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Abstract

We show the financial sector’s asset supply elasticities are sufficient statistics summariz-
ing its macroeconomic effects for a large class of financial frictions. We demonstrate their
usefulness for quantitative macroeconomic analysis in the context of models with household
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1 Introduction

Financial intermediation is central to macroeconomics, influencing the transmission of
policies and shocks through asset markets. However, models of financial intermedia-
tion often rely on various microfoundations with frictions governed by parameters that
are intrinsically hard to measure, such as asset diversion rates or monitoring costs.
The intricacy of these models makes it challenging to identify and quantify features of
the intermediation process that are most relevant for aggregate outcomes. This poses
an obstacle to integrating financial frictions into modern quantitative macro models,
which are themselves becoming increasingly complex. Recent approaches address this
complexity by identifying key features shared across a wide range of models for each
“block” of the economy. For instance, a growing consensus suggests that households’
intertemporal marginal propensities to consume effectively summarize their aggregate
responses across various models (Auclert et al., 2023). Yet, no similar attempt has
been made to derive a counterpart for the financial sector. Our paper addresses this
issue.

Our main idea is a simple observation that financial intermediaries are, effectively,
suppliers of assets: They take one type of asset, such as loans, and transform it into
a different type, such as deposits. As they are suppliers of assets, their supply curves
fully describe how they respond to changes in prices and quantities of assets. To the
extent that we know the shape of their asset supply, details of the intermediation
process are irrelevant.

We build on this observation to derive a set of asset supply elasticities that serve as
sufficient statistics to summarize frictions in financial intermediation models. These
elasticities allow us to incorporate financial frictions into state-of-the-art quantitative
macroeconomic models while remaining agnostic about their microfoundations. We
derive formulas to isolate the channels through which these elasticities affect aggregate
outcomes. We measure these elasticities empirically and compare them to implicit
assumptions in standard macroeconomic models. These assumptions significantly
affect conclusions about policy issues ranging from the impact of government spending
and tax cuts to the effect of asset purchase programs, with output responses varying
by up to orders of magnitude. Our sufficient statistics provide empirical discipline on
financial frictions that is necessary for analyzing these policies.

1



We derive these results in a general framework that nests models of financial inter-
mediation with various microfoundations and allows for household heterogeneity and
illiquidity. Households consume and save in different assets, with some assets being
“liquid” and thus preferable. The financial sector issues liquid assets and holds illiquid
capital, supplying liquidity to the economy under frictions. Production is subject to
nominal rigidities. The government influences aggregate demand through spending,
taxes, and transfers, as well as policies that transmit through the asset markets, such
as interest rates, government debt issuance, and illiquid asset purchases.

We show there exists a simple structure that contains the class of intermediation
frictions nested in our framework, including those originating from asset diversion
(Gertler and Karadi, 2011), costly state verification (Bernanke et al., 1999), costly
leverage (Cúrdia and Woodford, 2016), and collateral constraints (Kiyotaki and Moore,
1997). The structure describes how the financial sector’s leverage responds to ex-
pected returns over different time horizons. The magnitude of responses is governed
by two leverage sensitivity parameters, while the dependency on return horizons is
controlled by a forward-looking component. This structure can be directly mapped
to data, allowing us to summarize intermediation frictions without taking a strong
stance on a specific microfoundation. Using this structure, we characterize a set of
liquidity supply elasticities for the financial block of the model, describing how the
level of intermediation responds to expected and realized returns over an infinite time
horizon.

To show that these elasticities are sufficient statistics, we recast the economy into
an intertemporal demand-and-supply system of goods and assets. In the system,
the financial block interacts with other model components only through returns and
quantities of assets, and therefore, its elasticities contain all relevant information up
to first-order approximation. This financial block is “portable” in the sense that we
can characterize and estimate it independently of other model components, such as
the household and production blocks. This feature facilitates its integration into a
wide range of quantitative macroeconomic models with broad applicability, includ-
ing common representative and heterogeneous agent frameworks. Our representation
of the economy employs a sequence space approach similar to that in Auclert et al.
(2021), Wolf (2021b), Dávila and Schaab (2023), McKay and Wolf (2023), and An-
geletos et al. (2023). While these works abstract away from financial intermediation,
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we show that the same tools are useful for understanding financial frictions, and these
frictions are crucial for policy analysis.

Using the demand-and-supply representation, we show that the financial sector in-
fluences policy transmission through an asset market channel. The channel depends
on the cross-price elasticities of liquidity supply with respect to returns on capital.
Low elasticities indicate that intermediaries view liquid assets and capital as less
substitutable; other things equal, an increase in liquidity (e.g., due to government
debt issuance) leads to large increases in capital prices and raises aggregate demand
through investment and consumption. Despite their crucial role in asset market trans-
mission, standard macroeconomic models assume a broad range of values for these
elasticities, from zero to infinity. These assumptions are often embedded in model se-
tups or implicit in functional forms. Our approach makes these assumptions explicit,
emphasizing the need for empirical measurement to validate or refine them.

We demonstrate how to empirically discipline these elasticities by estimating the
leverage sensitivities and the forward-looking component for the U.S. banking sec-
tor. To address potential identification threats, we construct instruments from struc-
tural shocks using common proxies for monetary policy shocks (Bauer and Swan-
son, 2023), oil supply shocks (Baumeister and Hamilton, 2019), and intermediary
net worth shocks (Ottonello and Song, 2022). Our estimates indicate that the U.S.
banking sector’s liquidity supply elasticities are twice as large as those implied by
functional forms in standard financial intermediation models. These estimates pro-
vide useful target moments for calibrating financial frictions in quantitative models,
including those studying how financial intermediation interacts with complex house-
hold consumption-saving behaviors, such as Lee et al. (2020), Fernández-Villaverde
et al. (2020), Lee (2021), Mendicino et al. (2021), Cui and Sterk (2021), and Ferrante
and Gornemann (2022). Our theoretical result implies that, for frictions nested in
our framework, targeting the moments we estimate ensures financial intermediation
can best represent empirical features relevant to the interaction.

We illustrate the quantitative importance of our sufficient statistics with two policy
questions: (1) the size of government spending multiplier, and (2) a “Wall Street
vs. Main Street” debate: Can asset purchase programs stimulate the economy more
effectively than transferring resources to households with tax cuts? To study these
questions, we specialize the household sector to a standard two-asset heterogeneous
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agent model, calibrated to match asset holdings and consumption responses in the
data. Keeping all else equal, we vary the financial sector’s liquidity supply elasticities
from our empirical measures to values implied by common assumptions and compare
their implications for the two policy questions.

The effects of policies vary significantly across specifications, with inelastic supply
leading to stronger reactions due to asset market responses. Government spending
multipliers can differ by up to a factor of two, with greater variation observed under
a higher degree of debt financing as it has a larger impact on asset markets. The
“Wall Street vs. Main Street” debate depends even more on the elasticities: Output
responses to asset purchases differ by orders of magnitude, and the effects of tax cuts
vary by a factor of three. Since our empirical elasticities are relatively high, they
imply modest asset market responses relative to standard financial intermediation
models. Consequently, these elasticities indicate that targeting households with tax
cuts may be more effective in stimulating output than asset purchases, which rely
heavily on the asset market channel. These results highlight the importance of our
sufficient statistics in providing the necessary empirical discipline on financial frictions
for policy analysis.

Finally, our approach has its limitations. While the elasticities we characterize are
invariant to policies that take effect through prices and quantities of assets, they may
not be invariant to macroprudential regulations. Such regulations directly affect inter-
mediation frictions and change the financial sector’s sensitivities to returns, thereby
altering the asset supply system. Studying these regulations requires microfounded
models, and our elasticities should only serve as target moments for calibration. Fur-
thermore, our characterization relies on first-order approximation and cannot capture
nonlinear dynamics like those in Brunnermeier and Sannikov (2014). Nevertheless,
our approach allows us to incorporate financial frictions into quantitative macro mod-
els, addressing policy questions often precluded by simplifying assumptions in non-
linear macro-finance models. Moreover, by providing a theoretical foundation for
the measurements needed to discipline financial frictions, our approach is a first step
toward quantifying these frictions in nonlinear models.
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2 Model

2.1 Households

Time is discrete, t ∈ {0, . . . ,∞}. Households are indexed by i ∈ [0, 1] and have
time separable preferences. Households derive utility from final goods consumption
ci,t, holdings of illiquid and liquid assets ai,t and bi,t, and disutility from labor hi,t.
Illiquid and liquid assets pay real returns rAt and rBt , and trading of illiquid assets
incurs portfolio adjustment costs. Preferences can be type-dependent and indexed by
i. Each household solves the following maximization problem:

max
ci,t,ai,t,bi,t

E
∞∑
t=0

βti [ui (ci,t, ai,t, bi,t)− νi(hi,t)] ,

subject to budget constraints

ai,t + bi,t + ci,t + Φ(ai,t, ai,t−1, r
A
t ) = (1 + rAt )ai,t−1 + (1 + rBt )bi,t−1 + yi,t − Tt(yi,t)

with borrowing constraints ai,t ≥ a, bi,t ≥ b and real labor income yi,t = zi,t
Wt

Pt
hi,t.

The real income of households depends on idiosyncratic earnings shocks zi,t, nominal
wage per efficiency unit of labor, Wt, and the price of the final good, Pt. Households
form expectations over idiosyncratic shocks zi,t. Labor hi,t is taken as exogenous by
each household and is determined by monopolistically competitive labor unions to be
described shortly. Income tax is given by tax function Tt(yi,t).

Our formulation of households is general enough to encompass standard represen-
tative agent models (zi,t ≡ 1 with no preference heterogeneity), assets-in-the-utility
models, the spender-saver type two-agent models, and the Bewley-Hugget-Aiyagari-
Imrohorglu type heterogeneous agent models. While representative agent models
provide useful benchmarks for illustration, heterogeneous agent models generate con-
sumption and asset allocation behaviors that are quantitatively crucial for aggregate
responses to policies. For ease of exposition, we assume there are no aggregate shocks.
However, up to first-order approximation, all results apply with the presence of ag-
gregate shocks.
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2.2 Production

Final goods production: A representative firm produces final goods yt with capital kt−1

and differentiated types of labor, h`,t, supplied by unions indexed by ` ∈ [0, 1]:

yt = kαt−1h
1−α
t , ht =

(∫
h

εW−1

εW
`,t d`

) εW
εW−1

,

where εW > 1 is the elasticity of substitution between labor types. Given nominal
wages {W`,t} and capital rental rate Rt, the firm chooses capital and labor to maximize
profit:

max
kt−1,{h`,t}

Ptyt −Rtkt−1 −
∫
W`,th`,td`.

Labor supply: Unions are monopolistically competitive. To supply labor h`,t, each
union combines labor from households: h`,t =

∫
zi,thi,`,tdi, following an exogenous

allocation rule, hi,`,t = l(zi,t)h`,t such that
∫
zi,tl(zi,t)di = 1. Given labor demand,

unions set nominal wage growth πW,`,t :=
W`,t

W`,t−1
− 1 to maximize utilitarian welfare

of households, subject to a wage adjustment cost:
∞∑
t=0

∫
βti

[
ui (ci,t, ai,t, bi,t)− νi(hi,t)−

κW
2
π2
W,`,td`

]
di,

where hi,t =
∫
hi,`,td`. Wage adjustment cost is borne as disutility by unions and

does not affect the resource constraint; κW > 0 parameterizes the level of nominal
wage rigidity. The symmetry between unions implies each household’s nominal wages
sum to zi,tWthi,t, where Wt is the ideal wage index. In Appendix D.2, we show our
results do not depend on whether nominal rigidity takes the form of price or wage
rigidity.

Capital: The aggregate capital stock has the following law of motion:

kt = (1− δ + Γ (ιt)) kt−1, ιt :=
xt
kt−1

,

where xt, ιt denote the investment level and investment rate, δ is the depreciation
rate, and Γ(·) captures capital adjustment cost. Let qt denote the price of capital.
Holding capital from periods t to t+ 1 earns a return on capital:

1 + rKt+1 = max
ιt+1

Rt+1/Pt+1 + qt+1 (1 + Γ (ιt+1)− δ)− ιt+1

qt
. (1)
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2.3 The Financial Sector

Capital is held by a passive mutual fund and an intermediary:

kt = kFt + kBt .

Mutual fund: The mutual fund holds capital kFt and intermediary net worth nt. The
fund constitutes households’ total illiquid asset holdings with value at = qtk

F
t + nt.

As a result, the return on illiquid assets is given by the value-weighted average of
returns on capital rKt and returns on intermediary net worth rNt :

rAt+1 =
1

at
(rKt+1qtk

F
t + rNt+1nt). (2)

Intermediary: The intermediary can transform illiquid capital into liquid assets,
thereby supplying liquidity to the economy. In each period, the intermediary issues
liquid assets d̃t and holds capital and government debt, kBt and bBt . We assume
government debts are perfect substitutes for liquid assets, and the net liquidity supply
is given by dt := d̃t − bBt .1 The intermediary’s ability to transform assets can, for
example, represent its superior capability to manage loans. Without the intermediary,
households would need to perform the task themselves and incur the cost Φ(·).

The intermediation of assets is subject to frictions. Given net worth nt, the interme-
diary can hold capital and supply liquidity with leverage Θt:

qtk
B
t = Θtnt, dt = (Θt − 1)nt,

where the expression for dt is implied by the intermediary’s balance sheet, qtkBt =

nt + dt. The level of leverage is governed by a function Θ(·), representing the inter-
mediation frictions:

Θt = Θ({rKs+1, r
B
s+1}s≥t). (3)

Function Θ(·) depends on the entire path of future returns {rKs+1, r
B
s+1}s≥t, which re-

spectively stand for the intermediary’s future investment opportunity and funding
cost. This formulation of the frictions allows us to nest a class of financial intermedi-
ation models as special cases, along with a few useful extensions of these models. We
1Since liquid assets and government debt are perfect substitutes, whether households hold govern-
ment debt directly or not is irrelevant.
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discuss this nesting result in Section 3.1.

Given leverage Θt, the intermediary’s balance sheet implies the return on net worth
satisfies:

rNt+1 = Θt(r
K
t+1 − rBt+1) + rBt+1.

We assume that the law of motion for net worth follows

nt = G(Θt−1, r
K
t , r

B
t )nt−1 +m. (4)

Net worth evolves as a fraction G(·) of the past net worth plus an exogenous net worth
inflow m. Together, they describe the net allocation of resources from the passive
mutual fund. Function G depends on endogenous variables predetermined at time t:
past leverage Θt−1 and realized returns rKt , rBt . This formulation contains the common
exogenous net worth specification as in Gertler and Kiyotaki (2010). Moreover, we
show in Appendix B.3 that, for aggregate responses, this formulation is equivalent to
a class of models with endogenous dividend and equity issuance decisions.

2.4 Government

The government sets a sequence of government purchases gt, government debt bGt ,
liquid rate target rBt , total tax revenue Tt, and illiquid assets holdings aGt . The
government debt is real debt, and monetary policy adjusts the nominal interest rate
to keep the real liquid rate at its target for all t > 0. The liquid rate rB0 in period
0 is predetermined. The government collects tax revenue through the tax system
Tt(yi,t) = yi,t− (1− τt)y

1−λ
i,t . Given {yi,t}, tax rate τt is set such that Tt =

∫
Tt(yi,t)di.

The government faces budget constraints:

bGt − (1 + rBt )b
G
t−1 = aGt − (1 + rAt )a

G
t−1 + gt − Tt. (5)

2.5 Definition of Equilibrium

Given
{
gt, b

G
t , r

B
t , Tt

}
, an equilibrium consists of prices

{
Pt, Rt,W`,t, qt, r

A
t , r

K
t

}
and

allocations {yt, ci,t, xt, ht, hi,`,t, kt, kFt , kBt , at, aGt , ai,t, bi,t, nt, dt} such that: (1) house-
holds maximize utility subject to constraints; (2) firms maximize profit and invest-
ment rate maximizes the return on capital, (3) nominal wages maximize payoff of
the labor unions; (4) the intermediary’s capital holdings and liquidity supply is given
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by the intermediation frictions and the net worth process; (5) the illiquid return rA

is consistent with the balance sheet of the mutual fund; (6) the government budget
constraint holds given the tax system, and (7) markets clear:∫

(ci,t + Φi,t) di+ xt + gt = yt,

∫
bi,tdi = dt + bGt ,

∫
ai,tdi+ aGt = nt + qtk

F
t ,

where (i) in the goods market, output equals the total of consumption, investment,
and government purchases; (ii) in the liquid asset market, households’ liquid assets
holdings equal the total supplied by the intermediary and the government; and (iii) in
the illiquid asset market, the total of household and government’s holdings of illiquid
assets is equal to the value of assets held by the fund. The capital market clears when
the total capital held by the intermediary and the fund equals the aggregate capital
stock.

3 Financial Intermediation and Liquidity Supply

We characterize financial intermediation in this section. We show the formulation
in Section 2 contains a large class of financial intermediation models with various
objective functions and different constraints. Despite the dissimilarity, these models
share a simple structure that describes how leverage responds to expected returns.
This structure clarifies the distinct strengths and restrictions of the nested models
and provides a concise summary of them. We use this unified structure to develop a
liquidity supply system that describes how asset intermediation responds to returns.
The structure allows us to systematically study how frictions in the financial sector
interact with other model components to affect aggregate outcomes in Section 4.

Although we focus on the intermediary’s role in transforming productive capital into
liquid assets, our characterization applies more broadly to other types of transforma-
tion between different asset categories as long as the intermediation process is subject
to the frictions nested in our framework.

3.1 Nesting Models of Financial Intermediation

We provide an overview of the nested models and lay out details in Appendix B.1.

Model 1, asset diversion (Gertler and Kiyotaki (2010), Gertler and Karadi (2011)):
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An intermediary can divert a fraction 1/θ of assets. If that happens, depositors
force it into bankruptcy. To avoid asset diversion, intermediation is limited by the
intermediary’s continuation value vt(nt) = ηtnt:

qtk
B
t ≤ θηtnt, ηt = Λt,t+1 (f + (1− f) ηt+1)

[
1 + rBt+1 +

(
rKt+1 − rBt+1

)
θηt
]
,

where Λt,t+1 denotes the intermediary’s discount factor.2

Model 2, costly state verification (Bernanke et al. (1999)): Intermediaries receive id-
iosyncratic returns on assets, which depositors can only observe by incurring a mon-
itoring cost. The intermediary’s capital holdings are given by a function ψBGG that
depends on the distribution of idiosyncratic returns and the monitoring cost:

qtk
B
t = ψBGG

(1 + rKt+1

1 + rBt+1

)
nt.

Model 3, costly leverage (Uribe and Yue (2006), Chi et al. (2021) and Cúrdia and
Woodford (2016)): Intermediaries need to incur a convex cost Υ(ψt)nt that depends
on leverage ψt = qtkBt

nt
. Optimal leverage is linked to the spread between returns:

rKt+1 − rBt+1 = Υ′(ψt).
Model 4, collateral constraint (similar to Kiyotaki and Moore (1997), Bianchi and
Mendoza (2018), Ottonello et al. (2022)): Intermediation is limited by a fraction
ϑ < 1 of collateral value backing it. If the collateral value includes the value of
capital and the associated return,3 we have:(

1 + rBt+1

)
dt ≤ ϑ

(
1 + rKt+1

)
qtk

B
t .

These models of financial intermediation together with the law of motion for net
worth (Equation 4) imply sequences of {qtkBt , dt}. The following lemma states that
these models are nested by the setup described in Section 2.3.

Lemma 1 Given {qtkBt , dt} in model j ∈ {1, . . . , 4}, there exists Θ({rKs+1, r
B
s+1}s≥t)

2We allow for any discount rate of the form Λt,t+1 = Λ(rKt+1, r
B
t+1).

