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Abstract

Central Counterparty Capitalization and Misaligned Incentives

Central Counterparties (CCPs) are systemic nodes in financial markets. Incentive regulation on
CCPs becomes crucial for financial stability. I investigate incentives and optimal regulation of
a profit-driven CCP with limited liability. Conditional on available capital, the CCP fine-tunes
collateral requirements to balance fee incomes against counterparty risk. High collateral reduces
potential default losses, but leads to foregone profitable trades. Limited liability creates a wedge
between the CCP’s collateral policy and the socially optimal solution to this trade-off. However,
regulators can use capital requirements to close the wedge, unless clearing fee exceeds a threshold.
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1 Introduction

After the 2007-2008 global financial crisis, central clearing is introduced for OTC derivatives to

enhance financial stability. Central Counterparties (CCPs) stand between buyers and sellers, effec-

tively providing insurance against counterparty risk (Singh, 2010). CCPs have become systemic

nodes in financial markets and CCP insolvency could be a catastrophe(see, e.g., Singh, 2014;

Duffie, 2015; Wendt, 2015).

CCPs have high priority on regulation agenda. The Committee on Payments and Market Infras-

tructure (CPMI), the International Organization of Securities Commissions (IOSCO), the Financial

Stability Board (FSB), and the Basel Committee on Banking Supervision (BCBS) have agreed on

a joint work plan to improve CCP resilience. As the international standard for CCPs, the Princi-

ples for Financial Market Infrastructure (PFMI) requires CCPs to “provide a viable capital plan

for maintaining an appropriate level of equity” (CPMI-IOSCO, 2012). The CPMI-IOSCO and

the FSB further stress the importance for CCPs to have sufficient capital to “absorb losses result-

ing from a participant default and the custody and investment of participant assets” (see, e.g.,

CPMI-IOSCO, 2014; FSB, 2014; CPMI-IOSCO, 2016; FSB, 2016).

Although CCPs are systemically important, many CCPs operate as profit-driven public com-

panies, such as CME in the U.S. and Eurex in Europe. The potential conflict of interest between

CCPs’ systemic role and profit-driven character sparks the public debate over the capitalization

problem of CCPs: Do CCPs have enough skin-in-the-game (SITG) to align proper incentives?

The fact that CCPs are not infallible is highlighted by the failure of Korean exchange clearing-

house (KRX) in 2014.1 Clearing members who are exposed to CCP risk call for more CCP SITG

to safeguard financial stability, arguing that CCPs are not properly incentivized to manage risk

(see, e.g., Albuquerque, Perkins, and Rafi, 2016).

This paper investigates the capitalization problem and the potential misaligned incentives of

CCPs. I consider a static partial equilibrium model with two dates (t = 0, 1), a mass-one continuum

1There are more clearinghouse failures in recent decades: the French Caisse de Liquidation (1973), the Kuala
Lumpur Commodities Clearing House (1983), the Hong Kong Futures Exchange (1987), and the New Zealand Futures
and Options Exchange (1989).(see, e.g., Hills et al., 1999; Buding, Cox, and Murphy, 2016)
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of risk-averse protection buyers, a mass-one continuum of heterogeneous risk-neutral protection

sellers and a risk-neutral CCP. Buyers and sellers are randomly matched and trade a standardized

protection contract.2 The CCP determines a “universal” collateral requirement for the sellers who

may have strategic defaults. Furthermore, the sellers need to contribute to the default fund. A

seller’s contribution to the default fund is proportional to his collateral. In case of some sellers’

defaults, the losses will first be covered by the collateralized financial resources, then by the CCP’s

SITG, and finally by the default fund contributed by other sellers that do not default. Without

regulations on capital requirement, the CCP can choose the size of her capital, which is exposed

to potential default losses. For my model, I use SITG and capital interchangeably. When the CCP

exhausts all available financial resources, the CCP becomes insolvent.3

The main frictions in the model are profit maximization and limited liability of a CCP. To

maximize profit, the CCP is inclined to lower collateral requirement when there is little SITG.4

Such misaligned incentives give rise to a trade-off between the increase of systemic risk and the

increase of trading volume.

The trading environment in the model is similar to the settings of Biais, Heider, and Hoerova

(2016). But there are several key features that distinguish my paper from theirs. First, I focus on

CCP’s incentives and model CCP insolvency explicitly, while they stress the traders’ incentives

and model the interaction between central clearing and risk-taking behaviors. Second, in order

to focus on CCP’s misaligned incentives, I assume that sellers exert effort and there is no moral

hazard between buyers and sellers. This is a simplification of their setup. However, I do model the

heterogeneity of protection sellers by introducing heterogeneous hedging capability as Perez Saiz,

2In reality, such a contract can be viewed as a Credit Default Swap (CDS).
3Normally, CCPs have recovery plan when their pre-funded financial resources drain out. It includes Variation

Margin Gains Haircut (VMGH), cash call, and other assessment power. Strictly speaking, a CCP does not become
insolvent when she exhausts all available pre-funded financial resources mentioned in the text. But since the analysis
of losses allocation at the end of the default waterfall is not the focus of the current model, I simplify the real operations
and assume the CCP becomes insolvent as long as the available financial resources are exhausted.

4In the model, I assume that a CCP has full power in determining the risk management requirement. But in real
operations, the change of risk models normally need to be stress tested and to be approved by regulators, which is
different from the model setup. However, as long as there is asymmetric information between regulators and the CCP,
there is room for the CCP to manipulate the risk management requirement. In particular, when the CCP introduces
clearing service for new products, it might be tricky to assess the riskiness of the new products. Furthermore, although
setting a high collateral helps safeguarding CCP resilience, high collateral requirement might impair market efficiency
by making trades too expensive.
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Fontaine, and Slive (2013) do. The benefit of doing so is to have a clean threshold between sellers

who default (default sellers) and those who do not default (non-default sellers) in equilibrium. It

enables me to study cases when different layers of the default waterfall are used to cover the default

losses.

To the best of my knowledge, this paper is the first in the literature that models CCP insol-

vency from the perspective of CCP’s misaligned incentives. There is a large banking literature

that studies capital requirement (see, e.g., Dewatripont, Tirole et al., 1994; Hellmann, Murdock,

and Stiglitz, 2000). But CCPs are different from banks in several ways (see, e.g., Manning and

Hughes, 2016). Figure 1 shows simplified balance sheets for a CCP and a Bank. One key fac-

tor is that CCPs have an additional layer for loss-absorbing: default fund contributed by clearing

members. To build the connection between a bank and a CCP, one can view clearing members’

collateral as debt and a CCP’s SITG as equity. Apart from debt- and equity-type liabilities on the

balance sheet, a CCP also has default fund which is a type of mutualized financial resources. Since

clearing members contribute to default fund, in the case of large default losses, the default fund

contributed by non-default sellers will be used to cover the losses from default sellers. When the

CCP becomes insolvent, the counterparties of the default sellers will bear the remaining losses.

Hence, the financial resources of a CCP create different types of incentives.

Figure 1: Simplified balance sheets

Asset Liability Asset Liability

BankCCP

Liquid asset

Illiquid asset

Short-term debt

Long-term debt

Equity

Collateral

CCP’s SITG

Default fund

Liquid asset

Illiquid asset

There are several results from the model. First, when there is no capital requirement for CCPs, a
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profit-driven CCP chooses the minimum capital, whereas a benevolent CCP will favor high capital

when capital cost is low. A profit-driven CCP here refers to a CCP that maximizes her own value

and has limited liability. On the contrary, a benevolent CCP is a CCP that maximizes total welfare

surplus, including the utility improvement of traders and the CCP value, and will not default.5

These two types of CCPs reflect the reality of non-user-owned CCPs and user-owned CCPs (see,

e.g., Cox and Steigerwald, 2016). My model suggests different capital regulations for different

types of CCPs.

Second, without capital regulation, the low SITG chosen by a profit-driven CCP leads to insol-

vency problem. When the CCP only exposes little amount of her own capital to potential default

losses, the CCP has strong incentive to lower risk management standard to attract higher trading

volume. The traders are aware of the riskiness of CCP insolvency and will become reluctant to

trade, which requires the CCP to further lower the collateral requirement to increase trading vol-

ume. Thus, the default losses in this case will be even larger than those in the case of high collateral

requirement.

Third, a higher SITG gives rise to a higher collateral requirement monotonically. In other

words, the higher the CCP capital is, the higher collateral cost will be paid by the traders. This

is the argument used by CCPs against high SITG (see, e.g., LCH, 2014). However, the welfare

effects of increasing SITG depend on the situation. On one hand, a higher SITG makes trading

more expensive because of the higher collateral cost. On the other hand, a higher SITG also makes

trading less expensive by providing a safer CCP.

Fourth, the optimal capital requirement for a profit-driven CCP depends on the profitability of

the volume-based fee charged by the CCP. Although the commission fee of clearing is normally

not a policy instrument for regulators, it could be an indicative policy variable for regulators. When

the fee level is high, the “temptation” for a profit-driven CCP to increase trading volume is high.

Even with a high capital requirement, the CCP will still go for a relatively low collateral level

to increase trading volume. There will be defaults in equilibrium anyway. Hence, the optimal

capital requirement for a profit-driven CCP should retain market discipline. In other words, it is

5Since the focus of the paper is the misaligned incentives of profit-driven CCPs, without mentioning specifically,
the CCP in the paper is a profit-driven CCP.
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not optimal to use CCP’s SITG to absorb all the default losses in this case. It is better to allocate

the default losses between CCP’s SITG and clearing members’ default fund contribution. To some

extent, CCP’s capital is more of an incentive instrument than loss-absorbing capacity. When the

fee level is low, the CCP is less incentivized to increase trading volume. In this case, the optimal

capital requirement for a profit-driven CCP should be high enough so that there is no default in

equilibrium.

Last but not least, my model also captures the impact of default fund breach and partial insur-

ance on trading volume. Default fund breach refers to the case that the default fund contributed by

traders who do not default is used to cover the losses resulted from other traders’ defaults. When

traders observe low collateral and low capital, they can “foresee” potential default fund breach,

which in turn will disincentivize them to trade ex ante. Hence, the CCP needs to further decrease

collateral requirement to increase trading volume. Similarly, when traders observe even lower col-

lateral and lower capital, they can expect that they will not be fully insured when the CCP becomes

insolvent. The losses from partial insurance will also lower their utility improvement from trad-

ing, which means the CCP will lower collateral requirement to maximize trading volume. It is

worthwhile to point out that, in the literature, default fund breach and partial insurance will reduce

trading volume (see, e.g., Murphy, 2016; Raykov et al., 2016). But in my model, since the CCP

can choose the collateral level, default fund breach and partial insurance do not necessarily reduce

trading volume. Instead, the CCP can still maximize trading volume at the cost of larger potential

default losses.

