

26-28 June 2023

Lukas Nord EUROPEAN UNIVERSITY INSTITUTE

SHOPPING, DEMAND COMPOSITION, AND EQUILIBRIUM PRICES

Shopping, Demand Composition, and Equilibrium Prices

Lukas Nord

lukasnord.eu lukas.nord@eui.eu

The Idea

Significant **dispersion** in posted retail prices for **identical** products (20% of avg. price at the barcode level).

In the goods market, heterogeneous households...

- ... do not pay the same price for identical products (**search for prices**).
- ... do not buy the same basket of products (non-homotheticities).
- → het. price elasticities across households
- → het. **demand composition** across goods
- → retailer: optimal markup (posted price) changes with demand composition
- → equilibrium: posted price distributions depend on the distribution of households

This paper:

- 1. How does household heterogeneity affect posted retail prices?
- 2. What are the consequences for inequality?
- 3. What are the implications for the response of prices to aggregate shocks?

Theory

Equilibrium theory of expenditure inequality and price dispersion:

"Aiyagari meets Burdett-Judd with multiple products"

- idiosyncratic income risk and endogenous asset distribution
- non-homothetic preferences → differences in consumption baskets
- search for prices → search more = pay less for identical product
- search frictions: HHs draw at random from posted price distribution
- retailers post prices and trade off higher margin vs. higher sales → multiple endogenous price distributions

$$\pi_j(p) = \underbrace{\frac{C_j}{M_j}}_{\substack{\text{demand} \\ \text{oper coller} \\ \text{oper coller}}} \underbrace{\frac{[(1-\bar{s}_j)+\bar{s}_j2(1-F_j(p))]}_{\substack{\text{sales per demand} \\ \text{(market share)}}} \underbrace{(p-\kappa_j)}_{\substack{\text{margin} \\ \text{per sale}}} -K_j$$

Main mechanism: retailers target demand weighted search effort

$$C_j = \int \lambda(e)c_j(e)de$$
 $\bar{s}_j = \int \frac{\lambda(e)c_j(e)}{C_j}s(e)de$

- composition of demand determines average price elasticities
- lower avg. posted prices if product bought by high-search HHs
- skewness of price distributions increases only in search effort
- → testable condition for main mechanism
- driven by share of low vs. high prices tracking retailers' tradeoff

Data

Nielsen Consumer Panel:

- barcode-level quantity & price of HHs' grocery transactions
- information on HHs: income, location, age, size,...
- information on products (barcode): type, brand, size,...

Test the mechanism:

- skewness of price distributions by barcode-region-quarter
- proxy for search effort with demand share of high-/low- search HHs
- control for product type and region-quarter FE

$$skew_{j,r,q} = \theta_m + \mu_{r,q} + \sum_{g=2}^{G} \beta_g expshare_{j,g,y(q)} + \varepsilon_{j,r,q}$$

	by expenditures		by income			by employmen
	all (1)	working age (2)		working age (3)		all (4)
expenditure quintile 2	-1.638*** (0.242)	-1.467*** (0.206)	income 30k-60k	-0.136 (0.133)	1 non-employed household head	0.864*** (0.115)
expenditure quintile 3	-2.309*** (0.256)	-2.076*** (0.221)	income 60k-100k	-0.824*** (0.155)	2 non-employed household heads	1.011*** (0.210)
expenditure quintile 4	-3.067*** (0.258)	-2.582*** (0.219)	income >100k	-0.820*** (0.139)		
expenditure quintile 5	-3.412*** (0.253)	-3.007*** (0.224)				
FE product module FE quarter-SMA Observations	X X 3.026,551	X X 3,026,404		X X 3,026,404		X X 3,026,551

Retailers' Optimal Price Posting Reduces Inequality

Decomposition of expenditures:

- price differences within same product
- price differences across close substitutes
- → price differences within product & close substitutes explain ~10% of inequality in grocery spending

$$= \underbrace{\sum_{k} \sum_{j \in J_k} (p_{ijk} - \hat{p}_{jk}) c_{ijk} + ((\hat{p}_{jk} - \kappa_{jk}) - (\tilde{p}_k - \tilde{\kappa}_k)) c_{ijk}}_{\text{margin differences (direct+equilibrium effect of shopping)}} + \underbrace{\sum_{k} \sum_{j \in J_k} (\kappa_{jk} - \tilde{\kappa}_k) c_{ijk}}_{\text{cost of quality}} + \sum_{k} \sum_{j \in J_k} \tilde{p}_k c_{ijk}$$

Contribution of price search to inequality:

- direct effect of price search: pay less for same product → price differences for same variety
- equilibrium effect: lower average price if others search → part of difference in avg. price across varieties → disentangle from "cost of quality" (marginal cost)
- → search frictions account for 50% of price differences (25% direct / 25% equilibrium effect)

Response of Prices Changes with the Incidence of Aggregate Shocks

Empirical evidence on cyclicality of retail prices/markups:

- acyclical to unemployment: Anderson et al. (2020), Coibion et al. (2015)
- procyclical to house prices: Stroebel and Vavra (2019)

This paper: incidence of demand shocks matters for cyclicality

- · simulate incidence of earnings and wealth losses during Great Recession → wealth losses concentrated among rich households
 - → earnings losses (unemployment) concentrated among poor households
- → search frictions generate 0.6pp fall in retail prices on impact
- → response accounted for (almost) entirely by wealth losses
- → differential response driven by **changing demand composition**:
 - earnings losses reallocate relative demand to high-income (low search) HHs
 - reallocation of demand offsets higher search effort by low income HHs
 - for wealth losses both effects increase demand weighted search effort

