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Abstract 

The New Keynesian framework implies that sluggish price adjustment results in a 
distorted allocation of resources. We use a tractable model to identify these 
unobservable distortions, using granular data that depict the price-setting behavior of 
firms. We propose a method to estimate welfare costs for the period preceding 2022, 
and during the subsequent high inflation period. Using granular data from PriceStats, 
as well as data from the ECB PRISMA project, we find that these welfare costs are 
sizeable. In the low inflation environment prevalent before 2022, the efficiency cost is 
quantified in about 2 percentage points of GDP in the Euro Area. Moreover, we 
estimate that the recent inflationary shock has temporarily increased these costs, in 
the order of an additional 2.7 percentage points of GDP. 

1 Introduction 

The inflation surge that followed the sizeable increases in energy prices in Europe, 
pictured in Chart 1, has revived interest in inflation and its welfare costs. After more 
than three decades of stable prices, in 2022 inflation peaked at about 10% in the 
Euro area and the US. The inflation spike was associated with an unusually large 
increase in the frequency of price revisions. In the food-and-beverage sector, where 
the average number of regular price adjustments per year hovered between 1 to 3 
before 2022, the number of price changes almost doubled in 2022 and 2023 (see 
Chart 2). These facts raise several questions about the mechanism by which cost 
shocks transmit to consumer prices, the welfare costs of inflation, the future path of 
inflation, and the appropriate policy actions. 
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Chart 1 
The 2019-2023 dynamics of energy prices 

 

Sources: European Commission Weekly Oil Bulletin 
Notes: Price with tax per 1000L. 

In this paper we address two narrow and well-defined questions. The first one 
concerns the mechanism: understanding inflation dynamics requires a model of the 
price-setting decisions of a large number of individual firms, and their aggregation. 
We will use a simple model, validated against a rich granular dataset, to argue that 
the workhorse New Keynesian model of monetary policy in use at most central 
banks, built around the assumption of a constant average frequency of repricing by 
firms, misses a key aspect of the inflation dynamics. We will show that such model 
fails to capture the sizeable different speed of passthrough of large versus small 
aggregate shocks. We present a simple tractable model that improves upon the 
benchmark and yields smaller inflation forecast errors. In other words, our preferred 
model features a “highly non-linear” Phillips curve. 

Chart 2 
Frequency of price changes (Food and Beverages) 

 

Sources: PriceStats data for regular price changes. 
Notes: The left graph shows the frequency of price changes for regular prices (excluding sales) for six selected countries. The right 
graph is a binned scatterplot of the frequency and annual inflation rates for nine countries: France, Germany, Greece, Ireland, Italy, 
Netherlands, Spain, Poland, and the UK. Frequency computed using microdata. Annual inflation rates computed by PriceStats. 
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The second question concerns the welfare costs. A classic approach in 
macroeconomics studies the welfare cost of inflation using a powerful public finance 
idea, namely that inflation acts as a distortionary tax on the demand of real balances, 
see e.g., Bailey (1956); Friedman (1968). A microfounded money demand model can 
then be used to quantify these welfare costs, as in e.g., Lucas (2000). In this paper, 
we focus instead on the welfare costs that arise in New Keynesian (NK) models, by 
far the dominant framework employed by academics and central bank researchers in 
recent decades, see e.g., Woodford (2003); Gali (2008); Walsh (2010). In the NK 
framework, the welfare costs are made of two elements, both related to the 
assumption of sticky prices. First, since prices deviate from their efficient level, such 
wedges impose a welfare cost to consumers and workers. This is what the literature 
refers to as “misallocation”, which we denote by the variable 𝜒𝜒. Second, the costs 
associated with the price-management activities are wasteful, much like the 
resources that agents waste to protect themselves from inflation in the money 
demand models cited above. We denote this welfare cost by the variable 𝜑𝜑. Both 𝜒𝜒 
and 𝜑𝜑 will be measured as a proportion of total GDP so that their magnitude has a 
straightforward interpretation. 