3The exact form of constraints differs among models, depending on what can be pledged as collateral.
We discuss different variations in Appendix B.1.
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such that qtkBt = Θtnt and dt = (Θt − 1)nt. Moreover, around the steady state,

∂Θt

∂rKs+1

= γs−t Θ̄rK ,
∂Θt

∂rBs+1

= −γs−t Θ̄rB , ∀s ≥ t,

where Θ̄rK , Θ̄rB , γ ≥ 0 are given by parameters in model j and steady-state variables.

Proof. See Appendix B.1.

Parameters Θ̄rK , Θ̄rB , γ describe how the financial sector’s ability to intermediate
assets and supply liquidity depends on expected returns: Θ̄rK and Θ̄rB are lever-
age sensitivities that govern how strongly Θt responds, and γ is a forward-looking
component that controls how much Θt responds to returns at horizon s− t.

In asset diversion models, Θ̄rK , Θ̄rB , γ > 0. Because γ > 0, intermediation is forward-
looking in the sense that it depends on future returns over different horizons. However,
these models impose a strict restriction on the leverage sensitivities Θ̄rK , Θ̄rB : these
parameters are fully determined by the steady-state levels of leverage and returns,
and there is no extra flexibility in the microfounded model to control them.

By contrast, costly state verification and costly leverage models feature no forward-
looking component, γ = 0, and intermediation does not respond to expected returns
beyond the next period. Yet, unlike the rigid form imposed by asset diversion models,
these models feature an extra degree of freedom to control the leverage sensitivities
Θ̄rK , Θ̄rB . These sensitivities are determined by the monitoring cost and the dis-
tribution of idiosyncratic returns for costly state verification models, and they are
governed by the curvature of the leverage cost function for costly leverage models.
Similarly, models with collateral constraints feature γ = 0, as changes in collateral
value are captured by changes in rKt+1. However, the leverage sensitivities Θ̄rK and
Θ̄rB are restricted by steady-state leverage and returns, similarly to asset diversion
models.

Besides nesting models common in the literature, our formulation includes several
generalizations of existing models. For example, we show that a costly leverage model
augmented with the dynamic structure of asset diversion models can deliver both the
flexibility of leverage sensitivities Θ̄rK , Θ̄rB and a forward-looking component γ > 0.
We discuss these generalizations in Appendix B.2.
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3.2 Liquidity Supply Elasticities

The intermediation frictions Θ({rKt+s, rBt+s}) and net worth process G(Θt−1, r
K
t , r

B
t )

together determine the financial sector’s ability to intermediate assets and supply liq-
uidity. This ability is described by a liquidity supply function, Dt({rKs , rBs }∞s=0), which
governs how much liquidity dt the intermediary can supply given returns {rKs , rBs }∞s=0.
Up to first-order approximation, how liquidity supply responds to changes in returns
is characterized by its elasticities.

Proposition 1 The cross-price semi-elasticities of liquidity supply around the steady
state are given by:

∂Dt/∂r
K
s

Dt

=

γs−t−1Θ̄rK
(

1
Θ̄−1

+ γΣ(t)
)
, s > t,(

ḠrK + Θ̄rKΣ(s)
)
Ḡt−s, s ≤ t,

where Σ(s) := ḠΘ
1−

(
γḠ

)s
1−γḠ , and Ḡ, ḠΘ, ḠrK are the steady-state values and derivatives

of function G. The own-price semi-elasticities ∂Dt/∂rBs
Dt

are given by the same formula
with Θ̄rK and ḠrK replaced by −Θ̄rB and ḠrB .

Proof. See Appendix A.1.

The intermediation frictions determine how the financial sector’s liquidity supply
responds to changes in returns. For example, the cross-price elasticities ∂Dt/∂rKs

Dt
are

positive and increasing in Θ̄rK . If cross-price elasticities are high, the financial sector
is willing to provide much more liquidity in response to an increase in rKs . In other
words, only a small decrease in rKs is necessary for the financial sector to increase its
holdings of government debt (therefore reducing its net liquidity supply) by a given
amount. In this sense, capital and liquid assets are more substitutable with high
cross-price elasticities.

The formula in Proposition 1 describes how liquidity supply at time t responds to
changes in returns at time s. If s > t, an increase in rKs directly increases liquidity
supply through relaxing intermediation friction Θt with sensitivity Θ̄rK . Moreover, it
relaxes frictions in all periods before t with decay rate γ, and increases liquidity supply
through the accumulation of net worth. Function Σ(t) summarizes the accumulative
effect. On the other hand, an increase in past return rKs with s ≤ t has no direct
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effect on Θt. It affects liquidity supply only through the propagation of net worth:
Net worth at time s increases directly by ḠrK and the accumulation from all periods
before is given by Σ(s); both propagate to period t with rate Ḡ.

In the next section, we show that these liquidity supply elasticities are sufficient
statistics summarizing how the financial sector affects aggregate outcomes. They
cannot be estimated nonparametrically without any structure, as they are infinite
dimensional objects. Proposition 1 is useful because it provides one such structure,
containing a large class of models with distinct microfoundations but governed by
only a few parameters. Since these parameters describe a structural relationship
between empirically observable objects such as leverage and returns, we can obtain
an empirical summary of this class of models by estimating these parameters directly.
Moreover, these elasticities are policy invariant to the extent that the policies under
consideration affect the financial sector through changes in returns. By focusing on
these elasticities, we can study a large set of macroeconomic policies without taking
a stance on the exact microfoundation of the underlying frictions.

4 Aggregate Responses to Policies

We now use the financial sector’s asset supply system to study how it interacts with
the rest of the economy to determine aggregate responses to policies.

4.1 A Demand-and-Supply Representation

We recast the economy as a demand-and-supply system of goods and assets. Given
government policies and key aggregate variables, we solve the optimization problem
for each agent to obtain their aggregate behavior along the transition path. Our
result in Section 3.2 shows how the financial block of the economy implies a liquidity
supply function, Dt, that summarizes how financial intermediaries respond to aggre-
gate conditions through {rKs , rBs }. The same logic applies to the household block of
the model: Given a sequence of output, taxes, returns, and the initial asset position,
we can solve the households’ consumption-saving problem to obtain a consumption
function, Ct, and liquidity demand function, Bt.4 Similarly, we obtain an investment
4We define the consumption function, Ct, to include both final goods consumed by the households,
ci,t, and the portfolio adjustment cost, Φt(ai,t, ai,t−1).
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function, Xt, from the production block. Lemma 2 represents the equilibrium of the
model as that of a demand-and-supply system.

Lemma 2 There exist functions Ct,Bt, and Xt, such that, given government policies{
gs, Ts, r

B
s , b

G
s

}∞
s=0

, the equilibrium output and returns on capital
{
ys, r

K
s

}∞
s=0

solve:

Ct({ys, rAs ; rBs , Ts}∞s=0) + Xt({ys, rKs }∞s=0) + gt = yt,

Bt({ys, rAs ; rBs , Ts}∞s=0) = Dt({rKs , rBs }∞s=0) + bGt ,

where
rAt = RA

t

(
{rKs ; rBs , ys}∞s=0;Dt−1({rKs ; rBs }∞s=0)

)
.

Function RA
t corresponds to the accounting identity in Equation 2, and government

asset holdings
{
aGt
}

satisfy the government budget constraint in Equation 5. Moreover,
functions Ct,Bt, and Xt do not depend on Θ and G.

Proof. See Appendix A.2.

The two main equations in Lemma 2 correspond to the goods market and the liquid
asset market clearing conditions, where we drop the illiquid asset market clearing
condition as it is redundant by Walras’ law. Given government policies, an equilibrium
is described by sequences

{
yt, r

K
t

}∞
t=0

such that (1) demand for final goods equals
output produced, and (2) liquidity demand equals liquidity supply.

This demand-and-supply formulation allows us to identify key features from each
block of the model: The financial block enters the system only through the liquidity
supply function Dt. As a result, all relevant properties of the financial sector are
contained in Dt. Up to first-order approximation, the liquidity supply elasticities
characterized in Proposition 1 are sufficient statistics that summarize how financial
frictions affect aggregate outcomes. The exact microfoundations behind the frictions
do not matter as long as they generate the same liquidity supply. Moreover, since Dt

can be described independently of the household and production sectors, our result is
compatible with a large class of quantitative macroeconomic models, including stan-
dard representative agent frameworks and models that emphasize realistic household
consumption-saving behaviors, such as the TANK and HANK models.

Assumptions about the household sector are summarized by the consumption func-
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tion Ct and the liquidity demand function Bt. Lemma 2 shows that the consumption
function, Ct, plays a key role in the goods market, sharing the same emphasis with a
large literature, such as Auclert et al. (2023), Auclert et al. (2021), and Wolf (2021a).
However, our result also highlights households’ liquidity demand Bt as an important
feature besides their consumption responses.5 In Appendix D.1, we characterize sev-
eral canonical household specifications nested in our framework to illustrate their
distinct implications on liquidity demand, including limiting cases ranging from per-
fectly elastic to perfectly inelastic. Together, households’ liquidity demand interacts
with the financial sector’s liquidity supply to determine how policies affect aggregate
outcomes {yt, rKt } through asset markets.

4.2 Aggregate Responses

We study first-order aggregate responses to government policies around the steady
state. We focus on policies such that {dgt, dTt, drBt , dbGt , daGt }∞t=0 converge to zero as
t→ ∞ and the equilibrium in which aggregate responses converge to zero as t→ ∞.
We use a column vector y to represent {yt}∞t=0 and dy for its first-order deviation;
notation for T , bG, g is similar. We use rK to represent {rKt+1}∞t=0 and drK for its
first-order deviation; notation for rB follows the same convention. The sequences of
returns start from period 1 because rB0 is predetermined and rK0 can be expressed
as a function of output and expected returns, rK0 (y, rK), as defined in Appendix
A.3.

We characterize the equilibrium in two steps. First, we study the asset market re-
sponses by solving for returns on capital drK that satisfy the liquid asset market
clearing condition, given policies and output dy. We then use the solution for drK in
the goods market clearing condition to find the equilibrium output responses dy.

Excess Liquidity and Asset Markets Responses

To study asset market responses, we define a notion of excess liquidity as the difference
5Aguiar et al. (2021) emphasize an aggregate asset demand function, but all assets are perfect
substitutes in their economy. Auclert et al. (2023) study a two-asset economy, but liquidity demand
does not affect aggregate outcomes. This feature can be understood as an assumption about the
financial sector, as we show in Proposition 2.
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between liquidity supply and demand:

Et(y, rK , rB,T , bG) := Dt(r
K
0 (y, rK), rK , rB) + bGt − Bt(y, rA(rK , rB,y), rB,T ),

where rA(rK , rB,y) denotes functions RA
t (·) in vector form, representing the account-

ing identity in Equation 2. We use εrK to denote derivatives of E with respect to rK ,
where εrK (t, s) represents how excess liquidity in period t responds to rKs+1. Other
derivatives follow the same convention.

An equilibrium in the liquid asset market is reached when excess liquidity is zero.
Proposition 2 shows by how much returns on capital need to adjust to clear the liquid
asset market in response to shifts in excess liquidity due to policies and output.

Proposition 2 In equilibrium, returns on capital satisfy

drK = −ε−1
rK

(
dbG + εTdT + εrBdr

B + εydy︸ ︷︷ ︸
shifts in excess liquidity

)
. (6)

Moreover, if Θ̄rK , Θ̄rB → ∞ with Θ̄rB/Θ̄rK → ς, then drK → ςdrB.

Proof. See Appendix A.4.

To understand the result, consider a special case where households’ liquidity demand
Bt is perfectly inelastic with respect to returns. In this case, εrK is determined
by the financial sector’s cross-price elasticities of liquidity supply (Proposition 1).
Furthermore, suppose the financial sector features a constant net worth nt = m and
no forward-looking component, γ = 0. In this case, Proposition 1 implies

ε−1
rK

= (mΘ̄rK )
−1I,

and Proposition 2 implies a positive shift in excess liquidity leads to a decrease in
drKt+1 proportional to Θ̄−1

rK
. For example, consider a shift in excess liquidity, say,

due to an increase in bGt . Since household liquidity demand is fixed, the financial
sector will need to absorb the increase in liquidity by holding more government debt
and decreasing its net liquidity supply. This requires a decrease in expected returns
drKt+1, accompanied by an increase in capital price. This mechanism is stronger when
the leverage sensitivity Θ̄rK is low (liquidity supply inelastic), and capital and liquid
assets are less substitutable for the financial sector.
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Two polar assumptions about the financial sector’s liquidity supply provide important
benchmarks. On the one hand, when liquidity supply is perfectly elastic (Θ̄rK , Θ̄rB →
∞), assets are perfect substitutes for the financial sector. The perfect link between
asset markets allows the government to fully control returns on capital rKt+1 through
monetary policy rBt+1. Changes in government debt, tax, and output have no effect
on rKt+1, and households’ liquidity demand Bt plays no role in determining the equi-
librium outcome. On the other hand, when liquidity supply is perfectly inelastic,
Θ̄rK = Θ̄rB = G = 0, asset market responses are determined entirely by households’
liquidity demand Bt. These limiting cases are important benchmarks because they are
common assumptions in models studying fiscal and monetary policies. As we discuss
in Appendix D.3, the perfectly elastic benchmark corresponds closely to the assump-
tion in Auclert et al. (2023), and the perfectly inelastic benchmark corresponds to
Kaplan et al. (2018). These assumptions about the liquidity supply lead to drastically
different policy implications, as we show in Section 6.

Two polar cases of households’ liquidity demand also provide a useful contrast. If
Bt is perfectly elastic with respect to returns, features of the financial sector have
no effects on aggregate outcomes. On the contrary, if Bt is perfectly inelastic, asset
market responses are determined entirely by features of the financial sector. From
these special cases, we see that asset market responses must be determined by the
joint properties of households’ liquidity demand and the financial sector’s liquidity
supply. However, as we show in Section 5, when households’ consumption-saving
behaviors are calibrated to match standard moments in the microdata, their liquidity
demand is orders of magnitude less elastic than our measures of the financial sector’s
liquidity supply. As a result, quantitatively, asset market responses in our model
will be mostly determined by features of the financial sector, represented by their
cross-price elasticities we derived in Proposition 1.

Aggregate Output Responses

We combine asset market responses with the goods market clearing condition to solve
for output responses. To understand the goods market, we define aggregate demand,
Ψt, as the total of consumption, investment, and government spending:

Ψt(y, r
K , rB,T , g) := Ct(y, rA(y, rK , rB), rB,T ) + Xt(y, r

K) + gt,
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where ΨrK is a matrix of derivatives and ΨrK (t, s) represents how aggregate demand
in period t responds to rKs+1. Other derivatives are defined similarly.

Equilibrium in the goods market requires aggregate output to equal aggregate de-
mand. By totally differentiating the aggregate functions in the goods market clearing
condition and using the expression for drK from Proposition 2, we obtain the following
expression for output:

Theorem 1 Given {dg, dT , drB, dbG}, the output response is given by:

dy =
(
I−Ψy −Ωεy︸ ︷︷ ︸

(3) modified Keynesian cross

)−1 (
dg +ΨTdT +ΨrBdr

B︸ ︷︷ ︸
(1) goods market channel

+Ω
(
dbG + εTdT + εrBdr

B
)

︸ ︷︷ ︸
(2) asset market channel

)
,

where Ω := ΨrK (−ε−1
rK
).6

Proof. See Appendix A.5.

Government policies affect output through three channels. (1) The goods market
channel shows how government purchases, tax, and liquid rate directly affect aggre-
gate demand in the goods market, capturing the standard Keynesian logic. (2) The
asset market channel describes how government debt, tax, and liquid rate affect ag-
gregate demand through asset markets. (3) A modified Keynesian cross captures the
feedback between aggregate demand and income.

The transmission through asset markets depends on an asset market propagation
matrix Ω, which represents how shifts in excess liquidity affect aggregate demand.
It consists of two components. First, matrix −ε−1

rK
describes by how much shifts in

excess liquidity due to policies affect returns on capital rK , representing the asset
market responses in Proposition 2. Second, matrix ΨrK describes how changes in
rK affect aggregate demand. For example, a negative entry ΨrK (t, s) with s > t

reflects how a decrease in expected returns rKs+1 leads to an increase in consumption
and investment at time t (e.g., through an increase in current capital price).

Asset market propagation matrix Ω is shaped by features of the financial sector:
Intermediation frictions represented by Θ̄rK determine the cross-price elasticities of
the financial sector’s liquidity supply, Dt. Liquidity supply affects the response of
6We use (I−Ψy−Ωεy)

−1 to denote a generalized inverse matrix M such that M(I−Ψy−Ωεy) = I,
see Auclert et al. (2023) for details.
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excess liquidity through εrK , and eventually shapes the asset market propagation
through Ω.

Besides governing the asset market channel, the asset market propagation matrix also
modifies the feedback between aggregate income and demand through the Keynesian
cross. An increase in aggregate income not only affects aggregate demand directly
but also shifts excess liquidity through εy. For example, when households receive
higher income, they can increase their liquidity demand, reduce excess liquidity, and
lower aggregate demand through asset market responses. Therefore, the same force
that increases aggregate demand through the asset market channel can dampen the
Keynesian cross feedback.

5 Taking the Model to the Data

We now take the model to the data to prepare for a quantitative assessment of how
the financial sector affects aggregate responses to policies. We estimate parameters
governing the intermediation frictions with bank balance sheet data and yield curves
on Treasury and corporate bonds. We combine the estimates with a calibrated net
worth process to measure the liquidity supply elasticities, while performing extensive
checks in the appendix to argue for the robustness of our quantitative result. Fi-
nally, we calibrate the rest of the model and discuss its quantitative implications on
household liquidity demand.

5.1 Empirical Summary of Intermediation Frictions

To provide an empirical summary of the intermediation frictions, we estimate key pa-
rameters of financial intermediation Θ̄rK , Θ̄rB , γ with identified structural shocks.

We assume the following empirical counterpart of the mapping between the interme-
diary’s leverage and expected returns in Lemma 1:

dΘt =
∞∑
h=1

γh−1
(
Θ̄rKEt[drKt+h]− Θ̄rBEt[drBt+h]

)
+ υt, (7)

where υt represents either measurement errors or exogenous shocks to the level of
intermediation. We provide an overview of how we measure dΘt, Et[drKt+h], and
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Et[drBt+h] for the U.S. banking sector below and describe details in Appendix C.1.

Leverage: We take the market value of equity and the liquid asset positions of bank-
holding companies come from the CRSP and Call Report data. For each quarter, we
aggregate the market value of equity for nt and the net liquid asset supply (liquid
liabilities minus liquid assets) for dt. Liquid liabilities and assets on the banking sector
balance sheet include deposits in checkable, time, savings accounts, money market
fund shares, and government liabilities such as cash, reserve, and Treasury debt. The
effective leverage is calculated as

effective leverage (Θt) := 1 +
net supply of liquid assets (dt)

market value of bank equity (nt)
.

Returns: We use the yield curves on U.S. Treasury bonds to construct liquid rates
over different horizons, Et[drBt+h]. Since the banking sector’s liquidity supply is given
by their issuance of liquid assets net of government debt, these yields captured the
relevant margin of adjustment for liquidity supply. For expected returns on capital,
Et[drKt+h], we rely on the yield curves of high-quality market corporate bonds (grade
A and above). To better represent returns on the banking sector’s asset holdings, we
adjust the yield curve proportionally so that their fluctuations are similar to Moody’s
BAA bond yield index of the corresponding horizon. Nominal yields are converted to
real yields using inflation expectations data from the Cleveland Fed.