My paper contributes to a rapidly growing literature on CCPs. Carter and Garner (2016) dis-

cuss CCP’s role in risk management and the incentives created by CCPs’ SITG. They point out

that the size of a CCP’s SITG should be substantial for the CCP but not necessarily proportional

to the default fund size, since the CCP has very different risk profile from the clearing members.

Their view on SITG is more of an incentive scheme than loss absorbing capability. Albuquerque,

Perkins, and Rafi (2016) propose a risk-based quantitative method to calculate CCPs’ SITG, based

on expected shortfall over and above the largest two clearing members’ initial margin and default

fund contributions. Their calibration shows that a long-term average SITG is 8.1% for an interest
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rate derivative CCP and 11.4% for a credit derivative CCP. Murphy (2016) analyzes the compo-

sition of CCPs’ financial resources and finds that profit-driven CCPs will always minimize their

SITG. But since clearing members may trade less in the case of large probability of default fund

breach, CCPs have incentives to increase initial margin and to reduce default fund contribution,

with the assumption that the total financial resources need to satisfy the “Cover 2” principle. I

take a different approach and model CCPs’ insolvency explicitly. My model suggests different

capital requirements for CCPs with different ownership structures. In particular, my model takes

into account the profitability of clearing industry, which alters the optimal capital requirement for

profit-driven CCPs.

My model is also related to the branch of literature that studies CCPs’ total financial resources.

Elliott (2013) proposes principles to guide the design of loss allocation rules for CCPs. Loss al-

location rules that are intended to maintain the continuity of clearing services should incentivize

traders to participate competitively and should not compromise the CCP’s risk management of

open positions. Cumming and Noss (2013) use daily data on a CCP’s member exposures to as-

sess the CCP’s total default resources and to quantify the trade-off that occurs in the balance of

resources between initial margin and default funds. Singh (2014) argues that CCPs have become

“too important to fail” and suggests Variation Margin Gains Haircut (VMGH) as a loss-sharing

tool in case of insolvent CCP. Murphy and Nahai-Williamson (2014) model the likelihood of CCP

failure and study how the distribution of risk among clearing members affects the prudence of the

cover 2 standard. Their findings suggest that CCPs meeting the cover 2 standard are not highly

risky provided that tail risks are not distributed too uniformly amongst CCP members. Ghamami

(2014) proposes a risk-sensitive measurement for the default waterfall of derivative CCPs based

on the static copula threshold portfolio credit risk approach. Duffie (2015) has a thorough review

on possible recovery and resolution plans for insolvent CCPs. Raykov et al. (2016) models a CCP

as a long-term break even institute and studies two loss-sharing tools for CCPs: VMGH and cash

call. The model suggests that VMGH leads to a trade-off between ex ante trading volume and ex

post loss-sharing, while cash call gives rise to non-performance risk that clearing members may

default on the cash calls. These are critical features of central clearing, but they all assume CCPs
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are benevolent organizations and overlook the misaligned incentives of profit-driven CCPs. My

model shows that a profit-driven CCP with thin SITG has strong incentives to lower risk manage-

ment standard. In other words, CCP failure could be an endogenous risk instead of an exogenous

risk.

Another relevant stand of literature is about systemic risk in central clearing. Amini, Filipovic,

and Minca (2014) study the impact of central clearing on systemic risk in financial network. Their

model suggests, although CCPs mitigate aggregate bank liquidation risk, they introduce tail risk

to the financial system. Menkveld (2016b) models CCP systemic risk from the perspective of

crowded trades. Large default losses from speculative traders that have (same) directional positions

may lead to CCP failure, which constitutes a systemic risk for financial system. Menkveld (2016a)

investigates CCP exposure as a Value-at-Risk (VaR) measure of a CCP’s aggregate loss exposure to

her clearing members, accounting for the crowdedness of trades by incorporating the correlations

between portfolio returns. Cruz Lopez et al. (2016) propose a quantitative risk measure for CCP

risk management based on CoVaR (Adrian and Brunnermeier, 2011). Their measure takes into

account the bilateral interdependence between traders’ portfolio return.

The remainder of this paper is as follows. Section 2 introduces the model primitives and dis-

cusses the first best allocation. Section 3 studies the case of a benevolent CCP that maximizes the

total social welfare surplus. Section 4 focuses on the misaligned incentives of a profit-driven CCP.

Section 5 analyses the optimal capital requirement of a profit-driven CCP. Section 6 concludes.

2 Model and first best allocation

2.1 Model primitives

I consider a static model with two dates (t = 0, 1), a mass-one continuum of protection buyers,

a mass-one continuum of protection sellers and a CCP. At t = 0, the CCP, the buyers and sellers

design and participate in the trading and clearing system. The trading environment is a modified

version of Biais, Heider, and Hoerova (2016). But the focus of my model is CCP’s misaligned

incentives instead of protection sellers’ risk-taking incentives. At t = 1, payoffs of risky assets are

7



realized and some traders may default, which could potentially wind down the CCP.

Protection buyers. There is one unit mass of homogeneous protection buyers. They are endowed

with one unit risky asset at t = 0. The asset has random return θ̃ at t = 1. θ̃ can take on two values:

θ with probability π and 0 with probability (1 − π).

θ

θ̃

0

π

1 − π

Protection buyers are also endowed with cash m at t = 0. Protection buyers are risk averse with

mean-variance utility.6

Ub(m, θ̃) = m + E(θ̃) −
γ

2
var(θ̃)

Protection sellers. There is one unit mass of heterogeneous protection sellers who are risk neu-

tral and have limited liability. A protection seller enters into a contract with a protection buyer

that the seller will have the following payment τ̃ to the buyer at t = 1: τ̃ is (π − 1)θ when θ̃ is θ

and πθ when θ̃ is 0. The contract has zero mean and provide full insurance to the buyers. In real

operations, such a contract can be implemented by Credit Default Swap (CDS).

(π − 1)θ

τ̃

πθ

π

1 − π

6All the results are preserved with concave utility functions. However, for tractability purpose, I use mean-variance
utility in the model.
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If protection seller j trades with a buyer, he can hedge the downside risk by investing in one

unit hedging asset R̃ j. If seller j does not join the trading and clearing game, he will not invest in

the hedging asset R̃ j. Hence, the outside option of seller j is 0 instead of (1 − π)r jπθ. Different

protection seller j has different payoff from the hedging asset R̃ j at t = 1: R̃ j is 0 when θ̃ is θ and

r jπθ when θ̃ is 0. r j ranges from 0 to 1, which can be viewed as seller j’s hedging capability. The

assumption of heterogeneous hedging capability of protection sellers is not far from the reality.

Dealers in OTC derivatives markets normally have their own specialty in managing their position

risk (Perez Saiz, Fontaine, and Slive, 2013).

0

R̃ j

r jπθ

π

1 − π

Each protection buyer is matched with one protection seller randomly.7 So the trading volume

between a buyer and a seller is either zero or one. Taking into account the payoff from the hedging

asset R̃ j, the overall payment from seller j to his counterparty is denoted as s̃ j. s̃ j is (π − 1)θ when

θ̃ is θ and (1 − r j)πθ when θ̃ is 0.

7The trading capacity of a seller is one. So, it is not the case that all the buyers will go for the seller with the best
hedging capability (r j = 1). Also, matching does not guarantee trading. If both trading parties do not benefit from
trading, they have the outside option of no trade. I adopt the most simplified searching model here: random matching
with Nash bargaining. Introducing more advanced search models will definitely have a better approximation of OTC
derivatives markets. But that complicates the model unnecessarily, since the focus of my paper is the incentives
of the CCP instead of the incentives of the trading parties. Interesting readers could refer to Koeppl, Monnet, and
Temzelides (2012) and Biais, Heider, and Hoerova (2016) for example. In addition, since each trader only trades with
one counterparty, I don’t capture the netting efficiency provided by central clearing. Although that is a very important
feature of central clearing, it does not matter that much when it comes to the SITG problem of CCPs. Interesting
readers could refer to Duffie and Zhu (2011) and Anderson et al. (2013).
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(π − 1)θ

s̃ j

(1 − r j)πθ

π

1 − π

Ex ante, the protection buyer knows the hedging capability r j of the protection seller j. Pro-

tection buyers and sellers have equal bargaining power in setting the price of the contract. To

disincentivize protection sellers’ defaults, the CCP impose a collateral requirement c and a default

fund contribution αc for each protection seller. The unit cost of collateral and default fund contri-

bution for each seller is δ.8 In case of the default of seller j, the hedging asset R̃ j will be seized by

the buyer.

I assume that the collateral cost is not negligible, i.e., the collateral cost is large enough so that

some seller j cannot provide full collateral to cover his potential loss at t = 1.

δ >
θγ(1 − π)

2
≡ δ

CCP. There is one CCP that clears all the trades in the market. The CCP interposes itself be-

tween protection buyers and protection sellers. Through the novation process, the trading contract

between buyers and sellers splits into two contracts: one is between protection buyers and the CCP;

and the other is between protection sellers and the CCP. If protection sellers default, they default

on the CCP. The CCP is effectively providing insurance against counterparty risk.

The CCP is a risk-neutral and profit-driven financial intermediary.9 The CCP has capital K

and the unit cost of capital is ϕ.10 According to the size of capital, the CCP chooses the optimal

collateral c to maximize her expected value. The collateral requirement is only for the sellers, since
8I assume linear cost of collateral and default fund contribution. The idea is that, in reality, the total financial

resources contributed to CCP by large dealers (usually large banks) are normally a small fraction (1% or even less) of
the dealers’ available liquidity. Hence, it is realistic to assume linear collateral cost (Murphy, 2016).

9In section 3, I analyze the case of benevolent CCP. In that case, the benevolent CCP maximizes the total social
welfare.

10Again, I assume linear capital cost here.
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they are the trading party who has incentives to default.11 Moreover, the collateral requirement c is

position-specific instead of trader-specific. In other words, the CCP charges the same collateral for

every seller despite their heterogeneous hedging capability.12 As to the default fund contributed by

the sellers, I assume it is proportional to the collateral, i.e., αc, where α is an exogenous variable.13

The CCP charges volume-based commission fee f
2 for both buyers and sellers when they use

the clearing service.14 The fee is exogenous and not controlled by the CCP.15 Instead of increasing

the fee, the CCP can increase the trading volume to maximize the profit. I assume the fee is small.

f < πθ(1 − π) ≡ f̄

For the default waterfall of the CCP, I follow the order outlined in Duffie (2015). In case of

seller j’s default, the loss will be covered as follows.

