimally subject to a fixed cost (Golosov and Lucas, 2007) Firms.
- Monetary policy: either follows Taylor rule or set optimally to maximize household welfare under commitment Policy

Normative results

References

Model: Intuitive summary

- Each period, firms choose whether to reset their price and, if so, what new price to set
- The firm's optimality conditions define the reset price and the inaction region (s,S)
- Given the idiosyncratic shock, this endogenously determines the price distribution
- Let p_t(j) ≡ log (P_t(j)/(A_t(j)P_t)) be the quality-adjusted log relative price
- Let $x_t(j) \equiv p_t(j) p_t^*(j)$ be the price gap

Model under large shock

Model

Large aggregate shock: shifts the distribution

of price gaps for all firms

- ► Limited impact on the (s,S) bands
- Pushes a large fraction of firms outside of the inaction region
- Large increase in the frequency of price changes and hence additional flexibility of the aggregate price level (on top of "selection")

Model: Distortions

Model

Monopolistic competition and nominal frictions imply three distortions:

- Inefficient markup fluctuations
- Price dispersion
- Price adjustment (menu) costs

References

Calibration

		Household	ds
β	0.96 ^{1/12}	Discount rate	Golosov and Lucas (2007)
ϵ	7	Elasticity of substitution	Golosov and Lucas (2007)
γ	1	Risk aversion parameter	Midrigan (2011)
υ	1	Utility weight on labor	Set to yield $w = C$
		Price setti	ng
η	3.6%	Menu cost	Set to match 8.7% of frequency
σ	2.4%	Std dev of quality shocks	and 8.5% size in Nakamura and Steinsson (2008
		Monetary po	blicy
ϕ_{π}	1.5	Inflation coefficient in Taylor rule	Taylor (1993)
ϕ_y	0.5/12	Output gap coefficient in Taylor rule	Taylor (1993)
ρ_i	0.75 ^{1/3}	Smoothing coefficient	
		Shocks	
ρΑ	0.95 ^{1/3}	Persistence of the TFP shock	Smets and Wouters (2007)
ρ_{τ}	$0.9^{1/3}$	Persistence of the cost-push shock	Smets and Wouters (2007)

Nonlinearity of the Phillips Curve at realistic frequency (20%) us

Consider the model under a Taylor rule Robustness

Normative results: Computation

Challenges

- Price change distribution and firms' value function are infinite-dimensional objects
- ▶ In the Ramsey problem, we need derivatives w.r.t. both
- New algorithm, inspired by González et al. (2024)
 - Approximate distribution and value functions by piece-wise linear interpolation on grid
 - Endogenous grid points: (s,S) bands and the optimal reset price
 - Solve in the sequence space using Dynare (Adjemian et al. (2023))

Optimal long-run inflation rate

- The Ramsey steady-state inflation rate is slightly above zero: $\pi^* = 0.25\%$
 - Close to the inflation rate that minimizes the steady-state frequency of price changes
- Why not exactly zero as in Calvo (1983)?
 - Asymmetry of the profit function leads to asymmetric (s,S) bands: a negative price gap is less desirable than a positive price gap of the same size
 - ▶ At zero inflation, more mass around the lower (s) band than around the higher (S) band
 - Slightly positive inflation raises p^* and pushes the mass of firms to the right inside (s,S)
 - This leads to lower frequency and lower price-adjustment costs

References

Steady-state price distribution (at zero inflation)

Optimal response to cost-push shocks

▶ In linearized Calvo (1983), optimal policy is a flexible inflation targeting rule

$$\pi_t = -\frac{1}{\epsilon} \varDelta \tilde{y}_t$$

Slope $-1/\epsilon$ is independent of the frequency of repricing or the slope of the PC

 \blacktriangleright An increase in frequency raises the slope of the Phillips curve κ

- But it also raises the relative weight of the *output-gap* in welfare, $\lambda = \kappa/\epsilon$
- Why? Because more price-flexibility implies that inflation is less costly.
- For small cost-push shocks, the slope of the targeting rule in Golosov and Lucas (2007) is also −1/ϵ !

Nonlinear targeting rule

- ► Globally, the target rule is nonlinear Robust
- After large shocks, the planner stabilizes inflation more relative to the output gap
- Why? Stabilizing inflation is cheaper due to the lower sacrifice ratio (higher freq.)
 - Similar results with quadratic objective
 - The nonlinearity of the targeting rule is due to the nonlinear Phillips curve

References

Nonlinear targeting rule for the real interest rate

References

Optimal responses to efficiency shocks: "divine coincidence"

- In the standard NK model with Calvo pricing: divine coincidence holds after TFP and other shocks affecting the efficient allocation
- Optimal policy fully stabilizes inflation and closes the output gap
- We show analytically, that, after a TFP shock, divine coincidence holds also in the menu cost model: inflation is fully stabilized at steady state and the output gap is closed

We study optimal policy in a state-dependent framework with a nonlinear Phillips curve

- Optimal long-run inflation is near zero (slightly positive)
- Divine coincidence holds for efficiency shocks
- For small cost shocks the optimal response is similar to Calvo (1983): the lower welfare weight on inflation offsets the higher slope of the Phillips curve
- ► For large cost shocks, CB leans aggressively against inflation: strike while the iron is hot!