Threats to Identification

The main threat to identification is that the residual υt in Equation 7 may contain
exogenous “leverage shocks” that affect the banking sector’s ability to sustain their
leverage, given the expected returns. For example, such shocks can represent changes
in macroprudential policies or financial intermediaries’ business strategies. These
changes affect how much assets the financial sector can intermediate per unit of net
worth. Exogenous changes to the idiosyncratic risk profile in Bernanke et al. (1999)
studied in Christiano et al. (2014) would also appear in the residual υt. Because
these shocks to the level of intermediation affect expected returns in general equilib-
rium, they introduce an omitted variable bias. As a result, our estimation requires
instrumental variables for identification with the presence of these shocks.
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Identification Strategy

A valid instrument It needs to satisfy the exclusion restriction: E[υt×It] = 0, and the
relevance condition: E

[
It×Et[drKt+h]

]
, E
[
It×Et[drBt+h]

]
6= 0. Intuitively, we need the

instrument to move with expected returns, but to be uncorrelated with exogenous
changes in the banking sector’s ability to maintain its leverage under a certain level
of expected returns.

We use three shock proxies to construct such instruments: (i) the high-frequency
monetary policy shock proxies constructed by Bauer and Swanson (2023), (ii) the oil
supply shock proxies constructed by Baumeister and Hamilton (2019), and (iii) the
high-frequency intermediaries net worth shock proxies constructed by Ottonello and
Song (2022). We argue that these proxies are unlikely to be driven by a change in
macroprudential policy, a change in the banking sector’s business strategy, or shocks
to the banking sector as in Christiano et al. (2014): These changes are unlikely to
happen exactly during the short windows around the FOMC announcement or the
release of earnings reports, and they are not likely to comove with the oil supply.

With these shock proxies, we construct returns variations Et[ďrKt+h] and Et[ďrBt+h] as
our instrument from an SVAR model: We first recover structural shocks correspond-
ing to the three proxies by assuming that only these shocks can affect the proxies
contemporaneously. We then extract variations in forward rates that are attributed
to these shocks. To the extent that the proxies are not affected contemporaneously
by events that change the banking sector’s leverage given expected returns, return
variations Et[ďrKt+h] and Et[ďrBt+h] satisfy the exclusion restriction. To check for the
relevance condition, we show that return variations generated by the three structural
shocks account for approximately 20% of the total variations in expected returns, as
reported in Appendix C.1.

Estimation Results

We estimate parameters Θ̄rK , Θ̄rB , γ using the generalized method of moments with
moment conditions of the form: E[υt× It] = 0. We consider two alternative specifica-
tions of It. First, as a baseline case, we assume that υt consists purely of measurement
errors and use It ∈

{
Et[drKt+h], Et[drBt+h]

}
in our estimation. If we had a linear model,

this would correspond to ordinary least squares regression. Second, to address the
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threat to identification that υt contains exogenous shocks to leverage, we use variation
in expected returns generated by the identified shocks: It ∈

{
Et[ďrKt+h], Et[ďrBt+h]

}
.

We use forward rates for horizons 1, 5, 10, and 30 years in both specifications. The
estimation results are reported in Table 1, and details are provided in Appendix
C.1.

Table 1: Estimation of Intermediation Frictions

(1) baseline (2) IV
size of cross-price, Θ̄rK 27.58 23.73

(13.49) (16.31)
size of own-price, Θ̄rB 22.51 25.78

(16.73) (21.46)
forward-looking, γ 0.94 0.94

(0.03) (0.06)

Observations 252 252
J-test (p-value) 10.09 (0.12) 7.37 (0.28)

Note: Estimation uses iterative GMM for optimal weighting matrix. Standard errors use het-
eroskedastic and autocorrelation consistent estimators. Sample period: January 1999 to December
2019, monthly observation.

The first column of Table 1 presents estimates from our baseline specification and that
with instrumental variables. Estimates of Θ̄rK and Θ̄rB imply the effective leverage
of the banking sector increases by around 25 percentage points in response to one
percentage point increase in the spread between the two returns. The forward-looking
component γ is converted to quarterly frequency since we use a quarterly frequency
calibration for our quantitative results. Our estimate for γ is around 0.94, which
implies a “half-life” of around two and a half years: the response to a spread increase
two and a half years ahead is half as strong as the response to a change next quarter.
The total response of banks’ effective leverage is a discounted sum of responses to all
future spreads.

In Appendix C.1, we carry out two sets of robustness checks. First, to alleviate
concerns that any specific proxy may contain information about υt and violate the
exclusion restriction, we exclude each of the three proxies and construct return vari-
ations with the other two proxies. The results are largely similar to those in Table 1.
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Second, we generalize our empirical specification to measure the extent to which our
estimates vary with the aggregate state of the economy. This provides us with useful
information to gauge the situation under which our result is useful. We do not find
statistically significant results in support of state dependency, as the standard errors
for the state dependency parameter are large.

5.2 Implied Liquidity Supply Elasticities

We calculate the liquidity supply elasticities using our estimates for Θ̄rK , Θ̄rB , and γ
and the formula in Proposition 1. To complete the calculation, we need information
about steady-state returns and leverage and to specify the net worth process.

Steady-state returns and leverage: We set liquid rate rB equal to 0%, consistent with
the average one-year Treasury real yield in our sample. We target rK at 3.5% per
annum, corresponding to the average real yield on BAA bonds. The average effective
leverage Θ̄ is 4.

Net worth process: We assume the intermediary net worth follows:

G
(
Θt−1, r

K
t , r

B
t

)
= (1− f)

[
1 + rBt +

(
rKt − rBt

)
Θt−1

]
.

The net worth process features a constant payout rate f from the leveraged return.
We set f = 0.06, a value that falls in the common range in the literature. In Appendix
E.3, we allow for a fully flexibleG function and demonstrate that our policy conclusion
is insensitive to a wide range of values for ḠΘ, ḠrK , ḠrB , and Ḡ. As we show in
Appendix B.3, these robustness checks imply that our policy conclusion is also robust
to alternative net worth specifications that feature endogenous equity issuance as in
Karadi and Nakov (2021) and Akinci and Queralto (2022).

Figure 1 shows the semi-elasticities, ∂Dt/∂rKs
Dt

and ∂Dt/∂rBs
Dt

, implied by Proposition 1,
using our estimates for Θ̄rK , Θ̄rB , γ and the calibrated net worth process. Each line
represents how liquidity supply responds to an increase in returns in a different period
s. The cross-price elasticities show that liquidity supply increases before period s,
reflecting the forward-looking component. After period s, liquidity supply drops
sharply but remains elevated due to propagation through net worth. The size of the
initial response ∂D0/∂rK1

D0
implies an 8.05% increase in liquidity supply in response to a

one percentage point increase in rK1 . The own-price elasticities have a similar pattern
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with the opposite sign.
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Figure 1: Semi-elasticities of liquidity supply. Each line corresponds to a different period s and
shows semi-elasticity of liquidity supply in quarter t with respect to rKs and rBs .

Benchmarks: Common Assumptions in Macro Models

To put our measures of the liquidity supply elasticities into context, we compare
them to three common assumptions in workhorse macroeconomic models that feature,
respectively, (1) a perfectly inelastic liquidity supply, (2) a perfectly elastic liquidity
supply, and (3) asset diversion frictions as in Gertler-Karadi-Kiyotaki.

The first two benchmarks correspond respectively to the assumptions in Kaplan et
al. (2018) and Auclert et al. (2023), as we discussed in Section 4.2. These polar cases
are useful benchmarks because they are currently some of the most popular models
for quantitative analysis of monetary and fiscal policy.

The third benchmark (GKK and its variants) constitutes the majority of macroeco-
nomic models with financial frictions. However, as discussed in Section 3.1, GKK
imposes a tight restriction on the liquidity supply elasticities, linking them to the
intermediary’s steady-state returns and leverage:7

Θ̄rK =
Θ̄(Θ̄− 1)

1 + rK
, Θ̄rB =

Θ̄(Θ̄− 1)

1 + rB
, γ =

(1− f)(1 + rB +
(
rK − rB

)
Θ̄)2

(1 + rK)(1 + rB)
.

Given the steady-state returns and leverage in our sample, the values of these param-
eters are, respectively, 11.9, 12.0, and 0.998. The semi-elasticities implied by these
parameters are half of those in our baseline, for example, ∂D0/∂rK1

D0
equals 3.96.

7The formula depends on the intermediary’s discount factor, which we use 1/(1+rKt+1) as a baseline.
Formulas for other alternatives are provided in Appendix B.1.
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The differences between our empirical measures and these benchmarks are important
as they lead to diverging policy conclusions, as we show in Section 6.

5.3 Production, Government, and Households

Production: The elasticity of output with respect to capital α is set to 0.35. Depre-
ciation rate δ is 5.58% yearly. Capital production function is Γ (ιt) = ῑ1ι

1−κI
t + ῑ2,

where ῑ1, ῑ2 generate steady-state investment-to-capital ratio equal to δ and the price
of capital equal to 1. We set κI = 0.5 so that the elasticity of investment to capital
price is 2. Unions allocate labor uniformly among households: l(zi,t) ≡ 1/

∫
zi,tdi.

Since monetary policy targets real liquid rates, the slope of the wage Phillips curve
does not matter for output responses. Therefore, the exact values of the elastic-
ity of substitution between labor varieties, εW , and nominal wage rigidity, κW , are
inconsequential.

Government: We set steady-state net tax revenue to 15% of output and the tax
system’s progressivity parameter, λ, to 0.18. Net liquid assets supplied by the gov-
ernment (and held by the private sector) is 21% of steady-state output, consistent
with liquid asset positions in the data, as shown in Appendix C. We assume the
government holds no illiquid assets in the steady state. The level of government
purchases implied by the government budget constraint is 15% of output.

Households

Preferences: There are two types of households, indexed by s with population share
µs. Period utility functions have the following form:

us (c)− νs (h) =
c1−σs − 1

1− σs
− ς

h1+
1
ϕ

1 + 1
ϕ

, σs ≥ 0, ϕ ≥ 0.

We set the intertemporal elasticity of substitution, 1/σs, to {1/2, 2} for s ∈ {1, 2},
following a simplified version of Aguiar et al. (2020). The Frisch labor supply elastic-
ity, ϕ, is set to 1. Parameter ς is set so that steady-state average hours worked equal
one-third.

Income process: We use a discrete-time version of the income process described in Ka-
plan et al. (2018), which targets eight moments of the male-earnings distribution from

25



Guvenen et al. (2015). Income process is the same for both household types.

Assets: Adjustment cost of illiquid assets is similar to Auclert et al. (2021):

Φt(ai,t, ai,t−1, r
A
t ) =

χ1

χ2

∣∣∣∣ai,t − (1 + rAt )ai,t−1

ai,t−1 + χ0

∣∣∣∣χ2

[ai,t−1 + χ0] .

We set χ0 to 0.1 and assume asset positions cannot be negative: a = b = 0.

Parameters of households that we calibrate internally include the discount rates βs
of both types, the share of agents with high intertemporal elasticity of substitution
µ2, and two parameters of the adjustment cost function χ1 and χ2. We target five
moments: the steady-state ratios of liquid and illiquid assets to GDP, the shares of
wealthy (WHtM) and poor hand-to-mouth (PHtM) agents (25% and 15%), and the
first quarter marginal propensity to consume out of $500 transfer (MPC) (20%). Table
1 shows that the model replicates target moments and reports calibrated parameter
values.8

Table 2: Households Calibration

Target Moments Model Data Parameter Value

Liquid assets to GDP 0.60 0.55 β1 0.983
Illiquid assets to GDP 3.36 3.43 β2 0.943
Poor Hand-to-Mouth 15% 9 - 17% µ2 0.176
Wealthy Hand-to-Mouth 25% 12 - 33% χ1 23.34
First quarter MPC 20% 15 - 25% χ2 2.0154

Data Source: See Appendix C.2 for liquid assets and illiquid assets positions; shares of HtM
households: Table 3 in Kaplan et al. (2014); MPC: Kaplan and Violante (2022).

Our household sector features a canonical two-asset heterogeneous agent model cali-
brated to match standard targets. Households’ consumption responses to an increase
in disposable income (MPC) are large, as commonly emphasized in the literature.
However, the same portfolio adjustment frictions that generate illiquidity and large
consumption responses for WHtM households also imply that these households face
difficulties in adjusting asset positions in response to returns. As a result, with the
portfolio adjustment cost calibrated to match empirically plausible MPC, households’
consumption responses also inform us about their liquidity demand with respect to
returns.
8Households’ illiquid assets positions equal gross illiquid assets minus liabilities. For example, higher
mortgage lending from banks to households will lower households’ illiquid asset position and increase
intermediary capital holdings.
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Implied Liquidity Demand

Figure 2 compares household liquidity demand from our calibration to our estimates
of the financial sector’s liquidity supply, along with the excess liquidity supply. Each
line represents responses to an increase in rKs , taking into account its effect on the
sequence of illiquid returns {rAs }.
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Figure 2: Entries of −B̃rK ,DrK , and εrK matrices (see Appendix A.6 for their definitions). Each
line corresponds to a different period s and shows a response of liquidity demand, liquidity supply,
or excess liquidity in quarter t with respect to rKs

Liquidity demand responses are an order of magnitude smaller than liquidity supply
responses. This implication is consistent with existing empirical evidence, such as
Gabaix et al. (2024), which suggests that insensitivity and inertia in asset allocations
are prominent features of the household sector, including even ultra-rich households.
As discussed in Section 4.2, the contrast between the elasticities of liquidity demand
and supply has an important implication: When liquidity demand is inelastic with re-
spect to returns, asset market responses are mostly determined by the financial sector
through its cross-price elasticities of liquidity supply. Since workhorse macro models
feature a wide range of assumptions on these elasticities, they generate substantially
different conclusions for a variety of policy questions.

6 Policy Implications

Our sufficient statistics impose empirical discipline on assumptions about the finan-
cial sector and have crucial policy implications. We use two policy questions to
demonstrate its importance. The first question concerns the government spending
multipliers: How do changes in government spending affect aggregate output? The

27



second question is central to the Wall Street vs. Main Street debate: Can asset
purchases stimulate aggregate output more effectively than tax cuts?

Through our sufficient statistics, we systematically compare policy implications of
common assumptions about the financial sector, as discussed in Section 5.2, and
contrast them with our empirical measures. We calculate aggregate responses to
policies under these assumptions, keeping all else equal in our calibrated model.

6.1 Government Spending Multiplier

We show that the size of the government spending multiplier depends crucially on
the implicit assumptions about the financial sector. Consider the government imple-
menting a policy path {db̂Gt , dĝt, dr̂Bt , dâGt , dT̂t} with

dĝt = ηts0, db̂Gt = ρbG(db̂
G
t−1 + dĝt), dr̂Bt = dâGt = 0,

and tax revenue dT̂t is set to satisfy the budget constraint. Parameter s0 controls
the size of spending, decaying at rate η; the extent of deficit financing is governed
by ρbG . We set η = 0.5 so that most spending is completed in one year; size s0 is
such that debt peaks at 1% of annual GDP. We use ρbG = 0.95 as a baseline, which
implies government debt peaks in one year and is reduced to half in five years. As
we discuss below, the main message remains the same for different levels of deficit
financing. Figure 3 shows the resulting policy paths.
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Figure 3: The path of government debt, good purchases, and taxes.

Output Responses

Figure 4 shows how output responses to government spending depend on assump-
tions about the financial sector. Each line represents a version of our model with a
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different specification of the financial sector’s liquidity supply elasticities. The blue
and black lines indicate responses with perfectly inelastic and elastic supply. The
red line represents output responses with elasticities implied by our empirical esti-
mates. Yellow shades from dark to light represent models with decreasing values for
leverage sensitivity Θ̄rK from our empirical estimate (Θ̄rK = 25) to that implied by a
Gertler-Karadi-Kiyotaki type model (Θ̄rK = 12).

Output responses on impact differ substantially across different assumptions about
the financial sector, ranging from 2.3% to 4.5% of steady-state output, with inelastic
liquidity supply associated with stronger responses. The impact government spending
multiplier ranges from 1.1 to 1.9, and the cumulative multiplier from 0.5 to 2.5.9
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Figure 4: Output response to government goods purchases with η = 0.5, ρbG = 0.95. Red: empirical
estimate (Θ̄rK = 25). Black: perfectly elastic liquidity supply (Θ̄rK → ∞). Blue: perfectly inelastic
liquidity supply (DrK = 0). Dark to light yellow: high to low Θ̄rK (from Θ̄rK = 25 to Θ̄rK = 12 in
GKK). Figure 14 in Appendix E.2 shows the responses of consumption and investment.

9The cumulative multiplier is calculated as
∑∞

t=0(1 + rB)−tdyt/
∑∞

t=0(1 + rB)−tdgt. If we use rK

instead, the corresponding numbers are 0.7 and 2.5
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Decomposition

To understand why assumptions about the financial sector lead to widely different
outcomes, we use Theorem 1 to decompose output responses into the goods market
channel, the asset market channel, and the modified Keynesian cross, as shown in
Figure 5.
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Figure 5: Decomposition of output responses to government goods purchases with η = 0.5, ρbG = 0.95
using Theorem 1. GE effect: the difference between total output responses and the sum of the goods
market and asset market channels. Red: empirical estimate (Θ̄rK = 25). Black: perfectly elastic
liquidity supply (Θ̄rK → ∞). Blue: perfectly inelastic liquidity supply (DrK = 0). Dark to light
yellow: high to low Θ̄rK (from Θ̄rK = 25 to Θ̄rK = 12 in GKK). Figure 15 in Appendix E.2 shows
a version with the full range of responses.

The goods market channel reflects direct responses of aggregate demand to dg and
dT . Since these responses do not depend on the financial sector, all specifications
generate the same outcome.

By contrast, the same policy generates significant differences in the asset markets due
to different assumptions about the financial sector, as shown in the middle panel. As
government debt and taxes shift excess liquidity, variation in the financial sector’s liq-
uidity supply elasticities generates a wide range of responses through the asset market
propagation matrix Ω. By changing Θ̄rK from our empirical estimate to that imposed
by a GKK model, aggregate demand rises by an order of magnitude, and the contrast
is even more drastic between the perfectly elastic and inelastic benchmarks.

Finally, we present the modified Keynesian cross as the general equilibrium (GE)
effect, which is the difference between total output responses and the sum of the first
two channels. A prominent aspect of this channel is a strong dampening response
when liquidity supply is perfectly inelastic (blue line): While shifts in excess liquidity
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generate strong aggregate demand through the asset market channel, increases in
aggregate income shift up liquidity demand, reduce excess liquidity, and dampen the
total output responses. The dampening force reduces the output response on impact
by up to 50%. The same dampening force is also present in other specifications, but
it is dominated by the standard Keynesian feedback when liquidity supply elasticities
are high.

The Size of Multipliers

While Figure 4 shows output responses to government spending with a specific path
of government debt and taxes, Figure 6 shows that our main message holds for a wide
range of debt financing schemes, as parameterized by ρbG .
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Figure 6: Impact and cumulative government spending multipliers for η = 0.5 and ρbG ∈ [0, 0.95].
Impact multiplier: dy0/dg0. Cumulative multiplier:

∑∞
t=0(1 + rB)−tdyt/

∑∞
t=0(1 + rB)−tdgt. Red:

empirical estimate (Θ̄rK = 25). Black: perfectly elastic liquidity supply (Θ̄rK → ∞). Blue: perfectly
inelastic liquidity supply (DrK = 0). Dark to light yellow: high to low Θ̄rK (from Θ̄rK = 25 to
Θ̄rK = 12 in GKK).

Across all degrees of debt financing, the government spending multiplier is always
significantly larger when the financial sector features an inelastic liquidity supply
(blue line) than an elastic supply (black line). In both cases, our model converges to
canonical HANK frameworks that are commonly used for analyzing fiscal and mone-
tary policies, as we discussed in Section 4.2. The only difference between the two is
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their assumptions about the financial sector. Yet, they generate government spending
impact multipliers that vary by almost a factor of two as shifts in excess liquidity gen-
erate different asset market responses. The differences are even larger for cumulative
multipliers. Even in the case without debt financing (ρbG = 0), assumptions about the
financial sector matter as taxes imposed by the government shift households’ liquidity
demand. With a greater degree of debt financing, assumptions about the financial
sector lead to larger variations in the multipliers, as the issuance of government debt
generates larger shifts in excess liquidity. Figure 16 in Appendix E.1 shows a similar
when we fix ρbG = 0 and vary the persistence of spending, η, instead.