As neither measure of welfare cost is directly observable to researchers, their 
assessment requires a model, providing us with an explicit mapping between these 
objects and the observable data moments.5 In the first part of the paper, we set up 
such a model, drawing on Caballero and Engel (1999,2007), and parametrize it 
using a granular data set for the food and beverages sector for several European 
countries, see Cavallo (2018). A founding principle of our analysis is to identify a 
model that is broadly consistent with the recent observed price-setting behavior. 
There are two reasons why this is important. First, the credibility of the analysis on 
retail price inflation requires that the model is consistent with the facts about price-
setting behavior by retailers. Second, the welfare costs vary substantially across 
models, in spite of the fact that these models reproduce the same mean frequency 
and mean size of price changes. For instance, the welfare costs of misallocation in 
the well-known Calvo model, at the core of most NK analyses, are two times larger 
than the misallocation produced by a staggered-price adjustment model a la Taylor 
(1980), and six times larger than the misallocation produced by a menu cost model a 
la Golosov and Lucas (2007). 

Matching the model fundamentals to the price-setting patterns observed in the 
granular data will lead us to reject the Calvo model, because of its impossibility to 
account for the significant increase in the frequency of price-setting observed in the 
data, shown in Chart 2, and because of its failure to fit other features of price-setting 
behavior, such as the bi-modal size distribution of the price changes depicted in 
Chart 3. This result yields an important policy lesson: large shocks travel faster than 
small shocks. Failure to acknowledge this fact will lead the policymaker to a wrong 
inference about inflation dynamics. Relatively to our simple model, the use of a 
textbook Calvo model leads to underpredicting inflation in the early periods after the 
shock, and to underestimating its slowdown later (see Chart 10). 

 
5  See Zbaracki et al. (2004) for an attempt at measuring such costs directly. We relate to their findings 

with ours in Section 4. 
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Chart 3 
Distribution of Size of Price Adjustments 2020 (Food and Beverages) 

 

Source: PriceStats microdata for regular price changes. 

In the second part of the paper, we use our model to infer the magnitude of the 
welfare costs caused by the presence of sticky prices, and analyze how these costs 
change following a large inflationary shock such as the recent large increase in 
energy prices. We supplement the granular data for the food and beverages industry 
with some descriptive statistics for the Euro Area, taken from the Price-setting 
Microdata Analysis (PRISMA) network, see e.g., Gautier et al. (2022), and 
descriptive statistics for supermarket data of the Euro Area, drawn from Karadi et al. 
(2023). We develop two conceptually distinct exercises. First, we measure the 
welfare costs 𝜒𝜒 and 𝜑𝜑 in a steady state. In particular, we gauge these costs using 
data from the low inflation period prevalent before 2022. The results suggest that the 
welfare costs in this low inflation environment range at about 1.9 percentage points 
of GDP in the Euro Area. This suggests that the resources lost every year due to the 
sticky price frictions are not negligible. Second, we analyze the dynamics of these 
welfare costs following the large energy price increases recorded in 2022. This 
exercise is a canonical impulse-response analysis, studying how inflation and 
welfare costs evolve from their steady state levels following a large cost shock. The 
exercise allows us to quantify the welfare costs that arise above and beyond the 
steady state costs. Our preliminary estimates suggest that the recent inflationary 
shock triggered a temporary increase in the welfare costs, on the order of an 
additional 2.7 percentage points of GDP. 

Structure and overview of contents. The paper is organized as follows. Section 2 
presents the New Keynesian setup that guides our analysis of the price-setting 
activity of firms and will (later) be used to quantify the welfare costs. The model is 
inspired by the seminal work of Caballero and Engel (1999, 2007) and nests several 
well-known cases such as the Calvo (1983) model or the menu cost model of 
Golosov and Lucas (2007). 

Section 3 describes the model’s predictions for the frequency and the size-
distribution of price changes and compares them with cross-sectional facts observed 
from the low inflation period before 2022. This part of the analysis relies on a 
granular dataset for European countries provided by PriceStats. The data contain 
detailed information on the frequency and size of daily price changes for a large 
number of firms and provide the necessary information to solve the inverse inference 
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problem mentioned above. For our purposes, the dataset offers two key advantages 
over traditional data sources such as Consumer Price Index (CPI) and Scanner 
Data. Firstly, the daily price data collection with uncensored spells allows for an 
accurate identification of sales and price changes (Cavallo, 2018). Second, the data 
is available without any lags, allowing us to study the recent period of high inflation in 
real time.6 

Mapping the model to the observables allows us to select a data-consistent 
structural model of price-setting. We show that a main feature of the selected price-
setting model is a sizeable component of state-dependent decisions. This means 
that the firms’ responsiveness to the shocks depends on the size of the shocks7. 
Following a large shock, such as the recent energy shock, firms react faster than in 
normal times. This is important to understand the dynamics of inflation, as also noted 
by Alvarez and Neumeyer (2019); Karadi and Reiff (2019). This finding also differs 
markedly from the time-dependent models widely used at central banks, such as the 
workhorse model of Calvo (1983). We show that the selected model can qualitatively 
replicate the response of the frequency of price changes after a large cost shock, 
such as the ones recently observed, as in e.g., Chart 2. This result is important to 
quantify the deadweight losses triggered by the shock, as firms must engage in 
above-normal repricing activities that are costly to them (as captured by 𝜑𝜑). 