CPI and frequency of price changes in the US, Montag and Villar (2023)

References

Phillips correlation across US cities, Cerrato and Gitti (2023)

- A representative household consumes (C_t), supplies labor hours (N_t) and saves in one-period nominal bonds (B_t).
- The household's problem is:

$$\begin{aligned} \max_{C_t, N_t, B_t} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \log (C)_t - \nu N_t \\ \text{s.t. } P_t C_t + B_t + T_t = R_{t-1} B_{t-1} + W_t N_t + D_t, \end{aligned}$$

where P_t is the price level, R_t is the gross nominal interest rate, W_t is the nominal wage, T_t are lump sum transfers and D_t are profits

Consumption and labor

• Aggregate consumption C_t and the price level are defined as:

$$C_t = \left\{ \int \left[A_t(i) C_t(i) \right]^{\frac{\epsilon}{\epsilon} - 1} di \right\}^{\frac{\epsilon}{\epsilon} - 1}, \quad P_t = \left[\int_0^1 \left(\frac{P_t(i)}{A_t(i)} \right)^{1 - \epsilon} di \right]^{\frac{1}{1 - \epsilon}}$$

where $A_t(i)$ is product quality, ϵ is the elasticity of substitution.

Labor supply condition and Euler equation are given by:

$$W_{t} = v P_{t} C_{t}, \quad 1 = \mathbb{E}_{t} \left[\beta \frac{u'(C_{t+1})}{u'(C_{t})} \frac{R_{t}}{\Pi_{t+1}} \right]$$

-

Monopolistic producers

• Production of good *i* is given by $Y_t(i) = A_t \frac{N_t(i)}{A_t(i)}$, where quality follows a random walk

$$log(A_t(i)) = log(A_{t-1}(i)) + \varepsilon_t(i), \quad \varepsilon_t(i) \sim N(0, \sigma_t^2)$$

Firms real profits

$$\frac{D_t(i)}{P_t} = \frac{P_t(i)}{P_t} Y_t(i) - (1 - \tau_t) \frac{W_t}{P_t} N_t(i)$$

Firms face a fixed cost η to update prices

Quality-adjusted relative prices

Model

- Let $p_t(i) \equiv \log (P_t(i)/(A_t(i)P_t))$ be the quality-adjusted log relative price
- Real profit then is

$$\Pi(p_t(i), w_t, A_t) \equiv \frac{D_t(i)}{P_t} = C_t e^{p_t(i)(1-\epsilon)} - C_t (1-\tau_t) \frac{w_t}{A_t} e^{p_t(i)(-\epsilon)}$$

where w_t is the real wage.

• When nominal price $P_t(i)$ stays constant, $p_t(i)$ evolves: $p_t(i) = p_{t-1}(i) - \sigma_t \varepsilon_t(i) - \pi_t$

Pricing decision

Model

- Let $\lambda_t(p)$ be the price-adjustment probability
- ► Value function is

$$\begin{aligned} V_t(p) &= \Pi(p, w_t, A_t) \\ &+ \mathbb{E}_t \left[(1 - \lambda_{t+1} \left(p - \sigma_{t+1} \varepsilon_{t+1} - \pi_{t+1} \right) \right) \Lambda_{t,t+1} V_{t+1} (p - \sigma_{t+1} \varepsilon_{t+1} - \pi_{t+1}) \right] \\ &+ \mathbb{E}_t \left[\lambda_{t+1} \left(p - \sigma_{t+1} \varepsilon_{t+1} - \pi_{t+1} \right) \Lambda_{t,t+1} \left(\max_{p'} V_{t+1} \left(p' \right) - \eta w_{t+1} \right) \right]. \end{aligned}$$

The adjustment probability is

$$\lambda_t(p) = I[\max_{p'} V_t(p') - \eta w_t > V_t(p)]$$

where $I[\cdot]$ is the indicator function.