1. the collateral c contributed by seller j

2. the default fund contribution αc by seller j

3. CCP’s capital K

4. the default fund contributed by the non-default sellers

If the CCP has not enough financial resources to cover the default losses, the CCP becomes

insolvent. In that case, I assume that the protection buyers will bear the remaining losses. Hence,

the protection buyers are not fully insured in that situation.

11In reality, I normally observe both counterparties deposit collateral because they both might default when risky
payoff is realized. But in my model, I have an option type contract. Only the sellers will have incentive to default. The
benefit of doing so is to separate the losses born by the non-default sellers (via default fund contribution) and losses
born by the counterparties of default sellers (via partial insurance losses).

12In real operations, CCPs do charge credit add-on for credit risk. But in my model, I don’t take that into account.
13In reality, the size of default fund is usually determined by stress tests and should satisfy the “Cover 2” principle

(CPMI-IOSCO, 2012, 2014, 2016).
14For notation purpose, the CCP charges f

2 for both buyers and sellers, so that the total fee paid by a pair of buyer
and seller for one unit of trading volume is f

15The assumption of exogenous fee is to mimic the OTC derivatives clearing reality that the commission fee is
determined rather by the industry consensus.

11



2.2 First best allocation

I first study the first best allocation. Although sellers are heterogeneous, there is no asymmetric

information between buyers and sellers. A buyer knows exactly the hedging capability of the seller

he trades with. In other words, r j is common knowledge for both buyers and sellers.16 In the first

best allocation, sellers will not default. Thus, the buyers are fully insured and receive utility gain

from smoothing payoffs across states. For the sellers, they benefit from the expected payoff of the

hedging asset R̃ j. The utility and outside options for the buyers and the sellers are as follows.

Ub =m + πθ − p j, Db =m + πθ −
γ

2
(1 − π)πθ2,

U s j =p j + (1 − π)r jπθ, Ds j =0.

The utility improvement for a pair of seller j and his buyer is17

∆U =Ub + U s j − Db − Ds j

=
γ

2
(1 − π)πθ2︸        ︷︷        ︸
utility gain

+ (1 − π)r jπθ︸       ︷︷       ︸
Expected return from R̃ j

. (1)

Thus, the total welfare surplus in trading consist of two parts: (i) the utility gain due to buyers’

risk aversion, and (ii) the expected return from the hedging asset R̃ j. Equation 2 shows the total

surplus in the first best equilibrium.

WFB =

∫ 1

0
∆U dr j

=
1
2

(1 − π)πθ(γθ + 1)
(2)

16It is a rather tricky question whether r j is known by the CCP or not. On the one hand, CCPs often have strict
membership requirement that identify the credit-worthiness of clearing members. On the other hand, however, the
collateral requirement is not member-specific. In the current setup, I assume that the collateral requirement set by the
CCP is not contingent on the hedging capability r j.

17In the following analysis, I always consider the utility improvement for a pair of buyer and seller, unless I study
the Nash bargaining price and need to separate the utility improvement of the buyer from that of the seller.
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3 Benevolent CCP

In this section, I analyze the case of a benevolent CCP. In other words, the benevolent CCP will

maximize the total welfare surplus, including the utility improvement of buyers and sellers and the

CCP’s value, by setting the optimal collateral and capital. In reality, there are CCPs that are owned

by clearing members. For example, Japanese Security Clearing Corporations (JSCC) and Swiss

SIX X-clear Ltd are user-owned CCPs. These user-owned CCPs normally don’t chase profits.

Instead, their main purpose is to facilitate clearing and settlement among members.

The CCP maximizes the total welfare surplus.

Max
K,c

Wb + W s + VCCP

3.1 Collateral

Since protection seller j will lose both his collateral c and default fund contribution αc when he

has (large) default loss, I take both collateral and default fund contributed by seller j together as

seller j’s collateralized financial resources.18 In other words, the collateralized financial resources

of seller j is (1+α)c. Seller j defaults when the payment he need to make exceeds the collateralized

financial resources. Protection seller j with hedging capability r j will not default at t = 1 if and

only if

(1 + α)c ≥ (1 − r j)πθ.

In other words, with given c, seller j with hedging capability higher than πθ−(1+α)c
πθ

≡ r̄ will

not default at t = 1. For the case that seller j does not default, i.e., r j ≥ r̄, the overall utility

improvement for this pair of traders is as follows.

18One could argue that when the default loss of seller j is between c and (1 + α)c, he only lose part of the default
fund contribution. In my model, I simplify that situation as seller j does not default.
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∆UND =
γ

2
π(1 − π)θ2︸        ︷︷        ︸
utility gain

+ (1 − π)r jπθ︸       ︷︷       ︸
expected return from R̃ j

− (1 + α)δc︸     ︷︷     ︸
collateral cost

− f︸︷︷︸
f ee

(3)

When seller j has a hedging capability lower than the threshold, i.e., r j < r̄, seller j defaults

with probability (1 − π) at t = 1. If seller j defaults, both the payoff of the hedging asset r jπθ and

the collateralized financial resources (1 + α)c are seized by the buyer. Furthermore, since the CCP

is benevolent and will not default, the rest of the default loss ((1− r j)πθ− (1 +α)c) will be covered

by CCP’s capital. Hence, the buyer is still fully insured. In fact, the benevolent CCP is subsidizing

seller j, as seller j’s collateralized financial resources establishes a “floor” for his downside risk.

πθ (1 − π)θ

Buyer’s payoff Seller j’s payoff

πθ −(1 + α)c

π

1 − π

π

1 − π

In the case of seller j defaults, equation 4 shows the utility improvement for this pair of traders.

Note that the utility improvement for a pair of buyer and default seller is invariant in the seller’s

hedging capability r j.19

∆UD =
γ

2
π(1 − π)θ2︸        ︷︷        ︸
utility gain

+ (1 − π)(πθ − (1 + α)c)︸                      ︷︷                      ︸
expected gain from default

− (1 + α)δc︸     ︷︷     ︸
collateral cost

− f︸︷︷︸
f ee

(4)

As shown in equation 3 and 4, the utility improvement is a monotonically decreasing function in

collateral c. Because collateralized financial resources are costly. If the CCP sets a high collateral

requirement, protection sellers who join the trading game need to bear a high collateral cost.20

Moreover, for the sellers who have low hedging capability, the high collateral cost will drive the

trading benefit to zero (or negative). Hence, with a high enough collateral requirement, the CCP

19I use default sellers to stand for sellers who will default with probability (1 − π) at t = 1.
20For simplicity, I use collateral cost to stand for cost of collateralized financial resources.
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could separate the sellers with high hedging capability from those with low hedging capability. In

that case, the trading volume is a decreasing function of collateral.

However, the trading volume is not always decreasing in collateral due to the fact that default

sellers have a “floor” for their downside risk. Figure 2 shows the relationship between utility

improvement and hedging capability. As mentioned before, there is a kink at r j = r̄. Let’s call seller

j with hedging capability r̄ the “marginal seller”, since sellers with hedging capability smaller than

r̄ may default at t = 1. Let c̄ denotes the threshold of collateral that the utility improvement of the

marginal seller is 0. Because all default sellers have the same utility improvement from trading;

trading volume will jump to 1 when collateral is slightly below c̄. The kink also means that default

sellers all join the trading game when collateral is slightly lower than c̄, but they all do not join

when c ≥ c̄. Proposition 1 formalizes the idea.

Figure 2: Utility improvement with different collateral

10

∆U

r̄(c2)
rj

c
decreases
c1 > c2 > c3

r̄(c1) r̄(c3)

∆U(c3)

∆U(c2)

∆U(c1)

Proposition 1. Trading volume (benevolent CCP)

The trading volume in the case of benevolent CCP is as follows

v(c) =


1 − r̄, c ≥ c̄

1, 0 ≤ c < c̄
(5)

where r̄ is the hedging capability of the marginal seller and c̄ is the threshold of collateral
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that the utility improvement of the marginal seller is 0.

r̄ =
γπ(1 − π)θ2 − 2(1 + α)δc − 2 f

2(1 − π)πθ

c̄ =
πθ(1 − π)(γθ + 2) − 2 f

2(1 + α)(1 − π + δ)

(6)

Proof. See appendix.

3.2 Optimal capital and collateral for a benevolent CCP

Given the two fold effects of collateral, I analyze two different cases: in the first case, the benev-

olent CCP charges high collateral whereas no seller defaults at t = 1; in the second case, the

benevolent CCP charges low collateral and some sellers may default at t = 1.

Case 1: no seller defaults at t = 1. When sellers who join the trading game don’t have incentive

to default at t = 1, there is no potential systemic risk. But in this case, the trading volume is not

one. Hence, there is a trade-off between the decrease of systemic risk and the decrease of realized

gain from trade (RGFT). The expected value of the benevolent CCP is

VND
CCP = f v(c) − ϕK.

The total welfare surplus is

WND =

∫ 1

r̄
∆UND dr j + VND

CCP (7)

Note that since no sellers will default at t = 1, there is no need for the benevolent CCP to

hold capital in order to absorb losses. Also, in the case of benevolent CCP, the CCP maximizes

total welfare improvement. There is no need for the benevolent CCP to hold capital in order to

align incentives. Thus, the optimal capital in this case is 0. As to collateral c, from Figure 2, it

is obvious that increasing collateral to more than c̄ will only decrease trading volume, without the
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benefit of “screening out” default sellers. It means that the optimal collateral in this case should

be as low as possible, while keeping default sellers out of the trading game. In other words, the

optimal collateral should be c̄. Lemma 1 summarizes the optimal capital and collateral in this case.

The total welfare surplus with optimal capital and collateral in this case is less than the first best

welfare surplus owing to two things: (i) the collateral is costly and (ii) the RGFT is not maximal.

Lemma 1. No default case (benevolent CCP)

(i) For the benevolent CCP, the optimal capital and collateral in the no default case are

K∗ND = 0, c∗ND = c̄. (8)

(ii) The total welfare surplus WND(c∗ND,K
∗
ND) is

WND(c∗ND,K
∗
ND) =WFB −

(1 + α)c̄
πθ

(1 + α)δc̄︸                 ︷︷                 ︸
collateral cost

−
πθ − (1 + α)c̄

πθ
WFB︸                 ︷︷                 ︸

not all traders trade

(9)

Proof. See appendix.