Section 4 quantifies the welfare cost of misallocation in NK models. We first derive a 
mapping between the theory-based measure of misallocation, 𝜒𝜒 and 𝜑𝜑, and a set of 
observable moments from the size distribution of price changes. For instance, we 
show that the welfare cost of misallocation, 𝜒𝜒, is proportional to the product of the 
variance times the kurtosis of price changes. This provides a direct mapping to 
quantify the welfare costs of inflation, that we implement using three different 
granular datasets. As noted above, this result also highlights that different models 
can lead to estimates of misallocation that differ by an order of magnitude (e.g., the 
welfare costs in the Calvo model are six times larger than in the canonical menu cost 
model) as captured by the kurtosis of price changes. 

We then use PriceStats data, as well as data provided from the ECB PRISMA project 
(Gautier et al., 2022), to estimate the welfare cost of inflation in the low inflation 
environment before 2022 to be about 1.9 percentage points of GDP in the Euro Area. 
The bulk of this welfare cost originates from the sizeable misallocation that is 
estimated in the data (the cost component 𝜒𝜒). A smaller part, about 40 basis points of 
GDP, relates to the resources that are used for the price-management activity (the 
cost component 𝜑𝜑). We also estimate that the recent inflationary shock has triggered 
a temporary increase of the welfare costs, in the order of an additional 2.7 
percentage points of GDP. This temporary surge is attributed to a roughly equal 

 
6  Our data was provided by PriceStats, a private company related to The Billion Prices Project (see 

Cavallo and Rigobon (2016)). This dataset is a comprehensive collection of retail prices obtained from 
the websites of large, multichannel retailers. It is generated using a technology known as web scraping, 
which automatically scans the code of publicly available webpages daily to gather and store relevant 
data. 

7  See Gagnon (2009); Alvarez et al. (2019a); Karadi et al. (2023) for an extensive documentation of the 
importance of state dependent pricing in several countries including the US and Europe. The idea of 
using large shocks to discuss model selection has been used by other authors, such as Gopinath and 
Itskhoki (2010); Alvarez, Lippi, and Paciello (2016); Bonadio, Fischer, and Sauré (2019). 
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change in both cost components, each by approximately 1.5 percentage points of 
GDP. Provided no new large shocks arrive, this additional cost component is 
expected to vanish, and inflation is expected to return to the baseline. 

1.1 Related literature 

As mentioned, several classic contributions on the welfare cost of anticipated 
inflation consider that inflation acts as a distortionary tax on the demand for real 
balances (Bailey, 1956; Friedman, 1968). Several papers have taken those ideas 
seriously and developed carefully designed models to quantify the deadweight 
losses caused by a stationary inflation rate, as in e.g., Aiyagari, Braun, and Eckstein 
(1998); Lucas (2000); Lagos and Wright (2005). A common finding is that the welfare 
costs of moderate steady inflation are not negligible. The results differ, depending on 
the specifics of the money demand aggregates that are used and other details of the 
modeling strategy, but the estimates are aligned in placing the order of magnitudes 
of the deadweight losses caused by a moderate inflation between 1 to 3% of annual 
consumption.8 

Our paper is not the first one to quantify the misallocation caused by sticky prices. As 
mentioned, measuring misallocation is complex because it requires the identification 
of the gap between actual prices and efficient ones, where the latter are not directly 
observable from the data. The literature has followed different routes to address this 
problem. Nakamura, Steinsson, Sun, and Villar (2018) and Sheremirov (2020) use 
US price data and proxy misallocation using observations on the degree of price 
level dispersion, and the size of price changes. Relatedly, a paper by Adam, 
Alexandrov, and Weber (2023) assumes that efficient prices follow (product-specific) 
trend inflation and uses this assumption to identify changes in the inefficient price 
dispersion in the UK data. A common feature of these papers is to estimate how 
observed changes in inflation map into an increased cost of misallocation. But the 
level of the misallocation cost itself cannot be measured. In this paper we use an 
alternative approach. We use recent results by Baley and Blanco (2021) and 
Alvarez, Lippi, and Oskolkov (2022) to construct a mapping that allows us to infer the 
price gaps using observable moments on the size and timing of price changes. This 
allows us to estimate the level of the cost of misallocation, as well as its evolution 
following a large inflationary shock. A similar approach is used by Blanco, Boar, 
Jones, and Midrigan (2022) using the CPI data for the UK. 