Monetary Policy

▶ The central bank either sets policy optimally, or follows a Taylor rule:

$$\log\left(R_{t}\right) = \rho_{r}\log\left(R_{t-1}\right) + (1-\rho_{r})\left[\phi_{\pi}(\pi_{t}-\pi^{*}) + \phi_{y}(y_{t}-y_{t}^{e})\right] + \varepsilon_{r,t} \quad \varepsilon_{r,t} \sim N(0,\sigma_{r}^{2})$$

Shocks: employment subsidy (τ_t) , TFP (A_t) , volatility (σ_t)

$$\log (A_t) = \rho_A \log (A_{t-1}) + \varepsilon_{A,t} \quad \varepsilon_{A,t} \sim N(0, \sigma_A^2)$$

$$\tau_t - \tau = \rho_\tau (\tau_{t-1} - \tau) + \varepsilon_{\tau,t} \quad \varepsilon_{\tau,t} \sim N(0, \sigma_\tau^2),$$

$$\log (\sigma_t / \sigma) = \rho_\sigma \log (\sigma_{t-1} / \sigma) + \varepsilon_{\sigma,t} \quad \varepsilon_{\sigma,t} \sim N(0, \sigma_\sigma^2)$$

Aggregation and market clearing

► Aggregate price index

Model

$$1=\int e^{p(1-\epsilon)}g_t\left(p\right)dp,$$

Labor market equilibrium

$$N_{t} = \frac{C_{t}}{A_{t}} \underbrace{\int e^{p(-\epsilon)}g_{t}(p) dp}_{\text{dispersion}} + \eta \underbrace{\int \lambda_{t}(p - \sigma_{t}\varepsilon - \pi_{t})g_{t-1}(p) dp}_{\text{frequency}},$$

References

Law of motion of the price density

$$g_t(p) = \begin{cases} (1 - \lambda_t(p)) \int g_{t-1}(p + \sigma \varepsilon + \pi_t) d\xi(\varepsilon) & \text{if } p \neq p_t^*, \\ (1 - \lambda_t(p_t^*)) \int g_{t-1}(p_t^* + \sigma \varepsilon + \pi_t) d\xi(\varepsilon) + \\ \int_{\underline{\rho}}^{\overline{\rho}} \lambda_t(\tilde{\rho}) \left(\int g_{t-1}(\tilde{\rho} + \sigma \varepsilon + \pi_t) d\xi(\varepsilon) \right) d\tilde{\rho} & \text{if } p = p_t^*. \end{cases}$$

The Ramsey problem

$$\max_{\left\{g_{t}^{c}(\cdot),g_{t}^{0},V_{t}(\cdot),C_{t},w_{t},p_{t}^{*},s,S_{t},\pi_{t}^{*}\right\}}\mathbb{E}_{0}\sum_{t=0}^{\infty}\beta^{t}u\left(C_{t},\frac{C_{t}}{A_{t}}\left(\int e^{(x+p_{t}^{*})(-\epsilon_{t})}g_{t}^{c}\left(p\right)dx+g_{t}^{0}e^{(p_{t}^{*})(-\epsilon)}\right)+\eta g_{t}^{0}\right)dx$$

subject to

$$\begin{split} 1 &= \int e^{(x+p_t^*)(1-\epsilon)} g_t^c(x) \, dx + g_t^0 e^{(p_t^*)(1-\epsilon)}, \\ V_t'(0) &= \Pi_t'(x) + \frac{1}{\sigma} \Lambda_{t+1} \int_{s_{t+1}}^{S_{t+1}} V_{t+1}(x') \frac{\partial \phi\left(\frac{(x-x'-\pi_t^*)}{\sigma}\right)}{\partial x} dx' + \Lambda_{t+1} \left(\phi\left(\frac{S_{t+1}-\pi_t^*}{\sigma}\right) - \phi\left(\frac{s_{t+1}-\pi_t^*}{\sigma}\right)\right) \left(V_{t+1}(0) - \eta w_{t+1}\right), \\ V_t(s_t) &= V_t(0) - \eta w_t, \\ w_t &= v C_t^{\gamma}, \\ V_t(x) &= \Pi(x, p_t^*, w_t, A_t) + \Lambda_{t,t+1} \frac{1}{\sigma} \int_{s_t}^{S_t} \left[V_{t+1}(x')\phi\left(\frac{(x-x')-\pi_{t+1}^*}{\sigma}\right)\right] dx' + \Lambda_{t,t+1} \left(1 - \frac{1}{\sigma} \int_{s_t}^{S_t} \left[\phi\left(\frac{(x-x')-\pi_{t+1}^*}{\sigma}\right)\right] dx'\right) \left[(V_{t+1}(0) - \eta w_{t+1})\right], \\ g_t^c(x) &= \frac{1}{\sigma} \int_{s_{t-1}}^{S_{t-1}} g_{t-1}^c(x_{-1})\phi\left(\frac{x_{-1}-x-\pi_t^*}{\sigma}\right) dx_{-1} + g_{t-1}^0 \phi\left(\frac{-x-\pi_t^*}{\sigma}\right), \\ g_t^0 &= 1 - \int_{s_t}^{S_t} g_t^c(x) dx. \end{split}$$

Robustness

Model

Target rule

Appendix

References

CalvoPlus model

Target rule

◀ Back