Case 2: some sellers default at t = 1. When the benevolent CCP impose a collateral requirement

lower than c̄, all sellers join the trading game because they all have positive utility improvement

from trading. But the maximal RGFT goes hand in hand with increasing systemic risk. The

benevolent CCP needs to hold capital to cope with potential default losses at t = 1. In this case,

the expected value of the benevolent CCP is

VD
CCP = f − (1 − π)K − ϕK.

The total welfare surplus is

WD =

∫ r̄

0
∆UD dr j +

∫ 1

r̄
∆UND dr j + VD

CCP
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As mentioned before, the benevolent CCP is actually subsidizing default sellers because the

amount of collateralized financial resources limits the downside risk of default sellers. It means

that all the default losses will be covered by the benevolent CCP. Let L denote the total default

losses.

L =

∫ r̄

0

[
(1 − r j)πθ − (1 + α)c

]
dr j

=
(πθ − (1 + α)c)2

2πθ

(10)

Lemma 2 summarizes the optimal capital and collateral in this case. It turns out that the optimal

collateral is zero when capital cost is smaller than collateral cost. In order to cover the default

losses, the benevolent CCP needs to hold a capital of πθ
2 . When capital cost is larger than collateral

cost, it is better to charge some collateral so that the capital needed to cover the default losses is

smaller.

In fact, in both cases, the value of the benevolent CCP with such capital and collateral is

negative, i.e., the benevolent CCP is making loss instead of making profit with this arrangement.

The total welfare surplus with optimal capital and collateral in this case is less than the first best

welfare surplus because of the capital cost and the potential collateral cost.

Lemma 2. Default case (benevolent CCP)

(i) For the benevolent CCP, the optimal capital and collateral in the default case are

K∗D =


πθ
2
δ2

ϕ2 , ϕ > δ

πθ
2 , ϕ ≤ δ

c∗D =


πθ

1+α

ϕ−δ

ϕ
, ϕ > δ

0, ϕ ≤ δ
(11)

(ii) The total welfare surplus WD(c∗D,K
∗
D) is

WD(c∗D,K
∗
D) =



WFB −
πθ

2
δ2

ϕ︸︷︷︸
cost of capital

−
δπθ(ϕ − δ)

ϕ︸       ︷︷       ︸
cost of collateral

, ϕ > δ

WFB −
πθ

2
ϕ︸︷︷︸

cost of capital

, ϕ ≤ δ

(12)
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Proof. See appendix.

No default case v.s. default case. Which case will lead to a higher total welfare surplus? The

answer depends on how large the capital cost is. To the extreme, if capital cost is zero, the welfare

surplus in the default case would be the first best welfare surplus. Hence, the CCP should charge

low collateral, in fact zero collateral, and let sellers default at t = 1 if the low state is realized.

However, if the capital of the benevolent CCP is very expensive, the benefit of subsidizing the

sellers will be outweighed by the cost of capital. In that scenario, the benevolent CCP should be

conservative and charge high collateral. Proposition 2 formalizes this idea.

Proposition 2. Optimal capital and collateral for a benevolent CCP

Let ϕ̄ denote the threshold of capital cost.

ϕ̄ =
2
πθ

(
WFB −WND(c̄, 0)

)
(13)

(i) When capital cost is higher than ϕ̄, the default case will have a higher welfare surplus.

The optimal capital and collateral of a benevolent CCP are

K∗ = 0, c∗ = c̄. (14)

(ii) When capital cost is lower than ϕ̄, the no default case will have a higher welfare surplus.

The optimal capital and collateral of a benevolent CCP are

K∗ =
πθ

2
, c∗ = 0. (15)

Proof. See appendix.
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4 Profit-driven CCP

In this section, I study the case of profit-driven CCP. Different from the benevolent CCP who

maximizes the total welfare surplus, the profit-driven CCP only cares about maximizing her own

value. Moreover, the CCP has limited liability. In other words, the capital of the CCP is the

maximum that she can lose. On the one hand, to chase profit, the CCP has incentive to lower

risk management standard to maximize trading volume. On the other hand, because of the limited

liability, the CCP does not (fully) internalize her externality on systemic risk. Hence, the profit-

driven CCP will contribute low capital and set a low collateral, leading to insolvency problem of

the CCP.

At the end of the default waterfall, when the CCP becomes insolvent, I assume that the protec-

tion buyers who trade with those default sellers will bear the rest of the losses. It is not far from

the reality. In the recovery plan outlined by CPMI-IOSCO (2014), one way to recover an insolvent

CCP is partially tear-up, which essentially ask the winning sides (protection buyers) to bear the

losses caused by the losing side’s (protection sellers’) defaults.

It is worthwhile to point out that, for this section, I don’t have a predetermined capital require-

ment for the CCP set by a regulator. Hence, the CCP raise capital and set collateral requirement

spontaneously.21 In section 5, I analyze the optimal capital requirement for the profit-driven CCP.

Let VP
CCP denote the expected value of the profit-driven CCP. P in the superscript stands for

profit-driven. The CCP’s objective function is to maximize her own expected value instead of to

maximize the total welfare surplus.

Max
K,c

f v(c) + (1 − π)max(−L,−K) − ϕK (16)

where L is the total default losses as a function of collateral c (see in equation 10).

21Currently, there are very few regulations on CCP’s capital. EMIR sets a capital requirement of 25% of the CCP’s
operational risk, which is negligible compared to the size of default fund.
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4.1 Collateralized and mutualized financial resources

When the CCP is profit-driven and has limited liability, the CCP has no incentive to hold enough

capital for potential default losses at t = 1, which means that the default fund contributed by

non-default sellers might be used to cover the losses caused by default sellers. In this case, it

is important to distinguish mutualized financial resources from collateralized financial resources.

Collateralized financial resources include collateral and default fund contributed by default sellers.

Section 3 has discussed collateralized financial resources. Mutualized financial resources refer

to the default fund contributed by non-default sellers. As I will show later, the possibility that

the default fund contributed by non-default sellers could be used to cover the losses caused by

the default sellers will disincentivize some non-default sellers to join the trading game, hence

reducing the trading volume. In this subsection, I study two scenarios when the profit-driven CCP

is solvent: (i) total financial resources are only covered by the CCP’s capital, and (ii) mutualized

financial resources are also used to cover default losses.

Mutualized financial resources remain untouched. According to the default waterfall, when

the collateralized financial resources and the CCP’s capital is large enough, the default fund con-

tributed by non-default sellers will not be used. In other words, the CCP’s capital K is larger than

the total default losses L. From equation 10, mutualized financial resources are untouched when

the following relationship holds.

K ≥
[πθ − (1 + α)c]2

2πθ
≡ K̄ (17)

In this scenario, the utility improvement for traders is the same as equation 3 and 4. Hence,

Proposition 1 holds when equation 17 holds.

Mutualized financial resources are used. When the CCP’s capital K is not large enough to

cover the total default losses, mutualized financial resources are used to cover the rest of the losses.

Note that in this scenario, the CCP is still solvent. In other words, the buyers are fully insured. In
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terms of the relationship between c and K, it means that

K̃ ≤ K < K̄ (18)

where K̃ satisfies the following relationship.22

K̃ =
[πθ − (1 + α)c]2

2πθ
− αc(1 − r̃) (19)

In this scenario, the utility improvement for a pair of default seller and his counterparty is the

same as equation 4. But the utility improvement of a pair of non-default seller and his buyer will

decrease because of the expected loss from default fund contribution. Figure 3 visualizes this idea.

Same as in Figure 2, seller j with hedging capability lower than r̄ are the default sellers. But

different from Figure 2, not every seller with hedging capability higher than r̄ will join the trading

game because of the expected loss from default fund contribution. Sellers with hedging capability

between r̄ and r̃ will not trade, where r̃ represents a second type of “marginal seller”. Thus, 1 − r̃

is the volume of non-default sellers.

Figure 3: Utility improvement when mutualized financial resources are used

1

0

∆U

rj
r̄ r̃

no trade

(1− π)d

I assume that non-default sellers share the losses evenly. Let d denote the default fund loss for

22In this equation, r̃ is also a function of K as shown in equation 20. I will solve this equation in Section 4.3.
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each non-default seller.

d =
L − K
1 − r̃

(20)

The utility improvement of a pair of non-default seller and his buyer is

∆UND,M =
γ

2
π(1 − π)θ2 + (1 − π)r jπθ − (1 + α)δc − f − (1 − π)d︸    ︷︷    ︸

Expected loss from default fund

. (21)

Similar with the scenario when mutualized financial resources are not used, when the CCP de-

creases collateral requirement, utility improvement of traders will increase. Hence, trading volume

will increase as well. Lemma 3 summarizes the relationship between trading volume and collateral

when mutualized financial resources are used to cover default losses.

Lemma 3. Trading volume (mutualized financial resources used)

When K and c satisfy the following relationship, the CCP remains solvent but has not enough

capital to cover the total default losses. Mutualized financial resources are used to cover part

of the losses.

0 <
[πθ − (1 + α)c]2

2πθ
− K ≤ αc(1 − r̃) (22)

The trading volume is as follows

v(c) =


1 − r̃ + r̄, c̃ < c < c̄

1, 0 ≤ c ≤ c̃
(23)
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where r̃ and c̃ are as follows.

r̃ =

[
πθ(1 − π)(γθ − 2) + 2 f

]
+

√[
πθ(1 − π)(γθ − 2) + 2 f

]2
− 8(1 − π)

(
2(1 + α)cπθ(δ − (1 − π)2 − 2K)

)
4(1 − π)(πθ)2

c̃ =

[
πθ(1 − π)(γθ + 4) − 2 f

]
+

√[
πθ(1 − π)(4 + γθ) − 2 f

]2
+ 4πθ(1 − π)(3(1 − π) + 2δ)(2K − πθ)

2(1 + α)(3(1 − π) + 2δ)
(24)

Proof. See appendix.

4.2 End of default waterfall

When all the available financial resources of the CCP drain out, the CCP becomes insolvent. It is

not an impossible situation. There are several clearinghouse failures in recent decades: the French

Caisse de Liquidation in 1973, the Kuala Lumpur Commodities Clearing House in 1983, the Hong

Kong Futures Exchange in 1987, the New Zealand Futures and Options Exchange in 1989, and the

Korean exchange clearinghouse in 2014.

K + αc(1 − r̃) −
[πθ − (1 + α)c]2

2πθ
< 0 (25)

At the end of default waterfall, i.e., when the above inequality holds, I assume that the protec-

tion buyers who trade with those default sellers will bear the rest of the losses.23 These protection

buyers are not fully insured now. The utility improvement of a pair of default seller and his buyer

is as follows.