6.2 Asset Purchases vs. Tax Cuts

Our second policy question concerns the Wall Street vs. Main Street debate: Can as-
set purchases stimulate aggregate output more effectively than tax cuts? We compare
two alternative policies for the government.

The first policy, given by {db̃Gt , dg̃t, dr̃Bt , dãGt , dT̃t}, features an asset purchase program
in which the government issues liquid debt db̃Gt and holds illiquid asset dãGt of the same
value: dãGt = db̃Gt . The government keeps dg̃t = dr̃Bt = 0, and adjusts tax revenue dT̃t
to satisfy its budget constraint. This policy implies net asset purchases:10

d∆t := dãGt − (1 + rA)dãGt−1.

For the second policy, given by {db̌Gt , dǧt, dřBt , dǎGt , dŤt}, the government keeps illiquid
asset holdings at dǎGt = 0 and pays out d∆t as tax cuts: dŤt := dT̃t−d∆t. It maintains
the same path for debt, db̌Gt = db̃Gt , and dǧt = dřBt = 0.

To parameterize the policy paths, we assume the government debt follows

db̃Gt = ρbG(db̃
G
t−1 + st), st = ηts0.

As in Section 6.1, we set ρbG = 0.95 and η = 0.5, so that government debt peaks at
1% of annual GDP in one year, and we calculate the implied paths for asset purchases
and tax cuts. Figure 7 shows the paths for the two policies for government debt, net
asset purchases (d∆t and 0), and tax revenue (dT̃t and dŤt).
10Since aG = 0 in the steady state and net asset purchases are given by ∆t := ãGt − (1 + rAt )ã

G
t−1,

and the formula for d∆t follows from a first-order approximation with drAt a
G = 0.

32



0 5 10 15 20

%
 o

f 
s
te

a
d

y
 s

ta
te

 o
u
tp

u
t

0

1

2

3

4

Government debt

Quarters

0 5 10 15 20

0

1

2

Net asset purchases

0 5 10 15 20

−2

−1

0

Tax

Asset purchases

Tax cut

Figure 7: The path of government debt, net asset purchases, and taxes.

Output Responses

Figure 8 compares how different assumptions about the financial sector’s liquidity
supply elasticities affect output responses to asset purchases and tax cuts.
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Figure 8: Output responses to asset purchases and tax cuts with η = 0.5, ρbG = 0.95. Red: empirical
estimate (Θ̄rK = 25). Black: perfectly elastic liquidity supply (Θ̄rK → ∞). Blue: perfectly inelastic
liquidity supply (DrK = 0). Dark to light yellow: high to low Θ̄rK (from Θ̄rK = 25 to Θ̄rK = 12
in GKK). Appendix E.2 shows the full range of output responses in Figure 19 and the responses of
consumption and investment in Figures 17 and 18.

For asset purchases, output responses on impact differ by orders of magnitudes, rang-
ing from 0.03% to more than 3.2% between perfectly elastic and inelastic liquidity
supply; for tax cuts, output responses differ almost by a factor of three, ranging from
0.5% to 1.4%. Despite the difference being substantial for both policies, the effects of
asset purchases are noticeably more sensitive to assumptions about the financial sec-
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tor than tax cuts. To understand the contrast between the two policies, we decompose
output responses into the three channels using Theorem 1.

Decomposition

Figure 9 shows the decomposition for asset purchases and tax cuts, with each column
representing a channel. The left column shows the goods market channel. Asset
purchases have little effect through this channel as their impact on tax revenue is
limited. Tax cuts, on the contrary, generate substantial responses due to households’
high MPCs. The effect of tax cuts emphasizes the importance of household het-
erogeneity and illiquidity. These features break Ricardian equivalence and generate
substantial effects from deficit-financed tax cuts. However, since households’ MPCs
do not depend on the financial sector, all specifications generate the same outcome
through the goods market channel.
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Figure 9: Decomposition of output responses using Theorem 1. The first row shows decompo-
sition for asset purchases; the second row shows decomposition for tax cuts, both policies with
η = 0.5, ρbG = 0.95. GE effect: the difference between total output responses and the sum of the
goods market and asset market channels. Red: empirical estimate (Θ̄rK = 25). Black: perfectly
elastic liquidity supply (Θ̄rK → ∞). Blue: perfectly inelastic liquidity supply (DrK = 0). Dark to
light yellow: high to low Θ̄rK (from Θ̄rK = 25 to Θ̄rK = 12 in GKK). Figure 20 in Appendix E.2
shows a version with the full range of responses.

By contrast, through the asset market channel, assumptions about the financial sector
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generate a wide range of outcomes in response to shifts in excess liquidity generated
by the two policies. Comparing the two policies, the asset purchase program generates
stronger effects through asset markets as it generates larger shifts in excess liquidity.
However, as it relies more on the propagation through asset markets, it is more
sensitive to the assumption about the financial sector than tax cuts, explaining the
wider range of output responses for asset purchases in Figure 8.

Relative Effects of Asset Purchases vs. Tax Cuts

To study how our conclusions about the effectiveness of the two policies depend on
assumptions about the financial sector, we calculate the difference in output responses
to asset purchases and tax cuts:

dyasset − dytax =
(
I−Ψy −Ωεy︸ ︷︷ ︸

(3) modified Keynesian cross

)−1 (
ΨTd∆︸ ︷︷ ︸

(1) goods market

+ Ω εTd∆︸ ︷︷ ︸
(2) asset market

)
.

The difference is positive when asset purchases have a stronger effect on output and
vice versa. As the difference depends only on d∆, our conclusion about the relative
effects does not hinge on our assumption about dg, drB, as long as both policies
feature the same paths. Therefore, we effectively control for responses due to other
policy variables by focusing on the difference.

Figure 10 represents the difference in output responses. On one end, when the finan-
cial sector features perfectly inelastic liquidity supply, asset purchases have a stronger
effect than tax cuts: the difference in output response amounts to 1.8% of steady-state
output on impact. A Gertler-Karadi-Kiyotaki type model gives a qualitatively simi-
lar prediction: Asset purchases are more effective in stimulating output, with a 0.6%
difference. On the other end, when the financial sector features a perfectly elastic
liquidity supply, the asset market channel vanishes, the effect of tax cuts dominates
through the goods market channel, and the difference is −0.5% on impact. Com-
pared to this benchmark, our empirical estimate generates a non-negligible response
to asset purchases. Still, our estimates of these elasticities are relatively high, which
implies modest asset market responses compared to the goods market channel. As a
result, they predict that policies targeting households directly, such as tax cuts, can
stimulate output more effectively than policies that rely mostly on the asset market
channel, such as asset purchases.
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Figure 10: Difference between output response to asset purchases and tax cuts. Positive values mean
that responses to asset purchases are larger. Red: empirical estimate (Θ̄rK = 25). Black: perfectly
elastic liquidity supply (Θ̄rK → ∞). Blue: perfectly inelastic liquidity supply (DrK = 0). Dark to
light yellow: high to low Θ̄rK (from Θ̄rK = 25 to Θ̄rK = 12 in GKK).

7 Conclusion

In this paper, we show that, for a large class of macro models with financial frictions,
the financial sector’s asset supply elasticities provide sufficient information about the
underlying financial frictions. By focusing on these elasticities, we can strengthen
empirical discipline on these frictions. Such discipline is highly policy-relevant, as we
demonstrated in our policy analysis. Moreover, with minimal assumptions on the de-
tailed microfoundation, we can integrate this class of financial intermediation models
into state-of-the-art quantiative macro models with rich features such as household
heterogeneity and illiquidity. This integration allows us to study a set of important
policy questions that standard macro-finance models with a simplified household sec-
tor are not suited for.

Generalizing the financial sector’s asset supply system to include various types of
assets and intermediaries is a natural step for a comprehensive framework to study
the transmission of policies and shocks through asset markets. Normative analysis
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based on such an asset supply system will allow us to understand how characteristics
of the financial sector should shape a wide range of government policies, such as open
market operations, quantitative easing and tightening, and Operation Twist. We
leave these topics for future research.
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A Proofs and Derivations

A.1 Proof of Proposition 1

Proof. To derive the response of liquidity supply to changes in returns, totally differ-
entiating dt = (Θt − 1)nt and evaluating at the steady state gives

dDt = dΘtn̄+
(
Θ̄− 1

)
dnt,

where the net worth process follows

dnt = Ḡdnt−1 + (ḠΘdΘt−1 + ḠrKdr
K
t + ḠrBdr

B
t )n.

Consider changes in returns drKs , drBs at time s, and let drKt = drBt = 0, ∀t 6= s.
Because Θt−1 responds only to drKs when t ≤ s and Θ−1 is pre-determined, we have
dΘt−u−1

drKs
= 0, for u ≤ t− s− 1 or u ≥ t , and

dnt =


∑t−1

u=0 ḠΘḠ
u dΘt−u−1

drKs
n drKs , s > t,∑t−1

u=t−s ḠΘḠ
u dΘt−u−1

drKs
n drKs , s ≤ t.
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For class of intermediation frictions described in Section 3, Lemma 1 implies dΘt−u−1

drKs
=

γs−t+uΘ̄rK ,∀t > u ≥ t− s. Substitute the expression and let σ(s) := 1−(γḠ)s

1−γḠ ×1{s≥0},
we have

dnt =

ḠΘγ
s−tσ(t)Θ̄rKndr

K
s , s > t,

ḠΘḠ
t−sσ(s)Θ̄rKndr

K
s , s ≤ t.

Use Dt = (Θt − 1)nt, then

∂Dt/∂r
K
s

Dt

=


γs−t−1Θ̄rK

(
1

Θ−1
+ γΣ(t)

)
, s > t,(

ḠrK + Θ̄rKΣ(s)
)
Ḡt−s, s ≤ t,

where Σ(t) := ḠΘσ(t)

A.2 Proof of Lemma 2

Proof. We define the aggregate functions respectively for the household, production,
and financial blocks of the model. Because these aggregate functions incorporate
the optimality conditions for each block, sequences that satisfy market clearing given
these functions represent an equilibrium.

Households

The solution of the household problem defines a set of mappings from after-tax income
and returns,

{
yi,t − T (yi,t), r

A
t , r

B
t

}∞
s=0

, to the optimal consumption, savings in each
type of asset, and the adjustment cost for each household i.

From the firm’s problem, we have Wt

Pt
ht = (1− α) yt. Because labor unions are

identical, hlt = ht, and the labor demand rule implies hi,t = l(zi,t)ht and yi,t =

zi,tl(zi,t)(1−α)yt. Given the tax system, after-tax income for household i is given by:

yi,t − T (yi,t) = (1− τt)
(
zi,tl(zi,t)(1− α)yt

)1−λ
.
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The tax rate τt consistent with tax revenue Tt satisfies:∫
yi,tdi− Tt = (1− τt)

(
(1− α)yt

)1−λ ∫ (
zi,tl(zi,t)

)1−λ
di.

Therefore,
1− τt =

(1− α)yt − Tt(
(1− α)yt

)1−λ ∫ (
zi,tl(zi,t)

)1−λ
di
,

and individual after-tax income is given by:

yi,t − T (yi,t) =

(
zi,tl(zi,t)

)1−λ∫ (
zi,tl(zi,t)

)1−λ
di

(
(1− α)yt − Tt

)
.

As a result, the optimal policy rules of individual households can be expressed
as functions of the idiosyncratic state {zi,s} and

{
ys, r

A
s ; r

B
s , Ts

}∞
s=0

. Aggregation
across individuals given the initial distribution of assets and productivity gives us
the aggregate assets and consumption demand functions: At

({
ys, r

A
s ; r

B
s , Ts

}∞
s=0

)
,

Bt
({
ys, r

A
s ; r

B
s , Ts

}∞
s=0

)
and Ct

({
ys, r

A
s ; r

B
s , Ts

}∞
s=0

)
, where we define the consumption

function to include the adjustment cost:

Ct
({
ys, r

A
s ; r

B
s , Ts

}∞
s=0

)
:=

∫
ci,t + Φ(ai,t, ai,t−1, r

A
t )di.

Production

To obtain the investment function use the law of motion for capital to get the invest-
ment ratio

xt
kt−1

= Γ−1

(
kt − (1− δ) kt−1

kt−1

)
=: ι(kt, kt−1)

and use this in the first order condition with respect to ιt, we have

qt =
1

Γ′ (ι(kt, kt−1))
=: q̂ (kt, kt−1)

All the above result in

1 + rKt+1 =
α yt+1

kt
+ q̂ (kt+1, kt)

(
kt+1

kt

)
− ι(kt+1, kt)

q̂ (kt, kt−1)
,

which can be solved to obtain capital in each period as a function of the path of
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{ys, rKs }, given initial capital k−1: Kt

({
ys, r

K
s

}∞
s=0

)
.

We then use the law of motion for capital again to back out the investment function
Xt

({
ys, r

K
s

}∞
s=0

)
. Moreover, we can express capital price as qt := Qt

({
ys, r

K
s

}∞
s=0

)
.

The Financial Sector

The liquidity supply functions given returns, Dt(
{
rKs , r

B
s

}∞
s=0

), are defined as in Sec-
tion 3. For the function RA

t (·), we using Equation 2. Define Lt := dt/ (qtkt) to be
the liquidity transformation ratio, which represents the share of capital held as liquid
assets. The accounting identity in Equation 2 can be written as:

1 + rAt+1 =
(1 + rKt+1)− (1 + rBt+1)Lt

1− Lt
.

Using functions Dt

({
rKs , r

B
s

}∞
s=0

)
, Qt

({
ys, r

K
s

}∞
s=0

)
, and Kt

({
ys, r

K
s

}∞
s=0

)
, we can

write Lt as Lt
({
ys, r

K
s ;Dt

}∞
s=0

)
, and rAt+1 = RA

t+1 where

RA
t+1

({
rKs , r

B
s , ys;Dt

}∞
s=0

)
:=

(
1 + rKt+1

)
−
(
1 + rBt+1

)
Lt
({
ys, r

K
s ;Dt

}∞
s=0

)
1− Lt ({ys, rKs ;Dt}∞s=0)

− 1 (8)

Market Clearing

From the definition of the aggregate functions, the goods market clearing and liquid
asset market clearing conditions are given by

Ct({ys, rAs ; rBs , Ts}∞s=0) + Xt({ys, rKs }∞s=0) + gt = yt, (9)

Bt
({
ys, r

A
s ; r

B
s , Ts

}∞
s=0

)
= Dt

({
rKs , r

B
s

}∞
s=0

)
+ bGt . (10)

Given
{
gs, Ts, r

B
s , b

G
s

}∞
s=0

, let {ys, rKs }∞s=0 be a sequence that satisfies Equations 8,
10, and 10. We solve aGs from Equation 5, so the government budget constraint is
satisfied. Because the aggregate functions for households are derived under household
budget constraints, by the Walras law, the illiquid asset market clears

At

({
ys, r

A
s , r

B
s ;Ts

})
= Qt

({
ys, r

K
s

}∞
s=0

)
Kt

({
ys, r

K
s

}∞
s=0

)
−Dt

({
rKs , r

B
s

}∞
s=0

)
− aGt .

Therefore, sequence {ys, rKs }∞s=0 constitute an equilibrium.
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A.3 Time 0 Returns

We express rK0 as a function of output and expected returns by noting that

1 + rK0 =
α y0
k−1

+ q̂ (k0, k−1)
(

k0
k−1

)
− ι(k0, k−1)

q̂ (k−1, k−2)
,

where only y0 and k0 are not predetermined. From the proof of Lemma 2, we have
k0 = K0

({
ys, r

K
s+1

}∞
s=0

)
. This allows us to write rK0 as a function of

{
ys, r

K
s

}∞
s=0

.

A.4 Proof of Proposition 2.

Proof. Recall the definition of excess liquidity supply

Et(y, rK , rB,T , bG) := Dt(r
K
0 (y, rK), rK , rB) + bGt − Bt(y, rA(y, rK , rB), rB,T ).

Liquid asset market clears if Et(y, rK , rB,T , bG) = 0. By totally differentiating this
condition in every period we have

εrKdr
K + εydy + εTdT + dbG + εrBdr

B = 0,

where εrK := DrK − B̃rK , εrB := DrB − B̃rB , εy := Dy − B̃y, εT := −B̃T , and the
matrices are defined in Appendix A.6. Rearrange and left-multiply by the inverse of
−εrK to obtain Equation 6.

For the second part of Proposition 2, note that if Θ̄rK , Θ̄rB → ∞ and Θ̄rB/Θ̄rK → ς,
Proposition 1 implies

∂Dt

∂rKs

1

Θ̄rK
→

Σ(s)Gt−s(Θ̄− 1)n, s ≤ t,

γs−t−1
(
1 + (Θ̄− 1)γΣ(t)

)
n, s > t,

∂Dt

∂rBs

1

Θ̄rK
→

−ςΣ(s)Gt−s(Θ̄− 1)n, s ≤ t,

−ςγs−t−1
(
1 + (Θ̄− 1)γΣ(t)

)
n, s > t.
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We can write it as DrK
1

Θ̄
rK

→ D∞,r, DrB
1

Θ̄
rK

→ −ςD∞,r, where

D∞,r :=

Σ(s)Gt−s(Θ̄− 1)n, s ≤ t

γs−t−1
(
1 + (Θ̄− 1)γΣ(t)

)
n, s > t.

Assume that first derivatives of Bt are bounded. Divide the linearized liquid asset
market clearing condition by Θ̄rK . As Θ̄rK , Θ̄rB → ∞ with Θ̄rB/Θ̄rK → ς , for all
bounded sequences

{
dy, drK , drB, dbG

}
, the limit of the liquid asset market clearing

condition is (
I−BrA

rK − rB

(1− L)2
L

d

)
D∞
r

(
drK − ςdrB

)
= 0,

where L = d/(qk). The condition is satisfied for drK = ςdrB.

A.5 Proof of Theorem 1.

Proof. The aggregate demand is defined as

Ψt(y, r
K , rB,T , g) := Ct(y, rA(y, rK , rB), rB,T ) + Xt(y, r

K) + gt.

Goods market clears if Ψt(y, r
K , rB,T , g) = yt. By totally differentiating this condi-

tion in every period we have

ΨrKdr
K +Ψydy +ΨTdT + dbG +ΨrBdr

B + dg = dy

where ΨrK := C̃rK +XrK , ΨrB := C̃rB , Ψy := C̃y+Xy, ΨT := C̃T , and the matrices
are defined in Appendix A.6.

Let Ω := ΨrK (−ε−1
rK
), and use Proposition 2 to write

Ω
(
εydy + εTdT + dbG + εrBdr

B
)
+Ψydy +ΨTdT + dbG +ΨrBdr

B + dg = dy.

Finally, rearrange it as

dy =
(
I−Ψy −Ω εy

)−1 ×
(
dg +ΨTdT +ΨrBdr

B +Ω
(
dbG + εTdT + εrBdr

B
))
,

which is the formula in Theorem 1.
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A.6 Additional Derivations: Linearized equilibrium condi-
tions

We evaluate derivatives of aggregate functions Xt(·),Bt(·), Ct(·),Dt(·), RA
t (·) at the

steady state and represent them as matrices. We use the following notation: drB

represents {drBs+1}∞s=0 as a column vector. The same convention applies to other rates
of return. We use dy to represent {dys}∞s=0 as a column vector, and similar for other
variables that are not rates of return.

Production

Linearization of the formula for return on capital results in

drK +

(
1 + rK

)
q̄′

k
(I− S−1)dk =

α

k
S+1dy − αy

k2
dk +

q̄′ + q̄ − ῑ′

k
(S+1 − I)dk

which allows us to express dk as

dk = Kydy +KrKdr
K ,

where Ky := Ξ−1 α
k
S+1, KrK := −Ξ−1, and

Ξ :=
αy

k2
I+

(
1 + rK

)
q̄′

k
(I− S−1)−

q̄′ + q̄ − ῑ′

k
(S+1 − I),

where

S+1 :=


0 1 0 · · ·
0 0 1 · · ·
0 0 0 · · ·
... ... ... . . .