Finally, other papers focus on the effects of inflation surprises and their distributional 
effects, namely identifying winners and losers after an inflation surprise, see e.g., 
Bach and Stephenson (1974); Doepke and Schneider (2006). Other interesting and 
related analyses of the distributional effects of inflation can be found in Argente and 

 
8  For instance, Aiyagari et al. (1998) model the costs of inflation as the resources that the households 

use to protect themselves from the inflation tax. They use a simple model and several empirical 
datasets to quantify the steady state costs of moderate inflation. An inflation rate of about 10 percent 
causes welfare losses that are estimated to be between 1% to 2% of total consumption. A similar 
conclusion is reached by Lucas (2000) who uses a money demand model and quantifies the benefits of 
reducing inflation from 10 percent to zero at about 1% to be equivalent to an increase in real income of 
about 1%. A higher value, between 3 to 5% of consumption, is estimated by the paper of Lagos and 
Wright (2005) based on a search-theoretic model. 
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Lee (2020), who focus on the dynamics of prices for rich and poor households during 
the great recession of 2008. While such distributional effects are important, these 
measurements do not offer a direct assessment of welfare costs, as the deadweight 
loss of a redistributive policy is not directly measured by those statistics. We focus 
here on the deadweight losses associated with both anticipated and unanticipated 
inflation but our analysis is mute about the distributional effects. 

2 A generalized setup for NK models 

This section presents a New Keynesian setup that describes the firm’s price-setting 
decisions. The motivation for introducing a formal model is that it will allow us to 
relate the observed price-setting behavior to the fundamental costs and benefits of 
the price-management activity. We follow a flexible framework proposed by 
Caballero and Engel (2007) that describes the firm’s key decision in terms of the 
probability of price adjustment. The economics are simple: the more a firm is willing 
to adjust its price, the more resources must be assigned to that task. If no resources 
are used, then the prices stay constant. This view is aligned with empirical studies 
that measure the amount of resources dedicated to price management activities, 
such as Zbaracki et al. (2004). The firm’s behavior is related to its price deviation 
from profit maximization, denoted by the variable 𝑥𝑥. The firm’s choice variable will be 
described by a function, Λ(𝑥𝑥), giving the probability (per unit of time) that the price 
will be adjusted. Intuitively, it will be shown that larger deviations of 𝑥𝑥 from its ideal 
value increase the probability that a price change is observed. The setup embeds a 
broad class of sticky-price models, including well-known cases such as the canonical 
Golosov and Lucas (2007), the pure Calvo (1983) model, and the hybrid Calvo-Plus 
model by Nakamura and Steinsson (2010). 

Next, we summarize the key model ingredients9. We consider a setting where firms 
are hit by idiosyncratic productivity shocks, so that firm’s 𝑖𝑖 profit-maximizing price, 𝑃𝑃𝑖𝑖∗, 
is given by a constant markup over marginal costs, 𝑚𝑚𝑐𝑐𝑖𝑖: 

𝑃𝑃𝑖𝑖∗(𝑡𝑡) = 𝜂𝜂
𝜂𝜂−1

𝑚𝑚𝑐𝑐𝑖𝑖(𝑡𝑡)       ( 1 ) 

where 𝜂𝜂 > 1 is the price elasticity of demand, assumed to be constant. Note that 
𝑃𝑃𝑖𝑖∗(𝑡𝑡) depends on time because the marginal costs can change over time due to the 
productivity shocks. Marginal costs are also affected by aggregate shocks, such as a 
generalized increase in energy prices. 