∆UD,E =
γ

2
π(1 − π)(θ2 − w2) + (1 − π)(πθ − (1 + α)c − w) − (1 + α)δc − f

=∆UD − E(w)
(26)

where w denotes the wedge between the required payment and the (insufficient) financial re-

sources and E(w) is the utility loss from partial insurance.

23For simplification, it is implicitly assumed that the protection buyers share the losses evenly.
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w =
L − K − αc(1 − r̃)

r̄

E(w) =
γ

2
π(1 − π)w2 + (1 − π)w

(27)

Equation 26 and 27 show that when both collateral and capital are very small, ∆UD,E could

be negative, which means the default sellers and their counterparties will not join the trading and

clearing game. In this case, there is no default from sellers at t = 1. But different from the previous

situation when c ≥ c̄, now default sellers do not have incentive to trade because of the utility loss

from partial insurance. Hence, ∆UD,E ≥ 0 will pin down a threshold K, which is a function of c. I

will elaborate K in section 4.3.

As to the non-default sellers, they lose all the default fund that they contribute. Hence, the

utility improvement of a pair of non-default seller and his counterparty is as follows.

∆UND,E =
γ

2
π(1 − π)θ2 + (1 − π)r jπθ − (1 + α)δc − f − (1 − π)αc

=∆UND − (1 − π)αc
(28)

Comparing equation 26 and 28, I distinguish two cases: one in which the partial insurance loss

E(w) is smaller than the default fund loss (1 − π)αc, and the other in which E(w) > (1 − π)αc. The

intuition is that when K and c satisfy the relationship in equation 25, if c remains unchanged and

K decreases, the partial insurance loss E(w) increase from 0 to some amount that is larger than the

default fund loss (1 − π)αc.

Small utility loss from partial insurance. Figure 4 shows the utility improvement when E(w) ≤

(1 − π)αc. When collateral is relatively high (but smaller than c̄), the trading volume is 1 − r̃ + r̄.24

When the collateral decreases, the trading volume will increase continuously till 1 when collateral

reaches c.

24I will show later that this is not an equilibrium since the CCP in this situation will lose their capital and has no
incentive to charge a high collateral.
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Figure 4: Utility improvement when utility loss from partial insurance is small
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(1− π)αc

E(w)

Large utility loss from partial insurance When the utility loss from partial insurance is larger

than that from default fund loss, Figure 5 shows the utility improvement of traders. Under this

situation, when collateral is high, trading volume is 1 − r̃ + r̄. As collateral decreases, trading

volume increases continuously until collateral reaches c. When 0 ≤ c ≤ c, the trading volume is

1.25 Lemma 4 summarizes the results.

Figure 5: Utility improvement when utility loss from partial insurance is large

1

0

∆U

rj
r̄ r̃

no trade

(1− π)αc E(w)

25Note that default sellers and their counterparties will only trade when they could have positive utility improvement,
i.e., when K > K. Since K is a function of c, it is an implicit constraint for c when K is given.
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Lemma 4. Trading volume (insolvent CCP)

When K and c satisfy the following relationship, the CCP becomes insolvent and some buy-

ers may be partial insured.

K + αc(1 − r̃) −
[πθ − (1 + α)c]2

2πθ
< 0 (29)

The trading volume for small and large utility losses from partial insurance are as follows.

The trading volume is as follows

v(c) =


1 − r̃ + r̄, c < c < c̄

1, 0 ≤ c ≤ c
(30)

where c is as follows.

c =
πθ(1 − π)(γθ + 2) − 2 f

2(1 + α)(1 − π + δ) + 2α(1 − π)
(31)

Proof. See appendix.

4.3 Traders’ decision

I solve the equilibrium problem by backward deduction. I first analyze whether traders would join

the trading and clearing game. Depending on the size of potential trading losses of sellers and the

size of available financial resources of the CCP, there are six different cases where relationship

between collateral c and capital K is different. Figure 6 shows the six different combinations of c

and K. In other words, when traders observe a pair of (c,K), they “foresee” what would happen at

t = 1 if the bad state is realized.
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Figure 6: Six different cases
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Case 1: No seller defaults at t = 1. When the trading losses of sellers are covered by the

collateralized financial resources, no seller has incentive to default at t = 1. As discussed in

section 3, collateral is costly and can disincentivize sellers from default. When c ≥ c̄, only the

non-default sellers have positive utility surplus and will join the trading and clearing game. Hence,

under such condition, there is no default losses for the CCP. I call such a case “No Default” case.

However, since not every trader joins the game and the trading volume is less than one, the

RGFT is not fully realized. As collateral increases, the trading volume decreases further.

Case 2: Some sellers default at t = 1 and the CCP covers the losses. When the potential

trading loss of a seller exceeds his collateralized financial resources, this seller may default at

t = 1. If the potential trading losses of default sellers can be covered by the collateralized financial

resources and the CCP’s capital, the mutualized financial resources contributed by the non-default

sellers remain untouched. In other words, K ≥ K̄ as shown in equation 17. There is no default

fund losses for the non-default sellers. I call this case “Default Covered” case.

In this case, trading volume is always one. The RGFT is fully realized. But the potential

trading losses from default sellers raise systemic risk. As collateral c decreases, the total default
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losses will increase. The threshold K̄ also need to increase to cover the losses. Hence, K̄ is a

decreasing function in c.

Case 3: Default fund is consumed and the CCP is solvent. When the CCP has not enough

capital, the mutualized financial resources are also used to cover the potential trading losses of

default sellers. As long as the default fund is large enough to cover the losses, the CCP remains

solvent. I call this case “Default Solvent” case.

When default fund contributed by the non-default sellers is used to cover the losses of default

sellers, the utility improvement of a pair of non-default seller and his buyer ∆UND,M also depends

on the CCP’s capital K, as shown in equation 21. Solve ∆UND,M(r̃) = 0, I have r̃ as a function of

both c and K. Plug r̃ back to equation 34. I have the explicit form of K̃ as follows.

K̃ =
(πθ − (1 + α)c)2

2πθ
−
αc

[
(1 + α)δc + f + π(1 − π)(γ − θ)

]
2(1 − π)θ

(32)

Since c < c̄, the default sellers will join the game. But their default losses will consume the

default fund contributed by the non-default sellers. As lemma 3 shows, the trading volume in this

case could be either one or smaller than one. When c̃ < c < c̄, trading volume will be smaller than

one. Some of the non-default sellers will not like to join the game because the expected default fund

losses make it unprofitable for them to trade.26 When 0 ≤ c ≤ c̃, although the non-default sellers

(and their counterparties) still “subsidize” the default sellers (and their counterparties), the amount

of subsidy is small enough that all non-default sellers could have non-negative utility improvement

from trading. Hence, the trading volume is one when 0 ≤ c ≤ c̃.

Case 4: CCP is insolvent and the utility loss from partial insurance is small. When all the

available financial resources of the CCP drains out, the CCP becomes insolvent. At the end of
26Murphy (2016) studies the incentives created by CCP’s financial resources. One important element is default

fund. The risk of losing default fund will increase the cost for the traders, hence decreasing the trading volume. In
my model, the potential default fund breach also increase the cost for the traders. But since the CCP can choose
the collateral requirement, the CCP will compensate the traders by lowering collateral requirement. On one hand,
lowering collateral requirement will increase the possibility of default fund breach. But on the other hand, lowering
collateral requirement can directly reduce the collateral cost. Hence, the CCP still can maximize trading volume by
lowering collateral requirement, at the cost of larger potential default losses.

29



default waterfall, the remaining losses will be born by the buyers who trade with those default

sellers. In other words, these buyers are partially insured. When the utility loss from partial

insurance E(w) is smaller than the expected default fund losses (1 − π)αc, I call it “Insolvent

Small” case.

As discussed in section 4.2, there is a threshold K that satisfies E(w) ≤ (1 − π)αc. I first solve

the r̃ from ∆UND,E(r̃) = 0, and then solve the inequality E(w) ≤ (1 − π)αc. Hence, the condition

for this case is K ≤ K < K̃ where

K =
(πθ − (1 + α)c)2

2πθ
− αc −

(1 + α)c
θγ(1 − π)π2

[ √
(1 − π)θ[(1 − π)θ + 2θγ(1 + α)] − (1 − π)(1 + πγαc)

]
(33)

Case 5: CCP is insolvent and the utility loss from partial insurance is large. When the CCP

is insolvent and the utility loss from partial insurance is larger than the default fund loss, I call it

“Insolvent Large” case.

K =
(πθ − (1 + α)c)2

2πθ
− αc

−
(1 + α)c
θγπ2

[ √
1 − π + 2πγ[(1 + α)(1 − π + δ)c + f ] − (1 − π)(γθ − 2)θγπ2 − (1 + πγαc)

] (34)

Case 6: Extremely small capital and collateral. When capital K is smaller than K, i.e., when

both capital and collateral are extremely small, the losses from partial insurance are so large that

the default sellers and their counterparties will not trade with each other. In this case, there is no

default at t = 1 when the bad state is realized. However, given the collateral is so small, the trading

volume of non-default sellers is also very small. Hence, compared to the ND case, the trading

volume is also negligible.

Figure 7 combines the results from lemma 3, 4 and figure 6. The blue shaded area is the

parameter space that trading volume will be one. Note that the dashed blue line means that the

boundary is not included. For instance, when c = c̄, the trading volume is smaller than one.
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Figure 7: Trading volume
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4.4 Optimal collateral and capital for a profit-driven CCP

As stated in equation 16, the optimization problem of a profit-driven CCP is

Max
K,c

f v(c) + (1 − π)max(−L,−K) − ϕK.

As shown in figure 6, when c ≥ c̄, only non-default sellers and their counterparties join the

trading game. There is no default loss for the CCP at t = 1. Hence, the expected value of the CCP

only consists of the volume-based fee income and the cost of capital.

When 0 ≤ c < c̄, VCCP takes three different formula, depending on how large the CCP capital

is. When K ≥ K̄, default sellers and their counterparties join the trading game. The CCP will

cover all default losses, i.e., (πθ−(1+α)c)2

2πθ , at t = 1 when the bad state is realized. When K < K < K̃,

the CCP only contributes his capital but does not cover all default losses when the bad state is

realized. When 0 ≤ K < K, the default sellers and their counterparties will not join the trading

game because of large losses from partial insurance. In this case, there is no default losses for the

CCP. Equation 35 summarizes the idea.
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VCCP =



f v(c) − ϕK, c ≥ c̄

f v(c) − (1 − π) (πθ−(1+α)c)2

2πθ − ϕK, 0 ≤ c < c̄,K ≥ K̄

f v(c) − (1 − π)K − ϕK, 0 ≤ c < c̄,K ≤ K < K̄

f v(c) − ϕK, 0 ≤ c < c, 0 < K < K

(35)

Optimal collateral as a function of capital. Although the CCP choose optimal collateral and

capital simultaneously, I separate the decision procedure into two steps in order to facilitate the

comparison between the CCP’s choice and the optimal level of collateral and capital in terms of

maximizing social welfare, which will be discussed in section 5.