 , S−1 :=


0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
... ... ... . . .

 .

Linearizing the expression for ι(kt, kt−1) from the proof of Lemma 2, we have dx =

(ῑ′(I− S−1) + ῑ)dk, and we can write

dx = Xydy +XrKdr
K ,

where Xy := (ῑ′(I− S−1) + ῑ)Ky, XrK := (ῑ′(I− S−1) + ῑ)KrK .

Linearizing q̂ (kt, kt−1) from the proof of Lemma 2, we have dq = q̄′

k
(I− S−1) dk, and
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we can write it as
dq = Qydy +QrKdr

K ,

where Qy :=
q̄′

k
(I− S−1)Ky, QrK := q̄′

k
(I− S−1)KrK .

Besides these matrices, the time 0 return on capital response, drK0 , can be expressed
as

drK0 = α
1

k̄
dy0 + (1− δ) dq0.

In a matrix form, we can write

drK0 =
α

k̄
eᵀ1dy + (1− δ)

(
qᵀ
ydy + qᵀ

rK
drK

)
, (11)

where qᵀ
y,q

ᵀ
rK

are row vectors from the first rows of Qy , QrK , describing how the
price of capital at time 0 depends on output and return on capital. eᵀ1 is a row vector
with 1 as its first entry, and zeros elsewhere

Liquidity Supply

Financial intermediation in the economy is characterized as derivatives of the liquidity
supply function

Dt(r
K
0 (y, rK), rK , rB).

Let DrK be a matrix of total derivatives of Dt(·) with respect to rates of return on
capital rK . Its (t + 1, s + 1) entry is a total derivative of Dt(·) with respect to rKs+1.
DrB is defined similarly. Notice the difference in timing for rows and columns. Entry
(t+ 1, s+ 1) of Dy is a total derivative of Dt(·) with respect to ys.

The formulas from Proposition 2 imply the matrices have the following form, with
minor modifications using equation 11 to incorporate the dependence of time-0 return
on capital, rK0 , on future returns on capital:

DrK = d×
(
DrK + n0(1− δ)qᵀ

rK

)
,

DrB = d×DrB ,

Dy = d× n0

(α
k
eᵀ1 + (1− δ)qᵀ

y

)
,

where d is steady state liquidity supply and where the (t+1,s) elements of DrK ,DrB

are ∂Dt/∂rKs
Dt

and ∂Dt/∂rBs
Dt

from Proposition 1. DrK is modified to capture the response
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of drK0 to future returns of capital, drk , where n0 is a column vector that traces the
propagation of net worth with its t+ 1 element being ḠrKG

t. Similarly, Dy captures
the response of drK0 to output, dy.

Illiquid asset return

Before discussing linearization of the household side of the economy, we provide for-
mulas that allow us to express drAt as a function of other variables. For drA0 , we have
drA0 = drK0 / (1− L) where L = d/qk is the steady state value of Lt.

For matrices that relate {drAs+1}∞s=0 to {drKs+1, dr
B
s+1, dys}∞s=0, Equation 8 implies

RA
rK =

1

1− L
I+

rK − rB

(1− L)2
LrK , RA

rB =
L

1− L
I+

rK − rB

(1− L)2
LrB , RA

y =
rK − rB

(1− L)2
Ly.

From Lt =
dt
qtkt

, we have

LrK = −L
q
QrK − L

k
KrK +

L

d
DrK , LrB =

L

d
DrB , Ly = −L

q
Qy −

L

k
Ky +

L

d
Dy.

Households

Let CrA be a matrix, whose (t+1, s) element is a partial derivative of Ct with respect
to rAs . We use the same convention for CrB Similarly, Cy is a matrix of partial
derivatives of Ct with respect to aggregate output. Its (t + 1, s + 1) elements is a
partial derivative of Ct with respect to ys. CT is defined analogously. Similarly, we
define all matrices that contain derivatives of B.

While these matrices capture responses to all returns {rAs+1,∀s ≥ 0}, they miss the
response to rA0 . To capture the response, define the following matrices

BrA0
:=


∂B0

∂rA0
0 0 · · ·

∂B1

∂rA0
0 0 · · ·

∂B2

∂rA0
0 0 · · ·

· · · · · · · · · · · ·

 , BrA0
:=


∂C0
∂rA0

0 0 · · ·
∂C1
∂rA0

0 0 · · ·
∂C2
∂rA0

0 0 · · ·
· · · · · · · · · · · ·

 ,
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and use Equation 11 to define

B̃rA0 ,y
:=

1

1− L
BrA0

×
[α
k̄
eᵀ1 + (1− δ)qᵀ

y

]
, B̃rA0 ,r

K :=
1

1− L
BrA0

× (1− δ)qᵀ
rK
,

C̃rA0 ,y
:=

1

1− L
CrA0

×
[α
k̄
eᵀ1 + (1− δ)qᵀ

y

]
, C̃rA0 ,r

K :=
1

1− L
CrA0

× (1− δ)qᵀ
rK
.

With these matrices capturing the effect of dy and drK on consumption and asset
demand through drA0 , we define the full consumption responses as:

C̃y :=Cy +CrAR
A
y + C̃rA0 ,y

, C̃rK :=CrAR
A
rK + C̃rA0 ,r

K ,

C̃rB :=CrB +CrAR
A
rB , C̃T :=CT .

Similarly, the full liquid asset demand responses are defined as:

B̃y :=By +BrAR
A
y + B̃rA0 ,y

, B̃rK :=BrAR
A
rK + B̃rA0 ,r

K ,

B̃rB :=BrB +BrAR
A
rB , B̃T :=BT .

With these matrices, we can construct the matrices that represent the responses of
excess liquidity Et and aggregate demand Ψt:

εrK := DrK − B̃rK , εrB := DrB − B̃rB , εy := Dy − B̃y, εT := −B̃T

and
ΨrK := C̃rK +XrK , ΨrB := C̃rB , Ψy := C̃y +Xy, ΨT := C̃T .

B Nested Models and Extensions

B.1 Nested Models of Financial Frictions

We show how our framework nests some commonly used models of financial fric-
tions by appropriately choosing the financial constraint Θ

({
rBs+1, r

K
s+1

}
s≥t

)
. We also

demonstrate that in all these models financial frictions result in Θt (·) that has the
special structure we use in Lemma 1.

Gertler-Karadi-Kiyotaki

In Gertler and Kiyotaki (2010) and Gertler and Karadi (2011) there is a continuum
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of banks indexed by j ∈ [0, 1]. Bank activity is subject to an agency problem. Every
period, after receiving returns on assets and paying depositors, bank j exits with
probability f and transfers its retained earnings as dividends to its owners. At the
same time, a new bank enters and receives some initial net worth to operate with.
Conditional on surviving, bank j chooses how much loans lBj,t and deposits dj,t to issue.
Banks cannot issue equity. Moreover, an agency problem constrains the amount of
deposits they can issue. After obtaining funding from depositors and investing in
assets (loans), bank j can divert fraction 1/θ of assets and run away. If this happens,
depositors force it into bankruptcy and bank j has to close. The largest amount of
funding an intermediary can receive from depositors depends on the franchise value
vj,t (nj,t), where nj,t is net worth — bank j must be better off continuing instead of
running away. The optimization problem is:

vj,t (nj,t) = max{
lBj,t+s,dj,t+s,nj,t+s+1

}∞

s=0

∞∑
s=1

Λt,t+s (1− f)s−1 fnj,t+s

subject to

lBj,t ≤ θtvj,t (nj,t) , nj,t + dj,t = lBj,t, nj,t+1 =
(
1 + rKt+1

)
lBj,t −

(
1 + rBt+1

)
dj,t.

The first constraint is the incentive compatibility constraint resulting from the agency
problem. Λt,t+s is the discount factor used by banks.11 We can write the value function
in a recursive form:

vj,t (nj,t) = max
lBj,t,dj,t,nj,t+1

Λt,t+1 (fnj,t+1 + (1− f) vj,t+1 (nj,t+1)) .

Guess linearity: vj,t (nj,t) = ηj,tnj,t. Define ψj,t := lBj,t/nj,t. Bellman equation is

ηj,tnj,t =max
ψj,t

Λt,t+1 (f + (1− f) ηj,t+1)
[
1 + rBt+1 +

(
rKt+1 − rBt+1

)
ψj,t
]
nj,t

+ λj,t

[
ηj,t −

1

θ
ψj,t

]
nj,t.

The guess that vj,t (nj,t) = ηj,tnj,t is verified if λj,t < 1.
11Gertler and Kiyotaki (2010) and Gertler and Karadi (2011) use the representative household’s

discount factor. With perfect foresight, it corresponds to rBt+1.
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By complementarity slackness λj,t
[
ηj,t − 1

θ
ψj,t
]
= 0 and we can write

ηj,tnj,t = max
ψj,t

Λt,t+1 (f + (1− f) ηj,t+1)
[
1 + rBt+1 +

(
rKt+1 − rBt+1

)
ψj,t
]
nj,t.

If the incentive compatibility constraint is binding, we have

ηj,t = Λt,t+1 (f + (1− f) ηj,t+1)
[
1 + rBt+1 +

(
rKt+1 − rBt+1

)
ηj,tθ

]
.

Let Θj,t = θηt, then we have

Θj,t =
Λt,t+1 (fθ + (1− f)Θj,t+1)

(
1 + rBt+1

)
1− Λt,t+1 (fθ + (1− f)Θj,t+1)

(
rKt+1 − rBt+1

) . (12)

Because all banks face the same rates of return and use the same discount rate, Θj,t

is identical for all j. Therefore, we use Θt to denote all Θj,t, and it follows that
lBj,t = Θtnj,t. Given any discount rate Λs−1,s = Λ(rKs , r

B
s ), we can iterate Equation 12

forward and write Θt = Θ
({
rBs+1, r

K
s+1

}
s≥t

)
. Aggregating individual banks

∫ 1

0
lBj,tdj =

qtk
B
t and

∫ 1

0
nj,tdj = nBt we obtain

qtk
B
t = Θ

({
rBs+1, r

K
s+1

}
s≥t

)
nt

which coincides with the solution to the bank’s problem described in Section 2.3.

We obtain the expressions for Θ̄rK , Θ̄rB and γ by differentiating Equation 12 with
respect to returns and evaluating the resulting expression at the steady state. De-
pending on assumptions on bankers’ discount rates, we have:

If Λs−1,s = 1/
(
1 + rKs

)
,

Θ̄rK =
Θ̄(Θ̄− 1)

1 + rK
, Θ̄rB =

Θ̄(Θ̄− 1)

1 + rB
, γ =

(1− f)(1 + rB +
(
rK − rB

)
Θ̄)2

(1 + rK)(1 + rB)
.

If Λs−1,s = 1/
(
1 + rBs

)
,

Θ̄rK =
Θ̄2

1 + rB
, Θ̄rB =

1 + rK

1 + rB
Θ̄2

1 + rB
, γ =

(1− f)(1 + rB +
(
rK − rB

)
Θ̄)2

(1 + rB)2
.

If Λs−1,s = 1/(1 + r̃) for some constant r̃ (e.g., Λs−1,s = β in Lee et al. (2020)),

Θ̄rK =
Θ̄2

1 + rB
, Θ̄rB =

Θ̄(Θ̄− 1)

1 + rB
, γ =

(1− f)(1 + rB +
(
rK − rB

)
Θ̄)2

(1 + r̃)(1 + rB)
.
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Bernanke, Gertler, Gilchrist (1999)

In Bernanke et al. (1999) financial frictions arise because of “costly state verification”.
In their model, there is a continuum of entrepreneurs that need to finance capital
purchases. Realized returns are idiosyncratic and cannot be observed by the lenders
unless they incur a monitoring cost. This creates a link between entrepreneurs’ capital
expenditures, their net worth, and the spread between the expected return on capital
and the safe rate. Entrepreneurs face a constant probability of exit f and consume
their retained earnings upon exiting. We can interpret entrepreneurs as banks and
map this model to our framework. The key condition in Bernanke et al. (1999) is
Equation 3.8 (p. 1353)

qtk
B
t = ψ

(
1 + rKt+1

1 + rBt+1

)
nt

with ψ′ (·) > 0 and ψ (1) = 1.12 If we define Θ
({
rKs+1, r

B
s+1

}
s≥t

)
:= ψ

(
1+rKt+1

1+rBt+1

)
, the

solution to the bank’s problem described in Section 2.3 and dynamics of bank net
worth will coincide with the one in Bernanke et al. (1999). Notice that here the
financial friction at time t depends only on rKt+1 and rBt+1 and not on returns more
than one period ahead. In this model

Θ̄rK = ψ′
(
1 + rK

1 + rB

)
1

1 + rB
, Θ̄rB = ψ′

(
1 + rK

1 + rB

)
1 + rK

(1 + rB)2
, γ = 0.

Costly leverage

Uribe and Yue (2006), Chi et al. (2021) and Cúrdia and Woodford (2016) consider
reduced form financial frictions. They assume that banks need to incur a resource
cost that depends on the level of financial intermediation. Since the marginal cost
of intermediation is increasing in the scale of intermediation, there will be a link
between the leverage ratio and the spread between returns on assets held by banks
and deposits. Our framework allows us to nest these models without any modification
to the framework if we assume that this cost is borne in units of utility or that it is
rebated back lump-sum to the bank. We need to make this change to ensure that the
law of motion for nt in Equation 4 remains the same. More specifically, assume that
12There is no aggregate uncertainty in our framework, and this explains why there is no expectation

operator in front of rKt+1.
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the bank maximizes

rNt+1nt = max
kBt ,dt

rKt+1qtk
B
t − rBt+1dt −Υt

(
qtk

B
t

nt

)
nt + Ῡt

subject to balance sheet qtkBt = dt + nt.

Here Υt

(
qtkBt
nt

)
nt captures costs related to financial intermediation. Ῡt is the lump-

sum rebate, equal to intermediation costs in equilibrium (alternatively we can assume
that the cost is in disutility). Assume it is strictly increasing in the leverage ratio
ψt := qtk

B
t /nt. First order condition is

rKt+1 − rBt+1 = Υ′
t

(
qtk

B
t

nt

)
,

which can be rewritten as

qtk
B
t = Υ′−1

t

(
rKt+1 − rBt+1

)
nt.

If we define Θ
({
rKs+1, r

B
s+1

}
s≥t

)
:= Υ′−1

t

(
rKt+1 − rBt+1

)
, then the solution to the bank’s

problem described in Section 2.3 will be the same as the one to the problem stated
above. Note that Θt does not depend on returns more than one period in the future.
Moreover, since Υt

(
qtkBt
nt

)
nt = Ῡt, rNt+1nt is the same as in section. In this model

Θ̄rK =
1

Υ′′
(
qkB

n

) , Θ̄rB =
1

Υ′′
(
qkB

n

) , γ = 0.

Collateral constraints

Consider a collateral constraint in which banks can pledge a fraction ϑ < 1 of the
value of their capital holdings along with returns on their capital. The highest possible
level of net liquid asset issuance dt satisfies(

1 + rBt+1

)
dt ≤ ϑ

(
1 + rKt+1

)
qtk

B
t .

By using the balance sheet, we can rewrite it as

qtk
B
t ≤

1 + rBt+1

1 + rBt+1 − ϑ
(
1 + rKt+1

)nt. (13)
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We can map it to our framework by defining

Θ
({
rKs+1, r

B
s+1

}
s≥t

)
:=

1 + rBt+1

1 + rBt+1 − ϑ
(
1 + rKt+1

) .
Taking derivatives and evaluating at the steady-state, we have

Θ̄rK =
ϑΘ̄

1 + rB − ϑ (1 + rK)
, Θ̄rB = −1 + rK

1 + rB
ϑΘ̄

1 + rB − ϑ (1 + rK)
, γ = 0,

where ϑ = (1− 1
Θ̄
) 1+r

B

1+rK
is linked to the steady-state returns and leverage.

Comparsion to Kiyotaki and Moore (1997)

Kiyotaki and Moore (1997) assume only the value of capital next period can be
pledged as collateral. The constraint is(

1 + rBt+1

)
dt ≤ ϑqt+1kt.

Using the bank balance sheet, we have

qtk
B
t ≤

1 + rBt+1

1 + rBt+1 − ϑ qt+1

qt

nt.

The constraint differs from the one in Equation 13 in that 1+rKt+1 in the denominator
is replaced by qt+1

qt
. This form of collateral constraint is not nested in our framework

exactly because qt+1

qt
is generally a function both returns on capital {rKs } and output

{ys}. Yet, we expect the two collateral constraints to generate similar dynamics when
most of the changes in 1 + rKt+1 are driven by capital gain qt+1

qt
.

Current-value collateral constraints

An alternative form of collateral constraint assumes that liquidity supplied by the
bank needs to be below the current value of capital: dt ≤ ϑqtk

B
t . Using dt = qtk

B
t −nt,

we have
qtk

B
t ≤ 1

1− ϑ
nt.

This type of constraint is similar to that in Bianchi and Mendoza (2018) and behaves
exactly as a regulatory constraint in Van den Heuvel (2008). See Ottonello et al.
(2022) for a related discussion. In this case, Θ̄rK = 0, Θ̄rB = 0, γ = 0.
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B.2 Generalization of Nested Models

GKK + Costly Leverage

Suppose that bankers in GKK solve the following problem:

vj,t(nj,t) = max
Ψj,t

Λt,t+1

(
fnj,t+1 + (1− f) vj,t+1(nj,t+1)

)
−Υ(Ψj,t)vj,t(nj,t),

s.t. qtk
B
j,t = Ψj,tnj,t, nj,t+1 =

(
1 + rBt+1 +

(
rKt+1 − rBt+1

)
Ψj,t

)
nj,t.

In this problem, instead of assuming that the banker’s leverage is constrained by
their continuation value, they need to incur some reduced-form leverage cost, as in
the costly leverage model.

Guess linearity vt(nj,t) = ηtnj,t. The Bellman equation reduces to:

ηt =max
Ψj,t

Λt,t+1(f + (1− f) ηt+1)
(
1 + rBt+1 +

(
rKt+1 − rBt+1

)
Ψj,t

)
−Υ(Ψj,t)ηt.

Solving the optimality condition, we can write the solution as Ψj,t = ψ(ηt+1, r
K
t+1, r

B
t+1)

for some function ψ(·). Define Θt = ψ(ηt+1, r
K
t+1, r

B
t+1). Since ηt follows a first-

order difference equation with a terminal condition at t → ∞, we can write Θt =

Θ({rKs , rBs }s>t), and up to first order approximation, dΘt has the structure described
in Lemma 1, and Θ̄rK , Θ̄rB and γ will depend on an extra parameter Υ′′(Ψ̄).

Optimal Dividend Choice

Consider an individual bank solving the following optimal dividend payout prob-
lem:

vj,t (nj,t) = max
δj,t

ς(δj,tnj,t) + βvj,t+1 (nj,t+1) , s.t.

qtk
B
j,t = ϑ(δj,t)nj,t, nj,t+1 =

(
1 + rBt+1 +

(
rKt+1 − rBt+1

)
ϑ(δj,t)− δj,t

)
nj,t.

The bank chooses dividend payout rate δj,t and derives payoff over dividend δj,tn with
utility function ς(δj,tn) =

1
1−γ (δj,tn)

1−γ. Function ϑ(·) captures how dividend payout
affects the bank’s ability to leverage. One example is ϑ(δj,t) = ϑ(1− δj,t), which says
that the part of net worth scheduled to be paid out as dividend cannot be pledged
to obtain funding. More generally, ϑ(·) can capture the signaling effects of dividend
payout.
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Guess vj,t (nj,t) = ηj,t
1−γn

1−γ
j,t , then the Bellman equation reduces to:

ηj,t = max
δj,t

(δj,t)
1−γ + βηj,t+1

( (
1 + rBt+1

)
+
(
rKt+1 − rBt+1

)
ϑ(δj,t)− δj,t

)1−γ
Optimality requires:

δ−γj,t + βηj,t+1

( (
1 + rBt+1

)
+
(
rKt+1 − rBt+1

)
ϑ(δj,t)− δj,t

)−γ
(ϑ′(δj,t)− 1) = 0.

Solving the optimality condition, we can write the solution as δj,t = %(ηj,t+1, r
K
t+1, r

B
t+1)

for some function %(·). Go back to the Bellman equation, we have:

ηj,t = %(ηj,t+1, r
K
t+1, r

B
t+1)

1−γ

+ βηj,t+1

(
1 + rBt+1 +

(
rKt+1 − rBt+1

)
ϑ(%(ηj,t+1, r

K
t+1, r

B
t+1))− %(ηj,t+1, r

K
t+1, r

B
t+1)
)1−γ

.

Define Θt = ϑ(%(ηj,t+1, r
K
t+1, r

B
t+1)). Since ηj,t follows a first-order difference equation

with a terminal condition at t → ∞, we can write Θt = Θ({rKs , rBs }s>t) for some
function Θ(·), and up to first order approximation, dΘt has the structure described
in Lemma 1, and Θ̄rK , Θ̄rB and γ will be controlled by γ, ς ′′(δ̄), and β.

General Form

The two examples above belong to a class of problems of the form:

vj,t(nj,t) = max
Θj,t

ς(Θj,t, r
K
t+1, r

B
t+1)× (ζ(nj,t) + vj,t(nj,t)) + βvj,t+1(nj,t+1),

qtk
B
j,t = Θj,tnj,t, nj,t+1 = Γ(Θj,t, r

K
t+1, r

B
t+1)nj,t,

where ζ(x) = 1
1−γx

1−γ. The solution Θj,t of these problems has the structure in
Lemma 1, Θj,t = Θ({rKs , rBs }). Moreover, the solution does not depend on the in-
dividual nj,t. Therefore, the individual net worth evolution nj,t can combined with
appropriate net worth injection at the aggregate level to generate an aggregate net
worth process nt+1 = G(Θt−1, r

K
t , r

B
t )nt +m consistent with the framework given by

Equation 4.
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B.3 Endogenous Equity and Dividend decision

This section shows that our formulation of the net worth process allows us to study
an important class of models with endogenous equity and dividend decisions. These
models are not nested by our formulation of net worth in Equation 4, however, we
show that they imply liquidity supply elasticities of the same form as Proposition 1,
up to a reparameterization of ḠrK , ḠrB , and ḠΘ. As a result of Lemma 2, Propo-
sition 2 and Theorem 1, this class of models is equivalent to the class of model
described by Equation 3 and Equation 4 as far as aggregate responses to policies are
concerned.

We consider models with endogenous equity injection studied by Karadi and Nakov
(2021) and Akinci and Queralto (2022). These models solve a version of the Gertler-
Karadi-Kiyotaki model augmented with optimal equity injections (equivalently, net
dividend payout). We use a similar notation as in Appendix B.1. A surviving bank
chooses how much equity to issue et, subject to a cost function C (ξt)nt, where ξt :=
et/nt is the ratio of equity issuance to net worth. Banks make this choice in period
t before they observing vj,t+1 (nt+1). The optimal equity issuance to net worth ratio
solves the following problem:

vj,t (nt) = max
ξt

Λt,t+1 (fñt+1 + (1− f) [Et [vt+1 (ñt+1 + ξtnt)]− C (ξt)nt])

ñt+1 =
(
1 + rKt+1

)
lt −

(
1 + rBt+1

)
dt,

where ñt+1 represents net worth resulting from bank profits and ñt+1+ξtnt represents
total net worth at t+ 1.

The program has a linear value function: vt (nt) = ηtnt for some ηt. First order
condition implies Et[ηt+1] = C ′ (ξt), which we can write as

et
nt

= ξ (Et[ηt+1])

where ξ(·) := C ′−1(·). Thus ηt follows

ηt = Λt,t+1 (f + (1− f) ηt+1)
((
rKt+1 − rBt+1

)
θηt +

(
1 + rBt+1

))
+ Λt,t+1 (ηt+1ξ (Et[ηt+1])− C (ξ (Et[ηt+1]))) .

57



The law of motion for aggregate net worth is

nt+1 = (1− f)
((
rKt+1 − rBt+1

)
θηt +

(
1 + rBt+1

)
+ ξ (Et[ηt+1])

)
nt +m.

Use Θt = θηt and define Θ̃t := Et−1[Θt] to write the law of motion as

nt = (1− f)

((
rKt − rBt

)
Θt−1 +

(
1 + rBt

)
+ ξ

(
Θ̃t

θ

))
nt−1 +m.

In perfect foresight equilibrium Θ̃t = Θt for all t ≥ 1, but not for t = 0. As the law
of motion depends on both Θt−1 and Θ̃t, it cannot be reduced to the law of motion
in Equation 4. Yet, as we now show, this does not change the structure of liquidity
supply in Proposition 1.

Elasticities of Liquidity Supply

Due to endogenous equity and dividend decisions, the net worth process takes the
following generalized form:

Θt = Θ({rKs+1, r
B
s+1}s≥t),

nt = H(Θt−1, Θ̃t, r
K
t , r

B
t )nt−1 +m

Totally differentiating the net worth process, we have

dnt = H̄dnt−1 + (H̄ΘdΘt−1 + H̄Θ̃dΘ̃t + H̄rKdr
K
t + H̄rBdr

B
t )n,

where H̄ is the value of theH function evaluated at the steady state and H̄rK , H̄Θ, H̄Θ̃, H̄rB

are derivatives evaluated at the steady state

Consider changes in returns drKs , drBs in some period s, and let drKt = drBt = 0,

∀t 6= s. Moreover, define dňt, dñt to be the changes in net worth due to changes in
dΘt−1 and dΘ̃t:

dňt = H̄dňt−1 + H̄ΘdΘt−1n, dñt = H̄dñt−1 + H̄Θ̃dΘ̃tn,

then
dnt = dňt + dñt + H̄ t−s1{s≤t}(H̄rKdr

K
s + H̄rBdr

B
s ).
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From the proof of Proposition 1, we have

dňt =

H̄Θγ
s−tσ(t)Θ̄rKndr

K
s , s > t,

H̄ΘH̄
t−sσ(s)Θ̄rKndr

K
s , s ≤ t.

where σ(s) = 1−(γH̄)s

1−γH̄ × 1{s≥0}.

As for dñt, because Θ̃t responds only to drKs when t+1 ≤ s and Θ̃0 is pre-determined,
we have dΘ̃t−u

drKs
= 0, for u ≤ t− s or u ≥ t , and

dñt =


∑t−1

u=0 H̄Θ̃H̄
u dΘ̃t−u

drKs
n drKs , s > t+ 1,∑t−1

u=t−s+1 H̄Θ̃H̄
u dΘ̃t−u

drKs
n drKs , s ≤ t+ 1.

For class of intermediation frictions described in Section 3, Lemma 1 implies dΘ̃t−u

drKs
=

γs−t+u−1Θ̄rK , ∀t > u ≥ t− s+ 1. Substitution gives

dñt =

H̄Θ̃γ
s−t−1σ(t)Θ̄rKndr

K
s , s > t+ 1,

H̄Θ̃H̄
t−s+1σ(s− 1)Θ̄rKndr

K
s , s ≤ t+ 1.

Putting the results together, and using dDt = dΘtn+ (Θ̄− 1)dnt, we have

∂Dt/∂r
K
s

Dt

=


γs−t−1Θ̄rK

(
1

Θ̄−1
+ γH̄Θσ(t) + H̄Θ̃σ(t)

)
, s > t+ 1

Θ̄rK

(
1

Θ̄−1
+ γH̄Θσ(t) + H̄H̄Θ̃σ(s− 1)

)
, s = t+ 1(

H̄rK + Θ̄rK (H̄Θσ(s) + H̄H̄Θ̃σ(s− 1))
)
H̄ t−s, s ≤ t.

Using the definition of σ(s), we have σ(s − 1) = (H̄γ)−1(σ(s) − 1)), it follows that
the liquidity supply elasticities have the identical form as in Proposition 1:

∂Dt/∂r
K
s

Dt

=


γs−t−1Θ̄rK

(
1

Θ̄−1
+ γG̃Θσ(t)

)
, s > t,(

G̃rK + Θ̄rK G̃Θσ(s)
)
G̃t−s, s ≤ t,

where G̃rK := H̄rK − Θ̄rKγ
−1H̄Θ̃, G̃Θ := H̄Θ + γ−1H̄Θ̃, and G̃ := H̄. Similar steps

result in the formula for ∂Dt/∂rBs
Dt

.
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C Data, Estimation, and Calibration Moments

Data Source

For data on the banking sector, we obtain market values of bank holding companies
from CRSP and link them to the Call Report data for their balance sheets. A cleaned
version of the Call Report data is provided by Drechsler, Savov, and Schnabl on their
website. For balance sheets of the rest of the economy, we use data from the Financial
Accounts of the United States (FoF), available on FRED.

For expected returns, we obtain U.S. Treasury debt yields from the U.S. Treasury’s
website. For corporate bond yields, we obtain high-quality market (HQM) yields from
the U.S. Treasury’s website and Moody’s BAA bond yields from FRED. To construct
real yields, we use inflation expectations data from the Cleveland Fed.

For proxies of identified shocks, we use proxies for monetary policy shocks from
Michael Bauer’s website, oil shocks from Christiane Baumeister’s website, and in-
termediary net worth shocks from Wenting Song’s website.

We use data from January 1998 to December 2019 as our sample periods, during
which all data are available. For our estimation, we drop the first year due to the
construction of our instrumental variable, which we discuss below.

C.1 Estimation of Intermediation Frictions

C.1.1 Variable Construction

We describe how we construct variables in our estimation from our data source. We
refer to variables from these datasets with their variable names.

Leverage (dΘt):

• We use variables from the CRSP, Call Report, and FoF data to calculate the
banking sector’s effective leverage.

• market value of bank equity: For the market value of bank net worth, we use
the variable “TCAP” from CRSP. We aggregate the value of all stocks with id
“kypermno” under each ”permco.” We link the CRSP data to the Call Report
data to CRSP with a cross-walk between “bhcid” and “permco.”
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• liquid assets: We include the following variables from the Call Report data: “cash,”
“fedfundsrepoasset,” “securities”. Variable “securities” contains Treasury, Agency,
and corporate debt. To seperate holding of Agency, and corporate debt, we use the
aggregate FoF series for Private Depository Institutions to construct the following
adjustment factor

adjt :=
cash + reserves + fed fund repo asset + treasury

cash + reserves + fed fund repo asset + treasury + agency + muni
,

where series ids are given by: cash - FL703025005, reserves - FL713113003, fed
fund repo asset - FL702050005, treasury - LM703061105, agency -LM703061705,
muni - LM703062005. We construct banks’ liquid assets holdings as the sum of
‘cash,” “fedfundsrepoasset,” and “securities” from the Call Report multiplied by
the adjustment factor adjt.

• liquid liabilities: We include the following variables from the Call Report data:
“deposits,” “foreigndep,” “fedfundsrepoliab.”

• The Call Report and FoF data are available at the quarterly frequency. We extend
the measure of effective leverage, Θt, to the monthly frequency by interpolating
quarterly observations of balance sheet items and time-aggregating daily market
value of bank equity to monthly.

• effective leverage: We construct the effective leverage of the banking sector as

Θt := 1 +
liquid liabilities − liquid assets

market value of bank equity
.

• We calculate deviations of effective leverage from the steady state, dΘt, as the
deviation of effective leverage from a quadratic time trend. Figure 11 (top-left
panel) shows the detrended effective leverage with the sample mean added back.

Expected returns (Et[drKt+h], Et[drBt+h]):

• We use yields on Treasury debt and HQM corporate bonds, which are available
daily for maturities of 6 months and 1, 2, 3, 5, 7, 10, 20, and 30 years, aggregating
observations to a monthly frequency by calculating averages.

• We construct real yields by subtracting expected inflation from nominal yields,
using data from the Cleveland Fed.
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• We calculate spreads between HQM and Treasuries. We adjust the spreads between
HQM and Treasuries with a constant factor so that at the 30-year maturity, the
spread corresponds to the spread between Moody’s BAA bond yields (series BAA
from FRED) and Treasuries, which we think better reflects the expected returns
on the banking sector’s asset holdings. We obtain the adjustment factor as the
coefficient from regressing the 30-year BAA-Treasury spread on the 30-year HQM-
Treasury spread.

• We calculate deviations of real Treasury yields from a quadratic trend, and we
add back the means. We do the same with the spreads. Figure 11 (top-right and
bottom-left panels) shows the resulting yields and the spreads.

• We calculate (detrended) real yields on capital as a sum of detrended real Treasury
yields and detrended spreads. Figure 11 (bottom-right panel) shows the real yields
on capital.

• Finally, we use the yield curves to obtain forward rates used in our empirical
specification. We extend the yields between the maturities we observe with a left-
continuous step function and calculate the implied forward rates for all horizons
from the yield curves. For each horizon h, we construct Et[drKt+h] and Et[drBt+h] as
the deviation of h-quarters-ahead forward rates from their averages over time.
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Figure 11: Top-left: Effective leverage calculated as 1+(liquid liabilities−liquid assets)/market value
of bank equity; top-right: real yields on Treasuries, calculated as nominal yields net of inflation
expectations from the Cleveland Fed; bottom-left: the spreads between High-Quality Market (HQM)
Corporate Bonds and Treasury yields at various maturities, adjusted by BAA-30yr Treasury spread.
These series are detrended by subtracting a quadratic trend. Bottom-right: Real yields on capital,
calculated as the sum of detrended real yields on Treasuries and spreads.

Shock proxies:

• For monetary policy shocks, we use the “MPS_ORTH” series from the “SVAR
Monthly Data” constructed in Bauer and Swanson (2023); for oil shock, we use
the monthly structural oil supply shocks constructed by Baumeister and Hamilton
(2019); for intermediary net worth shocks, we use “finshock_broad” from Ottonello
and Song (2022).
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Figure 12: Shock proxies - monetary policy shock from Bauer and Swanson (2023), oil supply shock
from Baumeister and Hamilton (2019), financial sector net worth shock from Ottonello and Song
(2022); rescaled by standard deviation.

C.1.2 Construction of Instrumental Variables

We describe the joint co-movement of forward rates as a VAR model of order p:

zt = A0 + A1zt−1 + . . .+ Apzt−p + et, et ∼ N(0,Σ),

where et is a vector of normal zero mean i.i.d. shocks with Σ = E [ete
′
t]. A0, . . . , Ap

are matrices of appropriate dimensions and zt is a vector that contains the observable
variables: detrended forward rates Et[drKt+h] and Et[drBt+h], the log of an index of
industrial production, and the three proxies: monetary policy shock proxy from Bauer
and Swanson (2023), oil shock proxy from Baumeister and Hamilton (2019), and
intermediary net worth shock proxy Ottonello and Song (2022). We set p = 12 and
use forward rates Et[drKt+h] and Et[drBt+h] with h = 1, 5, 10, 30 years.

The reduced form residuals can be expressed as linear combination of structural un-
correlated innovations, i.e. et = Υηt, where where ΥΥ′ = Σ and E [ηtη

′
t] = I.

Our strategy to retrieve the three structural shocks of interest (monetary, oil, and
net worth) is to use a timing restriction. We assume that, controlling for all lagged
data, each proxy depends on only one structural shock. It does not depend on other
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structural shocks or lags of the structural shock of interest. With only one proxy this
approach would be the same as estimating a VAR with the proxy ordered first and
using a recursive identifications scheme. Plagborg-Møller and Wolf (2021) show the
equivalence between such an approach and a local projection instrumental variable
estimation procedure.

Once we retrieve the three structural shocks, we do a historical decomposition of
detrended forward rates. We denote their components driven by the three shocks as
Et[ďrKt+h] and Et[ďrBt+h], and refer to them as the return variations attributable to these
shocks. By construction, these return variations satisfy exclusion restriction: they are
linear combinations of the three structural shocks (monetary, oil, and net worth) and
thus independent of structural shocks that directly affect the relationship between
leverage and returns, υt. We use these return variations, Et[ďrKt+h] and Et[ďrBt+h], as
our instrumental variables.

To examine whether our instrumental variables satisfy the relevance condition, Table
3 shows the share of forecast error variance for detrended forward rates used in the
SVAR model that can be attributed to the three structural shocks. The last row
shows R2 from linear regression of detrended forward rates Et[drKt+h] and Et[drBt+h],
on their counterparts Et[ďrKt+h] and Et[ďrBt+h], one by one. The three structural shocks
explain between 10% and 30% of variation in detrended forward rates.

Table 3: Forecast Error Variance Decomposition of Detrended Forward Rates

rKt+1y rKt+5y rKt+10y rKt+30y rBt+1y rBt+5y rBt+10y rBt+30y

FEVD
6m 0.06 0.05 0.04 0.08 0.08 0.05 0.07 0.08
12m 0.22 0.34 0.26 0.15 0.10 0.07 0.11 0.11
24m 0.22 0.33 0.28 0.21 0.11 0.11 0.12 0.12

R2 0.23 0.23 0.14 0.11 0.19 0.23 0.22 0.21

C.1.3 Estimation

We estimate Θ̄rK , Θ̄rB and γ using the Generalized Method of Moments and the
following moment condition:

E
[(
dΘt −

∞∑
h=1

γh−1
(
Θ̄rKEt[drKt+h]− Θ̄rBEt[drBt+h]

))
× (1, It)

ᵀ

]
= 0.
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In the baseline specification, we have

It =
{
Et[drKt+h],Et[drBt+h]

}
h{∈1,5,10,30},

and for the IV specifications,

It =
{
Et[dřKt+h],Et[dřBt+h]

}
h{∈1,5,10,30}.

For the estimation result in Table 1, we use the optimal weighting matrix obtained
from an iterative GMM. We use a quadratic spectral kernel to compute the covariance
matrix of the vector of sample moment conditions. We use the BFGS algorithm to
find the minimum of the objective function. We verify numerically that the objective
function is well-behaved. To further alleviate concerns about convergence to a local
minimum, we consider 100 different starting points for our estimation procedure and
confirm that we obtain numerically similar results.

C.1.4 Robustness

Reliance on Specific Shocks

In order to alleviate concerns that any specific shock proxy might violate the exclusion
restriction, we consider three alternative constructions of the return variations,

I
(j)
t =

{
Et[dřK,(j)t+h ],Et[dřB,(j)t+h ]

}
h{∈1,5,10,30}, ∀j = 1, 2, 3,

where for each specification j, we leave out one of the shocks proxies from Bauer and
Swanson (2023), Baumeister and Hamilton (2019), and Ottonello and Song (2022) in
the construction of I(j)t . We repeat the IV estimation with these alternative specifica-
tions and report the results in Table 4. The estimation results from these alternative
specifications are similar to those from our main specification in Table 1 and suggest
that our result does not rely solely on one particular shock proxy.
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Table 4: Estimation with the Exclusion of Specific Shocks

excl. oil shock excl. net worth
shock

excl. mp shock

size of cross-price, Θ̄rK 19.72 23.07 20.89
(9.16) (12.58) (12.67)

size of own-price, Θ̄rB 34.49 23.87 20.43
(16.75) (16.87) (15.70)

forward-looking, γ 0.94 0.95 0.96
(0.03) (0.04) (0.03)

Observations 252 252 252
Note: Estimation uses iterative GMM for optimal weighting matrix. Standard errors use het-
eroskedastic and autocorrelation consistent estimators. Sample period: January 1999 to December
2019, monthly observation.