There are several important observations from equation 35. First, it shows that when 0 < K <

K, setting collateral higher than c̄ gets a higher CCP value than setting collateral lower than c̄.

Because trading volume in this case is increasing in c. Second, when K ≥ K̄, the CCP trades

off between large trading volume and large default losses. On the one hand, the CCP could set

collateral higher than c̄ to minimize default losses. But the trading volume will be low. On the other

hand, the CCP could set collateral lower than c̄ to maximize trading volume, hence maximizing

fee income. But the default losses will be high. The optimal collateral depends on which leads to

a higher expected value of CCP. Fee would be a crucial element in determining optimal collateral.

Intuitively, when fee is low, the “temptation” for the CCP to increase trading volume is small. So

the CCP cares more about the expected default losses and will set a high collateral. However, when

the fee is high, increasing one unit of trading volume will bring large profit. The CCP has strong

incentive to maximize trading volume and will go for a low collateral. Third, when K ≤ K < K̄,

the limited CCP capital break the trade-off between high trading volume and large default losses,

as the CCP does not cover all the default losses. As K reduces, the CCP tends to chase high trading

volume since she has very little to lose. Thus, when K is smaller than some threshold K̂, the CCP

will set collateral c within the blue shared area in figure 7 so that the trading volume is one. All

RGFT will be realized. But the CCP does not cover all the default losses. If K̂ ≥ K, the default

losses will be covered by the default fund contributed by other non-default sellers. If K̂ < K, the
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default losses will also be covered by the buyers that traded with the default sellers. Proposition 3

summarizes the optimal collateral requirement with given K.27

Proposition 3. (Optimal collateral given specific capital)

The optimal collateral when fee is lower than f and higher than f are

c∗(K) =


c̄, K ≥ K̂(c̄)

c̃, K̃(c) ≤ K < K̂(c̄)

c, 0 ≤ K < K̃(c)

c∗(K) =


[c̄]−, K ≥ K̄(c̄)

c̃, K̃(c) ≤ K < K̄(c̄)

c, 0 ≤ K < K̃(c)

(36)

where the threshold f and K̂ are

f =
(1 − π)πθ[2(1 − π + δ) + γθ + 2]

6 − 4π + 4δ

K̂ = f (1 −
(1 + α)c
πθ

)
(37)

Proof. See appendix.

Figure 8 visualizes the expected value of the CCP as a function of K. Without loss of generality,

I set ϕ = 0 since the capital cost applies to all different cases. The red solid line represents CCP

value when default sellers join the game, while the blue dashed line is CCP value when only non-

default sellers join the game. When only non-default sellers join the game, the expected value of

the CCP is invariant in CCP’s capital, as there is no default losses need to be covered. But when

default sellers also join the game, the expected value decreased in K until K̄. The reason is, when

K < K̄, the CCP contributes all her capital to cover the default losses. But when K ≥ K̄, the CCP’s

capital is larger than the total default losses. Thus, the expected value is also invariant in K. The

two subplots show the two cases when fee is higher or lower than f . As discussed before, fee is

an important factor in altering CCP’s incentives. When f > f , the CCP will always maximize

27I use the notation [X]− to denote the amount that is slightly smaller than X and [X]+ to denote the amount that is
slightly larger than X.
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trading volume no matter how large her capital is. Because the fee income from the default sellers

(and their counterparties) is larger than the expected default losses. In this case, the lower is the

capital, the higher is the CCP value. When f ≥ f , the fee income from the default sellers (and their

counterparties) is smaller than the expected default losses. Depending on how low the fee level is,

the CCP will trade-off the fee income and the expected loss of her capital. In this case, the CCP

with large capital, i.e., K ≥ K̂, will be conservative and set high collateral to disincentivize sellers’

default at t = 1. As fee decreases, the threshold K̂ decreases. But as long as fee is positive, K̂ > 0,

which means when capital is very small, the CCP still will go for large trading volume since she

has very little to lose.

Figure 8: CCP’s value
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Optimal capital for a profit-driven CCP. As outlined in figure 8, the largest expected value of

the CCP is achieved at K = 0. It means that the CCP will choose zero capital to minimize her

exposure to potential defaults at t = 1 when the bad state is realized. Since the CCP capital is

zero, she will not have incentives to do set a high collateral to avoid default sellers. Instead, the

CCP will set a low collateral to attract default sellers, hence to maximize trading volume. The

collateral cannot be too low neither, since low collateral leads to too many defaults when the bad

state is realized, which in return will jeopardize the counterparties of default sellers. Proposition 4
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presents the optimal capital and collateral for a profit-driven CCP.

Proposition 4. (Profit-driven CCP’s optimal capital and collateral ) The optimal capital and

collateral for a profit-driven CCP are

K∗ = 0, c∗ = c (38)

Proof. See appendix.

Note that in section 3, the benevolent CCP also set K = 0 when the capital cost is high. But

the benevolent CCP sets a high collateral to avoid defaults at t = 1 when the bad state is realized.

Because a benevolent CCP cares about the total welfare surplus. On contrary, the profit-driven CCP

in this section has no incentive to set a high collateral. The low collateral c set by the profit-driven

CCP maximizes the CCP’s value; but it does not maximize the total social welfare surplus.

5 Optimal capital requirement for a profit-driven CCP

In the previous section, there is no capital requirement for a profit-driven CCP. The CCP choose

the capital and collateral simultaneously to maximize her profit. Now I introduce a regulator that

maximizes the total welfare surplus W.

Max
K

Wb + W s + VCCP

From proposition 3, I have the optimal collateral that a profit-driven CCP will choose when the

capital is given. Equation 39 shows the total welfare surplus.

W(c∗) =

∫ (1+α)c∗
πθ

0
∆UND(r j) dr j +

∫ v(c∗)

(1+α)c∗
πθ

∆UD dr j + VCCP(c∗) (39)

With the optimal collateral, I calculate the total welfare surplus in different cases. First of

all, from proposition 3, the profit-driven CCP set high collateral and hence there is no default

when K ≥ K̂(c̄) and f ≤ f . In this case, the welfare surplus is lower than the first best welfare
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surplus because of collateral cost, not-fully-realized gains from trade, and capital cost. Second, if

0 ≤ K < K̃(c), the profit-driven CCP will become insolvent. Hence, the welfare surplus is lower

than the first best one because of collateral cost, partial insurance loss and capital cost. Third, if K

is in between K̃(c) and K̂(c̄) (or K̄(c̄)) when fee is lower (or higher) than f , all gains from trade are

realized and the CCP remains solvent. Hence, the total welfare surplus is lower than the first best

one only because of collateral cost and capital cost. Lemma 5 presents the welfare surplus when

K and f are different.

Lemma 5. (Total welfare surplus given specific capital)

When f ≤ f , the total welfare surplus is as follows.

W =



WFB − (1 + α)δc̄
(1 + α)c̄
πθ︸                 ︷︷                 ︸

collateral cost

− (1 − π)
(πθ − (1 + α)c̄)2

2πθ︸                        ︷︷                        ︸
not all traders trade

− ϕK︸︷︷︸
capital cost

, K ≥ K̂(c̄)

WFB − (1 + α)δc̃︸     ︷︷     ︸
collateral cost

− ϕK︸︷︷︸
capital cost

, K̃(c) ≤ K < K̂(c̄)

WFB − (1 + α)δc︸     ︷︷     ︸
collateral cost

−

(
1 −

(1 + α)c
πθ

)
γ

2
π(1 − π)w2︸                              ︷︷                              ︸

loss from partial insurance

− ϕK︸︷︷︸
capital cost

, 0 ≤ K < K̃(c)

(40)

When f > f , the total welfare surplus is as follows.

W =



WFB − (1 + α)δc̄︸     ︷︷     ︸
collateral cost

− ϕK︸︷︷︸
capital cost

, K ≥ K̄(c̄)

WFB − (1 + α)δc̃︸     ︷︷     ︸
collateral cost

− ϕK︸︷︷︸
capital cost

, K̃(c) ≤ K < K̄(c̄)

WFB − (1 + α)δc︸     ︷︷     ︸
collateral cost

−

(
1 −

(1 + α)c
πθ

)
γ

2
π(1 − π)w2︸                              ︷︷                              ︸

loss from partial insurance

− ϕK︸︷︷︸
capital cost

, 0 ≤ K < K̃(c)

(41)

Figure 9 shows the total welfare surplus when ϕ = 0. The red solid line is the total welfare

surplus when there is no default and the blue dashed line is that when there are defaults at t = 1

when the bad state is realized. Since the total welfare surplus is decreasing in collateral and the
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optimal collateral set by the CCP is increasing in K, the welfare surplus with default (the red solid

line) is decreasing in K when K ≥ K̃(c). But when 0 ≤ K < K̃(c), the welfare surplus with default

is increasing in K due to the partial insurance loss. For the welfare surplus without default (the

blue dashed line), it is constant in K because ϕ = 0.

Figure 9: Total welfare surplus
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I compare the total welfare surplus with different capital in lemma 5. The optimal capital

requirement depends on the fee level f and the capital cost ϕ. When capital cost is very high, i.e.,

ϕ > ¯̄ϕ, the high cost of imposing capital outweighs the benefit of a safe CCP. Hence, the optimal

capital requirement in this case will be zero. When ϕ ≤ ¯̄ϕ, it is socially optimal to have a safe

CCP. A safe CCP in this context means a solvent CCP. In other words, the financial resources of

the CCP can cover the potential default losses. But it does not mean that the CCP’s own capital

will cover all default losses. Whether that should happen or not depends on the fee level. When

f > f , the clearing business is so profitable that the profit-driven CCP will always chase high

trading volume to maximize her profits. In this case, high capital does not help to increase total

welfare surplus. Instead, high capital requirement leads to high collateral and makes transaction

expensive for traders. The optimal capital in this case is to maintain a safe CCP with lowest

collateral possible. Hence, K∗ = K̃(c). When f ≤ f , high capital makes the profit-driven CCP

conservative. In this case, K∗ = K̂(c̄) leads to a high collateral c̄ and disincentivize sellers’ defaults.