State-Dependency

We consider the following generalization of our empirical specification:

E
[(
dΘt −

∞∑
h=1

γh−1(Θ̄rKEt[drKt+h]− Θ̄rBEt[drBt+h])f(κ1ds̃t)− κ0ds̃t

)
× (1, It)

ᵀ

]
= 0,

where f(x) = 2
1+e−2x is a logistic function with value and slope equal to one at x = 0,

and maps into the interval (0, 2), and s̃t is a proxy for the aggregate state. Parameter
κ0 represents how much Θt responds to the aggregate state beyond what is captured
by expected returns, and κ1 captures the level of state-dependency in the responses
to expected returns. For our estimation, we use log industrial production normalized
by its standard deviation for s̃t.

We consider two cases:

• Direct response to s̃t: In this case, we set κ1 = 0 and focus on estimating κ0,
the direct response of Θt to s̃t. This case entertains the possibility that expected
returns miss important information about the aggregate state of the economy.

• State dependent response to expected returns: In this case, we estimate κ0 and κ1

jointly, analogous to allowing an interaction term between s̃t expected returns in
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linear regression. We parameterize the interaction with the logistic function f to
increase numerical stability. Because we have a small sample size, we assume that
f(κ1ds̃t) scales responses to all returns in order to limit the number of parameters
we need to estimate. A larger estimate of κ1 (in size) implies that a first-order
approximation of Θ({rKt+h, rBt+h}) is only useful for a smaller disturbance around
the steady state, and our nesting result in Lemma 1 is more limited.

For each of the two cases, we estimate both the baseline specification and the IV
specification. Table 5 reports the results.

Table 5: Direct Response to Aggregate State and State Dependency

direct response state dependent
baseline IV baseline IV

size of cross-price, Θ̄rK 26.76 27.29 29.35 22.12
(18.10) (20.99) (16.97) (17.62)

size of own-price, Θ̄rB 19.84 27.76 20.52 23.07
(15.99) (27.04) (16.40) (21.70)

forward-looking, γ 0.92 0.94 0.93 0.93
(0.07) (0.07) (0.04) (0.07)

direct response, α0 −0.30 −0.55 −0.24 −0.48
(0.19) (0.20) (0.19) (0.19)

state-dependency, α1 −0.08 −0.18
(0.29) (0.15)

Observations 252 252 252 252
Note: Estimation uses iterative GMM for optimal weighting matrix. Standard errors use het-
eroskedastic and autocorrelation consistent estimators. Sample period: January 1999 to December
2019, monthly observation.

• The point estimates for Θ̄rK , Θ̄rB , γ remain similar to the main specification,
but the standard errors are large here.

• Estimates for α0 range from −0.25 to −0.5. This implies that a one-standard-
deviation drop in output will lead to an increase in leverage by .25 to 0.5,
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keeping all expected returns the same. This is not negligible, which can have
two implications: One is that the class of models we study is misspecified, so
we need to extend our specification of Θ(·) to include output directly. Another
possibility is that we are mismeasuring leverages and expected returns in the
data. For example, our proxy for returns on capital, corporate bond yields, may
not contain all relevant information about the banking sector’s asset holdings,
and this information is picked up when we include industrial production in the
estimation.

• Estimates for α1 are −0.08 to −0.18 for the two specifications. The standard
errors are large, and we cannot reject the hypothesis that there is no state
dependency. However, the point estimates can still provide useful information
through the lens of our framework: a one-standard-deviation drop in output
is similar to a 8% − 18% increase in Θ̄rK and Θ̄rB . To the extent that higher
cross-price elasticities weaken the asset market response, these point estimates
suggest that the effect of asset purchases will be even weaker during periods
with low economic activities.

C.2 Mapping the Model to the Data

C.2.1 Asset Classification and Balance Sheet Overview

This section describes how we consolidate balance sheets in the data to map them
to those in the model. Consistent with the definition in Section C.1, we categorize
liquid assets to include deposits in checkable, time, savings accounts, money market
fund shares, and government liabilities, such as cash, reserve, and Treasury debt.
Conceptually, our notion of liquid assets aims to include assets whose values remain
relatively unaffected by trade volume or the state of the economy. Due to these
attributes, these assets are useful for transactional purposes and command a premium.
We do not think trading of illiquid assets necessarily involves a large transaction cost,
but simply that they lack certain features we described above.

We obtain the household sector’s aggregate balance sheet from the Flow of Funds.
Households’ liquid asset holdings mostly consist of deposits (72%) and money market
funds shares (17%). We adjust the balance sheets of private depository institutions
proportionally to equalize their liquid liabilities to the deposit holdings of households.
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This adjustment accounts for the fact that around one-third of the banks’ liquid
liabilities are held by the corporate sector. We apply a similar adjustment to the
money market funds, of which half is held by households. In Section C.2.2, we discuss
how we can extend the model to account for the liquid assets held by the corporate
sector without affecting our analysis.

Table 6: Consolidated Balance Sheets

assets liabilities

households liquid assets 0.55
net illiquid assets 3.43

equity 3.97

banks & mmf liquid assets 0.11
capital 0.52

liquid liabilities 0.51
equity 0.14

Note: Consolidated balance sheets of the U.S. economy through the lens of the
model. Values are presented as a fraction of the U.S. GDP, averaged over the
periods from 1998Q1 to 2019Q4.

Table 6 shows the consolidated balance sheets of the household sector and the corre-
sponding balance sheets of banks and money market funds. Liquidity supplied by the
financial sector (liquid liabilities issued by the financial sector minus its liquid assets
holdings) amounts to around 40% of GDP and accounts for around 70% of liquid
assets held by households. Table 7 paints a picture that is in contrast to a large
class of heterogeneous agent models that study monetary and fiscal policies, such as
Kaplan et al. (2018). These models emphasize the role of liquid assets in households’
consumption-saving behavior, yet mostly abstract away from the financial sector and
assume all liquid assets are supplied by the government. Our result in Section 6 shows
that the financial sector’s response is crucial for understanding aggregate responses
to government policies.

C.2.2 Balance Sheet Details

We obtain balance sheet data from the FoF data.

Banks: We obtain the balance sheet of the banking sector following the description
in Section C.1.

Money market funds:
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• liquid assets: Liquid assets held by mmf include: checkable - FL633020000, time
and savings deposits - FL633030000, foreign deposits - FL633091003, repo assets
- FL632051000, and treasury - FL633061105.

• imputed net worth: As the money market funds hold a small part of assets that
we categorize as illiquid, we split the total mmf shares (series MMMFFAQ027S
from FRED) into liquid liabilities and equity and impute the net worth of mmf by
assuming the same effective leverage as the banking sector:

mmf net worth :=
total mmf shares - mmf liquid assets

effective leverage

This imputed split of the mmf balance sheet into liabilities-net worth is consistent
with the difference in liquidity among mmf shares implicitly imposed by withdrawal
fees for large withdrawals. We categorize mmf net worth as illiquid and compute
the liquid component of the mmf shares as the difference between total mmf shares
and the imputed mmf net worth.

Households:

• liquid assets: We include deposits in checkable (FL193020005), time and saving
accounts (FL193030205), the liquid component of the money market fund shares
given by (1− mmf net worth

total mmf shares)×household’s mmf holdings (FL193034005), and house-
holds’ holdings of treasury debt, calculated as the total government and municipal
securities (FL193061005) net of municipal securities (LM153062005).

• net illiquid assets: We calculate households’ net illiquid asset holdings as their
total assets (FL192000005) net of liquid asset holdings defined above and their
liabilities (FL194190005). Moreover, because the illiquid account in our model does
not contain holdings of government debt, we further subtract from households’ net
illiquid asset holdings following items: the unfunded pension claims (FL223073045,
FL343073045), the holdings of treasury debt through pension funds, insurance
companies, mutual funds, etc.13

Accouting for corporate deposits:
13Serial numbers of variables we subtract include: LM103061103, LM113061003, LM513061105,

LM543061105, LM573061105, LM343061105, LM223061143, LM653061105, LM553061103,
LM563061103, LM403061105, FL673061103, LM663061105, LM733061103, and FL503061303
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• The size of deposits issued by banks and money market funds exceeds the
amount of deposits held by households in the data due to deposits holdings in
the corporate sector. When mapping our model to the data, we rescale all bal-
ance sheet items of the banking sector and money market funds proportionally
such that: (1) liquid liabilities of the money market funds are equal to those
held by the households, and (2) liquid liabilities of the banking sector are equal
deposits held by households and the money market funds.

• Although our model does not provide a theory of corporate deposit demand, we
can extend our model to allow firms to hold the rest of the deposits issued by
banks on their balance sheet inside households’ illiquid accounts, assuming that
firms do not use liquid assets in the production process. This assignment does
not affect the consolidated balance sheet of the fund. This is because holding a
combination of these deposits in the illiquid account with the corresponding net
worth of banks supplying these deposits is equivalent to directly holding capital
of the same value. Specifically, consider the following modification to the model:
(1) the banking sector has net worth (1 + χ)nt instead of nt, (2) the illiquid
account passively holds extra deposits χdt that correspond to the corporate
deposits in the data, and (3) capital in the illiquid account is qtkFt − χ(nt + dt)

instead of kFt

• Let r̃At+1 denote returns on illiquid assets associated with these modifications.
Direct calculation shows that it is identical to the illiquid returns rAt+1 in Section
2:

r̃At+1 :=
1

at
(rKt+1(qtk

F
t − χ(nt + dt)) + rNt+1(1 + χ)nt + rBt+1χdt)

=
1

at
(rKt+1(qtk

F
t − χrKt qtk

B
t ) + rNt+1nt + χ(rKt qtk

B
t − rBt+1χdt) + rBt+1χdt)

=
1

at
(rKt+1qtk

F
t + rNt+1nt) = rAt+1.

Since both the goods market clearing and the liquid asset market clearing con-
ditions are not affected, Lemma 2 implies that aggregate responses with the
modifications above are identical to that from the model in Section 2.

Table 7 provides a breakdown of liquid asset positions of the household sector, the
banking sector, and money market funds.
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Table 7: Liquid asset positions

liquid assets liquid liabilities
households deposits 0.41

mmf shares 0.09
treasury 0.05

banks cash & reserves 0.03
fed funds and repo (net) 0.02
treasury 0.01

deposits 0.42
mmf deposits 0.02

net repo 0.02
treasury 0.01

mmf shares 0.09
Note: Liquid asset positions in the U.S. economy through the lens of the model.
Values are presented as a fraction of the U.S. GDP, averaged over the periods from
1998Q1 to 2019Q4.

D Nested Benchmark Models

D.1 Examples of Representative Agent Models

This section provides three examples of representative agent models nested in our
framework, assuming no idiosyncratic shocks, zit ≡ 1, no heterogeneity in preferences,
and no restriction on asset holdings ā = b̄ = −∞.

The first example corresponds to the representative agent version of our quantitative
model. We show that when calibrated to match the same steady-state aggregate asset
holdings and returns, the liquidity demand with respect to returns is significantly
more elastic in the representative agent version in comparison to our heterogeneous
agent baseline, indicating that the standard heterogeneous agent framework is likely
a better starting point for modeling a household sector that is insensitive to changes
in returns as observed empirically in the data.

In addition to the first example, we provide two limiting cases where the household
sector has the same steady-state asset holdings and returns but features perfectly
elastic and inelastic liquidity demand with respect to returns. These examples provide
microfoundations for the special cases we use for illustration in Section 4.2.
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D.1.1 Comparing Liquidity Demand between RA and HA Households

Consider a representative household solving the following problem:

max
ct,at,bt

∞∑
t=0

βt[u(ct)− ν(ht)], s.t.

at + bt + ct + Φ(at, at−1, r
A
t ) = (1 + rBt )bt−1 + (1 + rAt )at−1 + yht ,

where yht := Wt

Pt
ht − Tt(Wt

Pt
ht) denote after tax labor income.

Optimality implies:

[ct, bt] : u′(ct) = βu′(ct+1)(1 + rBt+1)

[ct, at] : u′(ct)(1 + Φ1(at, at−1, r
A
t )) = βu′(ct+1)(1 + rAt+1 − Φ2(at+1, at, r

A
t+1))

We assume c to denote steady-state consumption and similar a, b, rA and rB. Log
deviations from the steady state are denoted by ĉt, ât, b̂t for quantities, and deviations
of returns are denoted by r̂A and r̂B.

Define σ := −u(c)′′c/u′(c). First-order approximations of the equilibrium conditions
are given by:

σ(ĉt+1 − ĉt) =
r̂Bt+1

1 + rB
,

σ(ĉt+1 − ĉt) + (ζ11 + ζ22)ât + ζ12ât−1 + ζ21ât+1 = (1− ζ23)
r̂At+1

1 + rA
− ζ13

r̂At
1 + rA

,

āât + b̄b̂t + c̄ĉt + Φ1aât + Φ2aât−1 =

ȳŷt + (1 + rB)b̄b̂t−1 + (1 + rA)aât−1 + b̄r̂Bt + (a− Φ3)r̂
A
t ,

where

ζ11 :=
aΦ11

1 + Φ1

, ζ12 :=
aΦ12

1 + Φ1

, ζ13 :=
(1 + rA)Φ13

1 + Φ1

,

ζ21 :=
aΦ21

1 + rA − Φ2

, ζ22 :=
aΦ22

1 + rA − Φ2

, ζ23 :=
(1 + rA)Φ23

1 + rA − Φ2

.

From the optimality condition for at, the path of illiquid asset holdings satisfies the
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following system: (
ât+1

ât

)
=

(
− ζ11+ζ22

ζ21
− ζ12
ζ21

1 0

)(
ât

ât−1

)
+

(
εat

0

)
,

where εat =
1−ζ23
ζ21

r̂At+1

1+rA
− ζ13

ζ21

r̂At
1+rA

− 1
ζ21

r̂Bt+1

1+rB
.

The characteristic polynomial of the matrix is f(λ) = λ2 + ζ11+ζ22
ζ21

λ + ζ12
ζ21

. Suppose
that f(1) < 0, then f(0) = ζ12

ζ21
= 1+rA−Φ2

1+Φ1
= 1

β
> 1 implies there exists an eigenvalue

λ1 ∈ (0, 1) and an eigenvalue λ2 > 1. The solution of the system is given by:

ât = λ1ât−1 −
∞∑
s=0

λ−s−1
2 εat+s.

Consider variations in {rAs }. Substituting εat+s gives

ât = λ1ât−1 +
ζ13λ

−1
2

ζ21

r̂At
1 + rA

+
ζ13λ

−1
2 − (1− ζ23)

ζ21

∞∑
u=0

λ−u−1
2

r̂At+u+1

1 + rA

Define

ϑrA :=
ζ13λ

−1
2 − (1− ζ23)

ζ21(1 + rA)
, grA :=

ζ13λ
−1
2

ζ21(1 + rA)
, σa(t) :=

1− (λ1λ
−1
2 )t

1− λ1λ
−1
2

,

then the solution for ât can be expressed as

ât =

λ
t−s
2 ϑrAσ

a(t+ 1)r̂As , s > t,

λt−s1

(
grA + λ1λ

−1
2 ϑrAσ

a(s)
)
r̂As , s ≤ t.

The budget constraint and the optimality condition for bt imply

b̂t+1 − (2 + rB)b̂t + (1 + rB)b̂t−1 = εbt

where εbt = a−Φ3

b
(r̂At+1 − r̂At ) +

a
b
(1 + Φ1)(−ât+1 +

1+β
β
ât − 1

β
ât−1). Therefore,

b̂t = b̂t−1 −
∞∑
u=0

(1 + rB)−u−1εbt+u.

We calibrate the representative household sector to compare it with our heterogeneous
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agent baseline. Given rA from the data, we calibrate χ1 so that the steady-state
illiquid asset holding a is consistent with the data, we consider the limit where β → 1

so that rB → 0, as in our quantitative model.

Figure 13 compares the responses of liquidity demand with respect to a change in
rKs , taking into account how the sequence of illiquid returns {r̂As } responds to rKs

as in Figure 2. Liquidity demand responses are of orders of magnitude stronger
in the representative agent model than in our heterogeneous agent baseline. This
highlights a key feature of the standard heterogeneous agent framework that has not
been emphasized in previous work: The inertia and insensitivity to returns among
households, consistent with empirical evidence in Gabaix et al. (2024).

Figure 13: Entries of −B̃rK matrices (see Appendix A.6 for the definition)for the representative
agent model with portfolio adjustment cost (left) and for the calibrated two-asset HA model (right).
Each line corresponds to a different period s and shows a response of liquidity demand in quarter t
with respect to rKs

D.1.2 Perfectly Elastic Liquidity Demand

Consider the same representative household as in Section D.1.1, except that the port-
folio adjustment cost is given by a function Φ̃(·) where the first derivatives are the
same as function Φ(·), i.e., Φ̃l = Φl, but the second derivatives are scaled by a scaling
parameter κ such that Φ̃lk =

1
κ
Φlk.

Illiquid asset holding is characterized by system similar to that in Section D.1.1,
featuring the same transition matrix, as ζ11+ζ22

ζ21
and ζ12

ζ21
are not affected by the scaling
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parameter κ. As a result, the solution of ât is given by

ât =

λ
t−s
2 ϑ̃rAσ

a(t+ 1)r̂As , s > t,

λt−s1

(
grA + λ1λ

−1
2 ϑ̃rAσ

a(s)
)
r̂As , s ≤ t,

where ϑ̃rA :=
ζ13λ

−1
2 −(κ−ζ23)
ζ21(1+rA)

, and λ1, λ2, σa(·) are identical to that in Section D.1.1.

For κ large, we have ât ≈ κâ∞t , where

â∞t =

λ
t−s
2 ϑ∞

rAσ
a(t+ 1)r̂As , s > t,

λt−s1

(
λ1λ

−1
2 ϑ∞

rAσ
a(s)

)
r̂As , s ≤ t,

where ϑ∞
rA

:= −1
ζ21(1+rA)

. For liquid assets, we have b̂t ≈ κb̂∞t , where

b̂∞t = b̂∞t−1 −
∞∑
u=0

(1 + rB)−u−1εbt+u,

and εbt =
a
b
(1 + Φ1)(−â∞t+1 +

1+β
β
â∞t − 1

β
â∞t−1). As a result, given any DrK , we have

ε−1
rK

= (DrK −BrK )
−1 → 0 as κ→ ∞.

D.1.3 Perfectly Inelastic Liquidity Demand

For an example of perfectly inelastic liquidity demand, we consider a representative
household with a reduced-form preference over liquid assets. The household solves
the following problem:

max
ct,at,bt

∞∑
t=0

βt(u(ct) + v(bt)), s.t

bt + ct + at = yt + (1 + rBt )bt−1 + (1 + rAt )at−1.

Optimality requires:

[ct, bt] : u′(ct)− v′(bt) = βu′(ct+1)(1 + rBt+1)

[ct, at] : u′(ct) = βu′(ct+1)(1 + rAt+1).

Let ν = −v′′b/v′ and ψ = v′/u′. First-order approximations of the equilibrium
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conditions are given by:

(1− ψ)σĉt+1 − σĉt + ψνb̂t = (1− ψ)
r̂Bt+1

1 + rB

σĉt+1 − σĉt =
r̂At+1

1 + rA

b̄b̂t + c̄ĉt + aât − (1 + rB)b̄b̂t−1 − (1 + rA)aât−1 = ȳŷt + b̄r̂Bt + ar̂At

From the two optimality conditions:

b̂t = σν−1ĉt + εbt ,

where εbt = ν−1ψ−1(1− ψ)
( r̂Bt+1

1+rB
− r̂At+1

1+rA

)
.

Define wŵt := (1+rB)b̄b̂t+(1+rA)aât, where w := (1+rB)b̄+(1+rA)a. The budget
constraint becomes:

b̄b̂t + c̄ĉt + aât − wŵt−1 = ȳŷt + b̄r̂Bt + ar̂At .

Use the express for b̂t and the budget constraint to write ŵt as:

wŵt = (1 + rB)b̄(σν−1ĉt + εbt)

+ (1 + rA)
(
wŵt−1 − (b̄σν−1 + c̄)ĉt + b̄σν−1εbt + ȳŷt + b̄r̂Bt + ar̂At

)
.

Together with optimality of at, we have(
ĉt+1

ŵt

)
=

(
1 0

−w−1((1 + rA)c̄+ b̄(rA − rB)σν−1) 1 + rA

)(
ĉt

ŵt−1

)
+

(
εct

εwt

)
,

where εct = σ−1 r̂At+1

1+rA
and εwt = w−1

(
(1 + rA)(ȳŷt + b̄r̂Bt + ar̂At )− b̄(rA − rB)εbt

)
.

Consider the limit where ν → ∞. In this case,(
ĉt+1

ŵt

)
=

(
1 0

−w−1(1 + rA)c̄ 1 + rA

)(
ĉt

ŵt−1

)
+

(
εct

εwt

)
,

and b̂t = σν−1ĉt + εbt → 0 as εbt = ν−1ψ−1
( r̂Bt+1

1+rB
− (1 − ψ)

r̂At+1

1+rA

)
→ 0. Therefore, we

have BrA → 0 as ν → ∞.
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D.2 Alternative Form of Nominal Rigidities

We now show our results generalize to a setup with price rigidities instead of wage
rigidities. We keep the labor union structure and set κW = 0: individual households
still take labor supply decisions as given, but the unions face no cost in adjusting
nominal wages. We modify the production side of the economy by introducing two
types of firms: a continuum of intermediate goods producers indexed by u ∈ [0, 1]

and a representative final goods producer.

The representative final goods producer aggregates intermediate goods {yu,t} accord-
ing to

yt =
(∫

y
εP−1

εP
u,t du

) εP
εP−1

.

Given the price of the final good {Pt} and prices of intermediate goods {Pu,t}, the
final good producer chooses {yu,t} to maximize profits:

max
{yu,t}

Ptyt −
∫
Pu,tyu,td`.

The solution of the problem implies a standard demand curve yu,t =
(
Pu,t

Pt

)−εP
yt,

where the price index Pt satisfies Pt =
( ∫

P 1−εP
u,t du

) 1
1−εP .

Intermediate goods producer of goods u uses capital, ku,t−1, and labor supplied by
unions, hu,`,t, to produce yu,t:

yu,t = kαu,t−1h
1−α
u,t , hu,t =

(∫
h

εW−1

εW
u,`,t d`

) εW
εW−1

,

where εW > 1 is the elasticity of substitution between labor types. LetWt
14 denote the

ideal wage index associated with the cost-minimizing labor mix hu,`,t given hu,t.

Given the demand for yu,t, capital rental rate Rt, nominal wages Wt, initial price
Pu,−1 = P−1, each intermediate good producer u rent capital ku,t−1, hire labor hu,t,
and sets nominal price growth πP,u,t := Pu,t

Pu,t−1
− 1 to maximize real profits, subject to

a price adjustment cost:

max
πP,u,t,ku,t−1,hu,t

∞∑
t=0

Λu0,t
Pt

[
Pu,tyu,t −Rtku,t−1 −Wthu,t −

κP
2
π2
P,u,tPtyt

]
,

14Wt is the same for all retailers u because they use the same CES aggregator function.
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where Λu0,t is some arbitrary discount factor, which, for example, can be a function
of {rKt , rBt , yt}. Price adjustment cost is in units of utility and does not affect the
resource constraint; κP > 0 parameterizes the level of nominal rigidity. The symmetry
between retailers implies they all choose the same price Pu,t = Pt, produce the same
quantity yu,t = yt, and use the same production factors ku,t = kt, hu,t = ht.

Let µt denote the markup over marginal cost. In equilibrium, the total real profit
from the intermediate goods producers in each period equals to

(
1− µ−1

t

)
yt and

factor prices satisfy:
Rt

Pt
=
α

µt

yt
kt−1

,
Wt

Pt
=

1− α

µt

yt
ht
.

We assume that the fraction α of profits is distributed to capital and the remaining
fraction 1−α to labor. Given this assumption, holding one unit of capital from period
t to t+ 1 earns a return

1 + rKt+1 = max
ιt+1

Rt+1/Pt+1 + α
(
1− µ−1

t+1

)
yt+1/kt + qt+1 (1 + Γ (ιt+1)− δ)− ιt+1

qt
.

Since
Rt+1/Pt+1 + α

(
1− µ−1

t+1

)
yt+1/kt = αyt+1/kt,

the return on capital above corresponds to Equation 1 in the main text. Together
with the law of motion for capital and the first order condition with respect to ιt+1,
we obtain the same aggregate investment function X as in the main text.

We assume the remaining fraction 1 − α of profits is distributed to households pro-
portionally to zi,thi,t/ht. We use yi,t to denote real labor income of the household i

plus profits it receives from the intermediate goods producers:

yi,t = zi,t
Wt

Pt
hi,t + α

(
1− µ−1

t

) yt
ht
zi,thi,t

Because labor unions are identical, hl,t = ht, the labor demand rule implies hi,t =
l(zi,t)ht, and since Wt

Pt
+
(
1− µ−1

t

)
yt
ht

= (1− α) yt, we have yi,t = zi,tl(zi,t)(1 − α)yt.
This corresponds to pre-tax labor income in our baseline model. Households in this
version of the model face exactly the same problem as in the baseline model, which
means that the aggregate functions A,B, C are the same.
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D.3 Connection to KMV (2018), ARS (2023)

Kaplan, Moll, Violante (2018)

We describe how our framework nests Kaplan et al. (2018). We focus on the case with
no firms’ profits and aGt = 0,15 In the two-asset HANK model of Kaplan et al. (2018)
government debt is the only liquid asset therefore the liquid asset market clearing
condition is

∫
bi,tdi = bGt . There is no liquidity supply of the financial sector dt = 0.

All capital is held through illiquid assets,
∫
ai,tdi = qtkt. The rate of return on illiquid

assets equals the rate of return on capital. Because dt = 0, this is consistent with our
equation 2.

To ensure that dt = 0 in all periods, it is enough to have Θ̄rK , Θ̄rB = 0 and the steady
state effective leverage Θ̄ equal to 1. Intuitively, it does not matter whether capital
is held directly as kF or indirectly through banks as kB, because an extra unit of net
worth allows increasing bank capital holdings one-to-one.

In our quantitative study in Section 6 we follow a different strategy. We want to
keep the steady state the same for all models to isolate the role of liquidity supply
elasticities. This would not be possible with dt = 0. We set the matrices DrK ,DrB ,Dy

to be identically zero. This can be done by assuming Ḡ = ḠΘ = ḠrK = ḠrB = 0, and
mt = m and setting Θ̄rK , Θ̄rB = 0. These assumptions imply that dt is constant.

Auclert, Rognlie, Straub (2023)

We show how our work relates to Auclert et al. (2023). First, we demonstrate that
our framework with Θ̄rK , Θ̄rB → ∞ implies the same relationship between the rate
of return on capital, rKt , and the real rate of return on assets as in the model with
capital in Section 7.3 of Auclert et al. (2023).

Denote the rate used in the firm’s problem in Auclert et al. (2023) (equation 37, on
page 35) by rIKCt+1 . Assume perfect competition among firms and the law of motion for
capital is kt = (1− δ + Γ (ιt)) kt−1, where ιt := xt/kt−1. Given these assumptions,16

15In Kaplan et al. (2018) there is monopolistic competition in the goods market and price rigidities.
We abstract from these because our framework features neither of them. The argument remains
the same if we enrich our framework with these features.

16We make these assumptions to simplify the exposition. The argument remains the same with
monopolistic competition and sticky prices (if we modify the firm’s problem in our framework)
and with alternative capital adjustment costs assumed in Auclert et al. (2023).
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the firms’ problem is

Jt (kt−1) = max
kt,ht

F (kt−1, ht)−
Wt

Pt
nt−xt+

1

1 + rIKCt+1

Jt+1

((
1− δ + Γ

(
it
kt−1

))
kt−1

)
,

where Jt(kt−1) stands for the value of the firm and F (kt−1, ht) = kαt−1h
α
t .

The first order condition with respect to xt and the envelope condition are

1 =
1

1 + rIKCt+1

J ′
t+1 (kt) Γ

′ (ιt) ,

J ′
t (kt−1) = Fk (kt−1, ht) +

1

1 + rIKCt+1

J ′
t+1 (kt) (−Γ′ (ιt) ιt + (1− δ + Γ (ιt))) .

Define qt := 1
1+rIKC

t+1
J ′
t+1 (kt) and use the first-order condition 1 = qtΓ

′ (ιt) to write

qt−1

(
1 + rIKCt

)
= Fk (kt−1, ht)− ιt + qt (1− δ + Γ (ιt)) .

After rearranging, we obtain

1 + rIKCt =
Fk (kt−1, ht)− ιt + qt (1− δ + Γ (ιt))

qt−1

.

The above formula is exactly the same expression as Equation 1 for rKt and shows
that rIKCt corresponds to rKt .

In one-account models in Section 4.1 and Section 4.2 of Auclert et al. (2023), the rate
of return on assets is equal to rIKCt . In the two-account model in Section 4.3 the rate
of return associated with the illiquid account (denote it by rAt , as in our framework)
is equal to rIKCt , and the rate of return on the liquid account (denote it by rBt , as in
our framework) is given by (1− ζ)(1 + rIKCt )− 1, where ζ is a constant. Regardless
of whether monetary policy controls the rate of return on liquid or illiquid accounts,
there is a tight link between rBt , the real rate controlled by the central bank (denote
it by rt), and rIKCt . More specifically, for all t ≥ 0 we have

drIKCt+1 =
1

1− ζ
drBt+1.

The relationship between returns is independent of any shifts in excess liquidity.
In Proposition 2, we show that relationship results from the limiting case where
Θ̄rK , Θ̄rB → ∞ and Θ̄rB/Θ̄rK → 1/(1− ζ).
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Next, we show additional conditions, under which aggregate responses to macroeco-
nomic policies are exactly the same in our work and a two-account model of Auclert
et al. (2023). For simplicity, we set aGt = 0 in all periods. Auclert et al. (2023)
assume that households have access to two accounts: liquid and illiquid. Both ac-
counts consist of equity and bond holdings. Household i holds a share $a

i,t of illiquid
assets and a share $b

i,t of liquid assets in equity. Our framework corresponds to
$a
i,t = 1 and $b

i,t = 1 − bGt∫
bi,tdi

so that the share of liquid assets invested in equity
corresponds to one minus the ratio of government debt sector to total liquidity sup-
ply. Households can change their illiquid account position with probability p every
period, otherwise ai,t = (1 + rAt )ai,t−1. We can capture it by having Ψi,t = 0 with
probability p and with probability 1− p: Ψi,t = 0 if ai,t = (1+ rAt )ai,t−1 and Ψi,t = ∞
if ai,t 6= (1 + rAt )ai,t−1.

In Auclert et al. (2023):

1. Rates of returns satisfy 1 + rKt+1 =
1

1−ζ (1 + rBt+1) = 1 + rAt+1 ∀t ≥ 0.

2. Servicing one unit of government debt (in time t goods) issued at time t costs
(1 + rBt+1)/(1− ζ) units of goods in period t+ 1.

3. The goods market clearing requires ct + xt + gt +
ζ

1−ζ (1 + rBt )
∫
bi,t−1di = yt.

The first part of the first condition is satisfied for Θ̄rK , Θ̄rB → ∞ and Θ̄rB/Θ̄rK → 1/

(1 − ζ). Equation 2 states that the second part of the condition cannot hold unless
dt = 0 in all periods. This is a key difference between our framework and Auclert et al.
(2023). In our framework, assets (capital, deposits, government debt) are associated
with different returns. The returns received by households on their accounts depend
on the composition of assets in their liquid and illiquid accounts. In Auclert et
al. (2023), all assets pay the same return. The returns received by households on
their accounts differ only because of financial intermediation costs. The following
modification of our framework ensures rAt+1 = rKt+1 even with dt > 0. Assume that
the passive mutual fund holding capital directly and bank equity has intermediation
cost

µt+1 =
(
1 + rBt+1

) ζ

1− ζ

dt
at

per unit of illiquid assets at. This cost is paid in final goods. Zero profit condition of
the fund implies rAt+1 = rKt+1.
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The second condition is satisfied if we assume that the government needs to incur
extra cost equal to µGt = ζ

1−ζ (1 + rBt ) per unit of debt. The budget constraint of the
government becomes

bGt = gt + (1 + rBt )b
G
t−1 + µGt b

G
t−1 − Tt.

The sum of intermediation costs in period t is

µGt b
G
t−1 + µtat−1 =

ζ

1− ζ

(
dt−1 + bGt−1

)
=

ζ

1− ζ

∫
bi,t−1di

and this ensures that the goods market condition in our framework is as in Auclert et
al. (2023). Because the household and production sides of our economy are exactly
the same, and the rates of return satisfy the same restrictions as in Auclert et al.
(2023), output responses must be the same.

E Quantitative Appendix

E.1 Government Spending Multiplier: Additional Results
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Figure 14: Consumption and investment response to government purchases with η = 0.5, ρbG = 0.95.
Red: empirical estimate (Θ̄rK = 25). Black: perfectly elastic liquidity supply (Θ̄rK → ∞). Blue:
perfectly inelastic liquidity supply (DrK = 0). Dark to light yellow: high to low Θ̄rK (from Θ̄rK = 25
to Θ̄rK = 12 in GKK).
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Figure 15: Decomposition of output responses to government purchases with η = 0.5, ρbG = 0.95.
Red: empirical estimate (Θ̄rK = 25). Black: perfectly elastic liquidity supply (Θ̄rK → ∞). Blue:
perfectly inelastic liquidity supply (DrK = 0). Dark to light yellow: high to low Θ̄rK (from Θ̄rK = 25
to Θ̄rK = 12 in GKK).
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Figure 16: Impact and cumulative government spending multipliers for ρbG = 0.5 and η ∈ [0, 0.95]
Impact multiplier: dy0/dg0. Cumulative multiplier:

∑∞
t=0(1 + rB)−tdyt/

∑∞
t=0(1 + rB)−tdgt. Red:

empirical estimate (Θ̄rK = 25). Black: perfectly elastic liquidity supply (Θ̄rK → ∞). Blue: perfectly
inelastic liquidity supply (DrK = 0). Dark to light yellow: high to low Θ̄rK (from Θ̄rK = 25 to
Θ̄rK = 12 in GKK).

E.2 Asset Purchases and Tax Cuts: Additional Results

Figure 17 shows responses of consumption and investment. When the financial sec-
tor’s liquidity supply has low elasticities with respect to drK , responses of both con-
sumption and investment are amplified. It demonstrates that differences in the out-
put response seen in Figure 10 are driven mostly by differences in investment. The
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magnitude of responses of consumption also depends on the cross-price elasticities of
liquidity supply but to a much smaller extent.
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Figure 17: Consumption and investment responses to asset purchases and tax cuts with η =
0.5, ρbG = 0.95. Red: empirical estimate (Θ̄rK = 25). Black: perfectly elastic liquidity supply
(Θ̄rK → ∞). Blue: perfectly inelastic liquidity supply (DrK = 0). Dark to light yellow: high to low
Θ̄rK (from Θ̄rK = 25 to Θ̄rK = 12 in GKK).

The large differences in investment responses are due to firms’ responses to capital
prices. Figure 18 shows that the range of responses of capital prices is much larger
for asset purchases. This is consistent with the important role of the asset market
channel.
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Figure 18: Capital price response to asset purchases and tax cuts with η = 0.5, ρbG = 0.95. Red:
empirical estimate (Θ̄rK = 25). Black: perfectly elastic liquidity supply (Θ̄rK → ∞). Blue: perfectly
inelastic liquidity supply (DrK = 0). Dark to light yellow: high to low Θ̄rK (from Θ̄rK = 25 to
Θ̄rK = 12 in GKK).

Figures 19 and 20 below show output responses and decomposition as in Figures 8
and 9 in the main text, but with the y-axis rescaled to show the large magnitude of
responses with perfectly inelastic liquidity supply.
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Figure 19: Output response to asset purchases and tax cuts with η = 0.5, ρbG = 0.95. Red: empirical
estimate (Θ̄rK = 25). Black: perfectly elastic liquidity supply (Θ̄rK → ∞). Blue: perfectly inelastic
liquidity supply (DrK = 0). Dark to light yellow: high to low Θ̄rK (from Θ̄rK = 25 to Θ̄rK = 12 in
GKK).
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Figure 20: Decomposition of output responses to asset purchases and tax cuts with η = 0.5, ρbG =
0.95. GE effect is defined as the difference between output responses and the sum of goods market
channel and asset market channel from Theorem 1. Red: empirical estimate (Θ̄rK = 25). Black:
perfectly elastic liquidity supply (Θ̄rK → ∞). Blue: perfectly inelastic liquidity supply (DrK = 0).
Dark to light yellow: high to low Θ̄rK (from Θ̄rK = 25 to Θ̄rK = 12 in GKK).

E.3 Robustness Check: General Net Worth Process

We study the extent to which our policy conclusions are affected by the parameter-
ization of the net worth accumulation process, function G. Our calibration implies
Ḡ, the persistence of net worth, is equal to 0.97. ḠrK , ḠΘ, sensitivity of net worth to
current returns on capital and sensitivity to past leverage, are 3.76 and 0.008. Figure
21 shows impact multipliers and Figure 22 cumulative multipliers. Figure 23 shows
the relative effectiveness of asset purchases and tax cuts.

The first panel of Figures 23, 21, and 22 shows results for different values of Ḡ. The
red line represents our baseline specification in Figure 10. The gray shades from dark
to light represent deviations from our baseline for Ḡ from 0.1 to 0.97.

We use results from Appendix B.3 to motivate robustness check with respect to ḠrK

and ḠΘ. In Appendix B.3 we show that allowing for endogenous equity issuance
decisions is isomorphic to a reparametrization of ḠrK and ḠΘ. We vary ḠrK from
1.48 to 3.76 (baseline) and ḠΘ from 0.008 (baseline) to 0.12. These choices are
motivated as follows. Consider the problem of optimal equity issuance described in
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B.3, where the intermediary can issue equity et subject to a cost function C (et/nt).
Assume

C

(
et
nt

)
=
ζ

2

(
et
nt

)2

− (η̄ − 1)
et
nt

with ζ > 0 and where η̄ is the steady state value of ηt. This cost function is similar
to Karadi and Nakov (2021) and Akinci and Queralto (2022), with the difference
being the linear term. The presence of the linear term means that endogenous eq-
uity issuance (above m̄) is zero in the steady state. This change allows us vary the
parameter ζ reflect the cost of issuing equity without changing the steady state.

In our robustness checks with respect to ḠrK and ḠΘ we set ḠrK and ḠΘ to values
corresponding to the parameter ζ from ∞ (baseline, in which it is impossible to issue
equity) to 3, a number much below 28 used in Karadi and Nakov (2021) and Akinci
and Queralto (2022). The second and the third panel in Figures 23, 21, and 22 show
the effect of changing ḠrK , ḠΘ separately. The fourth panel varies them together.
Again, the red line corresponds to the baseline and the gray shades from light to dark
represent outcomes for reparametrizations with values closer (dark) or farther to the
baseline (light).

The results of the robustness check indicate that, given our estimates of Θ̄rK and γ,
the role of the function G is limited, and our conclusions about the multipliers and
the effectiveness of asset purchases vs. tax cuts in Section 6 remain unchanged.
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Figure 21: Impact multipliers. Red: baseline. Dark to light gray: models closer and farther to the
baseline – see text for the description.
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Figure 22: Cumulative multipliers. Red: baseline. Dark to light gray: models closer and farther to
the baseline – see text for the description.
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Figure 23: Difference between output response to asset purchases and tax cuts. Red: baseline. Dark
to light gray: models closer and farther to the baseline – see text for the description.
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