Proposition 5 summarizes the optimal capital requirement for a profit-driven CCP.
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Proposition 5. (Optimal capital requirement for a profit-driven CCP)

The optimal capital requirement for a profit-driven CCP depends on the fee level f and the

capital cost ϕ.

(i) When ϕ > ¯̄ϕ, the optimal capital requirement is K∗ = 0.

(ii) When ϕ ≤ ¯̄ϕ and f > f , the optimal capital requirement is K∗ = K̃(c).

(iii) When ϕ ≤ ¯̄ϕ and f ≤ f , the optimal capital requirement is K∗ = K̂(c̄).

The thresholds are as follows.

¯̄ϕ =γπ(1 − π)w

f =
πγθ2(1 − π)(γθ + 2)(γθ + 2 + α(γθ + 6))

4(γθ + 1)(γθ + 2 + α(γθ + 4))

−

√
(πγθ2(1 − π)(γθ + 2)(γθ + 2 + α(γθ + 6)))2 − 8αγπ2θ3(γθ + 1)(γθ + 2)2(γθ + 2 + α(γθ + 4))

4(γθ + 1)(γθ + 2 + α(γθ + 4))
(42)

Proof. See appendix.

6 Conclusion

To the best of my knowledge, this paper is the first in the literature that models CCP’s insolvency.

CCPs are not benevolent organizations. Instead, many CCPs operate as profit-driven public compa-

nies. The profit-driven character, coupled with limited liability constraint, gives rise to potentially

misaligned incentives for a CCP to lower collateral requirement in exchange for higher trading

volume. I show that a profit-driven CCP will choose zero capital and set a low collateral require-

ment to maximize her expected value, when there is no capital requirement. A benevolent CCP

will choose a minimum capital when capital cost is high; but the benevolent CCP will set a high

collateral requirement, since she cares about not only her own expected value but also the utility

improvement of traders.

As pointed out before, CCPs are different from banks because of the mutualized financial

resources. Hence, the optimal capital requirement should be designed to tailored to such features.

My model suggests that the optimal capital requirement for profit-driven CCPs should depend on
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both capital cost and volume-based fee. For the capital cost, it is a similar story as the capitalization

problem for banking. When capital cost is very high, the optimal capital requirement should be

zero because the high capital cost outweighs the benefit of a safe CCP. For the low capital cost,

the optimal capitalization depends on how profitable is clearing business. Since the main profits

of CCPs come from commission fee which is greatly dependent on trading volume, high volume-

based fee represents a great “temptation” for the CCP. Hence, when volume-based fee is high

enough, the CCP will always go for large trading volume. The optimal capital requirement in this

case is to have a safe CCP with lowest collateral possible, as collateral is also costly in my model.

When volume-based fee is low, imposing a high capital requirement makes a profit-driven CCP

more conservative and will charge a high collateral to disincentivize traders’ default.

There are several possible extensions for the current model. First, it is possible to introduce fire

sale cost and bail out cost in the case of CCP insolvency. I currently assume that the counterparties

that trades with default sellers bear the remaining losses, similar to a partial tear-up. There is

no fire sale cost for the collateral when there is a large amount of sellers’ defaults in the market.

Such assumption could be relaxed by incorporating a “cash-in-the-market” mechanism (Acharya

and Yorulmazer, 2008). To bail out or to resolve a CCP depends on how many sellers default

and how large the fire sale cost will be. Second, it is possible to endogenize volume-base fee

and introduce competition among CCPs, following the circular road model (Salop, 1979). Since

fee and collateral both decrease traders’ utility, a profit-driven CCP will try to lower these two

to maximize their own trading volume. I expect that the competition between CCPs will first

drive down the fee level. But as competition gets fierce, profit-driven CCPs will also try to lower

collateral requirement to increase trading volume.
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Appendix

A Variable summary

Variable Definition
α the ratio between default fund contribution and initial margin
δ convex collateral cost coefficient for protection sellers
π probability of the high state
τ̃ protection seller j’s payment to protection buyer
θ the high realized value of the risky asset
γ per unit capital cost of the CCP
c collateral from the sellers to disincentivize the sellers’ defaults
d the share of default fund contribution that survival sellers need to pay
f volume-based fee charged by the CCP
K capital of the CCP
L total default losses
m cash endowment of protection buyers
r j protection seller j’s capability to lower the downside risk
s̃ j protection seller j’s real payment to protection buyer
v trading volume
w wedge between the required payment and the available financial resources
W total welfare

B Proof

Proposition 1

Proof. As figure 2 shows, as collateral decreases, traders’ utility improvement increases. I first

get the hedging capability r̃ of the marginal non-default sellers by setting ∆UND(r̃) = 0. From

equation 3, I have

r̃ =
γπ(1 − π)θ2 − 2(1 + α)δc − 2 f

2(1 − π)πθ
(A1)

Also, I need to take into account the fact that r̃ cannot be smaller than r̄. Because when r j is

smaller than r̄, the seller j will defaults. Thus, equation A1 and r̄ =
πθ−(1+α)c

πθ
pin down a threshold

c̄ that when c ≥ c̄, r̃ ≤ r̄.
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c̄ =
πθ(1 − π)(γθ + 2) − 2 f

2(1 + α)(1 − π + δ)
(A2)

Hence, when c ≥ c̄, only non-default sellers have positive utility improvement from trading.

Hence, the trading volume is 1 − r̃. When 0 ≤ c < c̄, both default and non-default sellers will join

the game since they both have positive utility improvement. Trading volume is 1.

�

Lemma 1

Proof. In the case of no default at t = 1, holding capital is only adding cost for the benevolent

CCP. Hence, the optimal capital in this case is 0. As to collateral, to have no default at t = 1,

collateral needs to satisfy c ≥ c̄. Take the first order derivative of WND with respect to c leads to

∂WND

∂c
< 0, if c ≥ c̄. (A3)

Thus, the optimal c is c̄. Plug in c∗ND and K∗ND into equation 7, I directly have

WND(c∗ND,K
∗
ND) = WFB −

(1 + α)c̄
πθ

(1 + α)δc̄ −
πθ − (1 + α)c̄

πθ
WFB (A4)

�

Lemma 2

Proof. Given equation 3 and 4, the objective function of the benevolent CCP is rewritten as

Max
K,c

1
2
π(1 − π)θ2 +

1
2

(1 − π)πθ − (1 + α)δc − ϕK

s.t. K ≥
(πθ − (1 + α)c)2

2πθ

0 ≤ c < c̄

(A5)

Since the objective function is decreasing in K, the optimal K is achieved when K ≥ (πθ−(1+α)c)2

2πθ

is binding. Hence I could plug in K =
(πθ−(1+α)c)2

2πθ into the objective function. Take the first order

derivative of the objective function with respect to c and I could see that the optimal c depends on

how large is ϕ. When ϕ ≤ δ, the objective function is decreasing in c. Thus, the optimal collateral
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is zero. When ϕ > δ, the optimal collateral is achieved at πθ
1+α

ϕ−δ

ϕ
.

With the optimal c∗D, I could have the optimal K∗D by plugging c∗D in K =
(πθ−(1+α)c)2

2πθ . Hence, K∗D

is πθ
2 when ϕ ≤ δ and is πθ

2
δ2

ϕ2 when ϕ > δ.

With the c∗D and K∗D, I have the total welfare surplus as

WD(c∗D,K
∗
D) =


WFB − πθ

2
δ2

ϕ
−

δπθ(ϕ−δ)
ϕ

, ϕ > δ

WFB − πθ
2 ϕ, ϕ ≤ δ

�

Proposition 2

Proof. From lemma 1 and 2, I have the optimal capital and collateral for a benevolent CCP in

no default case and default case, respectively. Which case leads to a higher total welfare surplus

depends on how large is the capital cost ϕ. Because the total welfare surplus in default case

WD(c∗D,K
∗
D) is decreasing in ϕ, while that in no default case WND(c∗ND,K

∗
ND) is invariant in ϕ. I first

discuss the situation that ϕ ≤ δ.

When ϕ ≤ δ, the total welfare surplus in default case WD(c∗D,K
∗
D) is

WD(c∗D,K
∗
D) =WFB −

πθ

2
ϕ

≥WFB −
πθ

2
δ

(A6)

Let f (δ) denote the function of the difference between WND(c∗ND,K
∗
ND) and WFB − πθ

2 δ.

f (δ) =WND(c∗ND,K
∗
ND) − (WFB −

πθ

2
δ)

=
πθ

2
δ −

(1 + α)c̄
πθ

(1 + α)δc̄ −
πθ − (1 + α)c̄

πθ
WFB

(A7)

Since c̄ =
πθ(1−π)(γθ+2)−2 f

2(1+α)(1−π+δ) , I have the first order derivative of f (δ) w.r.t. δ as

∂ f (δ)
∂δ

< 0. (A8)

As I assume the collateral cost is large enough that δ > δ; and f (δ) < 0, I have f (δ) < 0 for
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δ > δ. In other words, WND(c∗ND,K
∗
ND) < WFB − πθ

2 δ ≤ WD(c∗D,K
∗
D), when ϕ ≤ δ. The default case

leads to a higher total welfare surplus for the benevolent CCP.

When ϕ > δ, the total welfare surplus in default case WD(c∗D,K
∗
D) is

WD(c∗D,K
∗
D) = WFB −

πθ

2
δ2

ϕ
−
δπθ(ϕ − δ)

ϕ
. (A9)

Let g(ϕ) denote the function of the difference between WND(c∗ND,K
∗
ND) and WD(c∗D,K

∗
D).

g(ϕ) =WND(c∗ND,K
∗
ND) −WD(c∗D,K

∗
D)

=
πθ

2
δ2

ϕ
+
δπθ(ϕ − δ)

ϕ
−

(1 + α)c̄
πθ

(1 + α)δc̄ −
πθ − (1 + α)c̄

πθ
WFB

(A10)

Take the first order derivative of g(ϕ) w.r.t. ϕ, I have

∂g(ϕ)
∂ϕ

> 0. (A11)

Let ϕ̄ satisfy g(ϕ̄) = 0, I have g(ϕ) > 0 when ϕ > ϕ̄, i.e., WND(c∗ND,K
∗
ND) > WD(c∗D,K

∗
D). Solve

g(ϕ̄) = 0, I have

ϕ̄ =
2
πθ

(
WFB −WND(c̄, 0)

)
. (A12)

�

Lemma 3

Proof. When 0 < [πθ−(1+α)c]2

2πθ − K ≤ αc(1 − r̃), the CCP remains solvent but has not enough

capital to cover the total default losses. Mutualized financial resources are used to cover part of the

losses. The utility improvement of a pair of default seller and his buyer is as the same as equation

4. As long as c < c̄, the default sellers and their counterparties will join the trading game.

But since the mutualized financial resources contributed by non-default sellers are used to cover

the losses of default sellers, the utility improvement of a pair of non-default seller and his buyer is

lower, as written in equation 21.
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∆UND,M =
γ

2
π(1 − π)θ2 + (1 − π)r jπθ − (1 + α)δc − f − (1 − π)d︸    ︷︷    ︸

Expected loss from default fund

(A13)

The marginal non-default seller r̃ should satisfy ∆UND,M(r̃) = 0. Solve the equation, I have

r̃ =

[
πθ(1 − π)(γθ − 2) + 2 f

]
+

√[
πθ(1 − π)(γθ − 2) + 2 f

]2
− 8(1 − π)

(
2(1 + α)cπθ(δ − (1 − π)2 − 2K)

)
4(1 − π)(πθ)2

(A14)

When r̃ > r̄, the trading volume is 1 − r̃ + r̄. Solve r̃ > r̄, I have c > c̃, where c̃ is as follows.

Note that c̃ is a function of K where c̃(K̄) = c̄ and c̃(K) = c.

c̃ =

[
πθ(1 − π)(γθ + 4) − 2 f

]
+

√[
πθ(1 − π)(4 + γθ) − 2 f

]2
+ 4πθ(1 − π)(3(1 − π) + 2δ)(2K − πθ)

2(1 + α)(3(1 − π) + 2δ)
(A15)

Hence, when 0 ≤ c ≤ c̃, the trading volume is one.

�

Lemma 4

Proof. When K + αc(1 − r̃) − [πθ−(1+α)c]2

2πθ < 0, the CCP becomes insolvent.28 All the default

fund contribution is used to cover the losses. Equation 28 gives the utility improvement of a pair

of default seller and his buyer.

∆UND,E =
γ

2
π(1 − π)θ2 + (1 − π)r jπθ − (1 + α)δc − f − (1 − π)αc

=∆UND − (1 − π)αc
(A16)

When seller j with r̄ and his counterparty have positive utility improvement, the trading volume

28Note that K > K also holds here. I leave the discussion of K in section 4.3.
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is one. Solve ∆UND,E(r̄) = 0, I have

c =
πθ(1 − π)(γθ + 2) − 2 f

2(1 + α)(1 − π + δ) + 2α(1 − π)
≡ c. (A17)

Hence, when c < c < c̄, the trading volume is 1 − r̃ + r̄, while the trading volume is one when

0 ≤ c

�

Proposition 3

Proof. From equation A18, one can see that the CCP will set a collateral to maximize v(c)

when c ≥ c̄. From proposition 2, I know that c̄ is the optimal collateral in this case. As to c < c̄,

figure 7 shows the collateral level that achieves maximum trading volume. But which collateral

level maximizes the CCP value still depends on the fee level f . I first plug in the collateral that

maximizes trading volume into equation 35.

VCCP =


f πθ(1−π)(γθ+2)−2 f

2πθ(1−π+δ) − ϕK, c ≥ c̄

f − (1−π)(πθ((1−π)γθ+2δ)+2 f )2

8πθ(1−π+δ)2 − ϕK, 0 ≤ c < c̄,K ≥ K̄

f − (1 − π)K − ϕK, 0 ≤ c < c̄,K ≤ K < K̄

(A18)

Since when K ≤ K < K̄, f − (1 − π)K − ϕK > f − (1−π)(πθ((1−π)γθ+2δ)+2 f )2

8πθ(1−π+δ)2 − ϕK. The comparison

is mainly between f πθ(1−π)(γθ+2)−2 f
2πθ(1−π+δ) − ϕK and f − (1 − π)K − ϕK. Let h( f ,K) denote the difference

between f πθ(1−π)(γθ+2)−2 f
2πθ(1−π+δ) − ϕK and f − (1 − π)K − ϕK.

h( f ,K) = f
πθ(1 − π)(γθ + 2) − 2 f

2πθ(1 − π + δ)
− ϕK − ( f − (1 − π)K − ϕK)

= f
πθ((1 − π)γθ − 2δ) − 2 f

2πθ(1 − π + δ)
+ (1 − π)K (A19)

Since K ≤ K < K̄, I could solve the inequality h( f ,K) ≥ 0 as f ≤ f and K ≥ K̂(c̄) where
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f =
(1 − π)πθ[2(1 − π + δ) + γθ + 2]

6 − 4π + 4δ

K̂ = f (1 −
(1 + α)c
πθ

)
(A20)

�

Proposition 4

Proof. From proposition 3, I have optimal collateral with given capital K. Since K̂ > 0, the

combination of (c, 0) will always give the highest CCP value. Hence, the optimal capital and

collateral for a profit-driven CCP are

K∗ = 0, c∗ = c (A21)

�

Lemma 5

Proof. From proposition 3, I have optimal collateral with given capital K. I plug in the optimal

collateral into equation 39.

When f ≤ f and K ≥ K̂(c̄), the optimal collateral is c̄. No sellers default at t = 1 when the

bad state is realized. The welfare surplus consists of two parts: the utility improvement from the

non-default sellers and the CCP value. Since fee is a pure transfer from the traders to the CCP, it

has no impact on the total welfare surplus directly. Hence, f disappears in the final expression.

However, note that fee does matter for the thresholds on collateral and capital. Thus, the level of

fee has indirect impact on the welfare surplus.

W =

∫ (1+α)c̄
πθ

0
∆UNDdr j + f v(c̄) − ϕK

=WFB − (1 + α)δc̄
(1 + α)c̄
πθ︸                 ︷︷                 ︸

collateral cost

− (1 − π)
(πθ − (1 + α)c̄)2

2πθ︸                        ︷︷                        ︸
not all traders trade

− ϕK︸︷︷︸
capital cost

(A22)

When f > f and K ≥ K̄(c̄), the optimal collateral is [c̄]−. The trading volume is one and some

sellers default at t = 1. The welfare surplus is the sum of the utility improvement from the default

and non-default sellers and the CCP value.
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W =

∫ (1+α)c̄
πθ

0
∆UNDdr j +

∫ (1+α)c̄
πθ

0
∆UDdr j + f − (1 − π)

(πθ − (1 + α)c)2

2πθ
− ϕK

=WFB − (1 + α)δc̄︸     ︷︷     ︸
collateral cost

− ϕK︸︷︷︸
capital cost

(A23)

When f > f and K̃(c) ≤ K < K̄(c̄), the optimal collateral is c̃. The same optimal collateral

also applies to the case when f ≤ f and K̃(c) ≤ K < K̂(c̄). In this case, the trading volume is

one and some sellers default at t = 1. The utility improvement for the default sellers and their

counterparties are the same as before; but that for the non-default sellers and their counterparties

is different from the previous case because of the losses from default fund contribution.

W =

∫ (1+α)c̃
πθ

0
∆UND,Mdr j +

∫ (1+α)c̃
πθ

0
∆UDdr j + f − (1 − π)K − ϕK

=WFB − (1 + α)δc̃︸     ︷︷     ︸
collateral cost

− ϕK︸︷︷︸
capital cost

(A24)

When ≤ K < K̃(c), the optimal collateral is c. In this case, the CCP becomes insolvent.

The utility improvement for the default sellers and their counterparties is different because of the

losses from partial insurance. For the non-default sellers and their counterparties, they loss all the

default fund contribution and have a lower utility improvement as well. But the CCP in this case

has a higher expected value. That is also why they will choose zero capital if there is no capital

requirement.

W =

∫ (1+α)c
πθ

0
∆UND,Edr j +

∫ (1+α)c
πθ

0
∆UD,Edr j + f − (1 − π)K − ϕK

=WFB − (1 + α)δc︸     ︷︷     ︸
collateral cost

−

(
1 −

(1 + α)c
πθ

)
γ

2
π(1 − π)w2︸                              ︷︷                              ︸

loss from partial insurance

− ϕK︸︷︷︸
capital cost

(A25)

�

Proposition 5

Proof. When 0 ≤ K < K̃(c), whether W is increasing or decreasing in K depends on how large
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the capital cost ϕ is. From equation 41, I have the total welfare surplus when 0 ≤ K < K̃(c) as

follows.

W = WFB − (1 + α)δc −
(
1 −

(1 + α)c
πθ

)
γ

2
π(1 − π)w2 − ϕK (A26)

Note that w is also a function of K as shown in equation 27. Plug in w and take the first order

derivative of W w.r.t. K, I have the following.

∂W
∂K

= γπ(1 − π)w − ϕ (A27)

Let ¯̄ϕ = γπ(1−π)w. When ϕ > ¯̄ϕ, W is decreasing in K. Hence, the optimal capital requirement

is zero.

When ϕ ≤ ¯̄ϕ, W is increasing in K. Hence, for the total welfare surplus with default, the highest

welfare surplus is achieved at K̃(c). I know from proposition 3 that when f > f , the CCP will have

low collateral to maximize trading volume. Hence, for ϕ ≤ ¯̄ϕ and f > f , I have the optimal capital

requirement K∗ = K̃(c). For the case when f ≤ f , I need to compare the welfare surplus when

K = K̃(c) and that when K = K̂(c̄). Let l( f ) denote the difference between these two welfare

surplus. From equation 40, I have the following.

l( f ) =WFB − (1 + α)δc̄
(1 + α)c̄
πθ

− (1 − π)
(πθ − (1 + α)c̄)2

2πθ
− ϕK̄(c̄) − (WFB − (1 + α)δc − ϕK̃(c)

=(1 + α)δc − (1 + α)δc̄
(1 + α)c̄
πθ

− (1 − π)
(πθ − (1 + α)c̄)2

2πθ
+ ϕ(K̃(c) − K̄(c̄))

(A28)

Solve l( f ) = 0, I have

f =
πγθ2(1 − π)(γθ + 2)(γθ + 2 + α(γθ + 6))

4(γθ + 1)(γθ + 2 + α(γθ + 4))

−

√
(πγθ2(1 − π)(γθ + 2)(γθ + 2 + α(γθ + 6)))2 − 8αγπ2θ3(γθ + 1)(γθ + 2)2(γθ + 2 + α(γθ + 4))

4(γθ + 1)(γθ + 2 + α(γθ + 4))
(A29)
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Hence, when f ≤ f , l( f ) ≥ 0, which means the total welfare surplus without default is higher.

The optimal capital requirement is K̂(c̄). When f > f , l( f ) < 0. The optimal capital requirement

is K̃(c).

�
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