The assumption of sticky prices, the hallmark of New Keynesian economics, creates 
a wedge between the actual price 𝑃𝑃(𝑡𝑡) and the desired price 𝑃𝑃𝑖𝑖∗(𝑡𝑡). We refer to this 
gap as the “price gap” and denote it by 𝑥𝑥𝑖𝑖(𝑡𝑡) for firm 𝑖𝑖 at time 𝑡𝑡. It is given by 

𝑥𝑥𝑖𝑖(𝑡𝑡) ≡ log𝑃𝑃𝑖𝑖(𝑡𝑡) − log𝑃𝑃𝑖𝑖∗(𝑡𝑡)      ( 2 ) 

Absent pricing frictions, the gap is identically zero, i.e., each firm charges the optimal 
price 𝑃𝑃𝑖𝑖(𝑡𝑡) = 𝑃𝑃𝑖𝑖∗(𝑡𝑡). If the price is not adjusted, the price gap changes due to trend 

 
9  For a detailed illustration of the underlying theoretical setup see Caballero and Engel (1999) and 

Caballero and Engel (2007), and Alvarez et al. (2022) for a simplified version. 
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inflation, given by 𝜇𝜇, and the idiosyncratic productivity shocks, which are assumed to 
follow a driftless Brownian motion 𝜎𝜎ℬ(𝑡𝑡), where 𝜎𝜎 is the standard deviation of the 
productivity innovations per unit of time10. 

We describe the firm’s price-setting decision as the solution to a minimization 
problem: the firm chooses its price to minimize the expected present value of the 
non-zero price gaps, discounted at the rate 𝜌𝜌. The solution to this problem involves 
balancing two costs: on the one hand, a price gap 𝑥𝑥(𝑡𝑡) implies that the firm’s profits 
are below the maximum level by the amount: 𝜂𝜂(𝜂𝜂−1)

2
𝑥𝑥(𝑡𝑡)2, where for notation 

convenience we drop the 𝑖𝑖 index. The quadratic term is obtained from a second-
order expansion of the profit function around the profit-maximizing price. The firm 
would like to “keep 𝑥𝑥 small,” i.e., to adjust its price 𝑃𝑃 to track 𝑃𝑃∗, but since price-
setting is costly, this cannot be done in every period. We assume that at each point 
in time, the firm can choose the probability of price resetting per unit of time, ℓ(𝑡𝑡), by 
spending resources (𝜅𝜅ℓ(𝑡𝑡))𝛾𝛾 with 𝜅𝜅 > 0, 𝛾𝛾 > 1. At each time 𝑡𝑡 = 𝜏𝜏𝑗𝑗  where the effort is 
successful, the price is reset, so that 𝑥𝑥 is reset at the ideal level 𝑥𝑥∗ by a price change 
of size Δ𝑥𝑥𝜏𝜏𝑗𝑗 = 𝑥𝑥∗ − 𝑥𝑥(𝑡𝑡).11 This means that the price gap obeys the law of motion 
𝑥𝑥(𝑡𝑡) = 𝑥𝑥(0) + ∫ 𝑑𝑑ℬ(𝑠𝑠) + ∑ Δ𝑥𝑥𝜏𝜏𝑡𝑡𝜏𝜏𝑗𝑗<𝑡𝑡

𝑡𝑡
0 .  

Formally, the firm solves: 

𝑣𝑣(𝑥𝑥) = 𝔼𝔼 �∫ 𝑒𝑒−𝜌𝜌𝜌𝜌 min
𝑥𝑥∗,ℓ≥0

�𝜂𝜂(𝜂𝜂−1)
2

𝑥𝑥(𝑠𝑠)2 + �𝜅𝜅ℓ(𝑠𝑠)�𝛾𝛾� 𝑑𝑑𝑠𝑠  | 𝑥𝑥(0) = 𝑥𝑥∞
0 �  ( 3 ) 

The key element of this problem is the effort rate ℓ for price resetting that each firm 
chooses at each point in time. As highlighted by Caballero and Engel (1999), this 
allows us to describe the optimal firm policy through a generalized hazard function 
(GHF): ℓ∗(𝑡𝑡) = Λ�𝑥𝑥(𝑡𝑡)�. This function gives the probability that the price will be 
adjusted given the firm’s current price gap 𝑥𝑥(𝑡𝑡). 12 

Chart 4 illustrates the main properties of the firms’ optimal price-setting decisions as 
summarized by the generalized hazard function Λ(𝑥𝑥). First, the function Λ(𝑥𝑥) has a 
minimum at 𝑥𝑥∗, where it is equal to zero. This is intuitive: when 𝑥𝑥 = 𝑥𝑥∗ the firm is 
pleased with the current price gap, and there are no incentives to adjust prices. 
Second, the probability of adjustment is increasing in the distance between and 𝑥𝑥 
and the optimal reset gap, 𝑥𝑥∗ ≈ 0.13 This is intuitive: a larger value of x increases the 
benefit of adjusting the price, leading the firm to pay more attention to this task. 

 
10  Technically the variable 𝑥𝑥 follows the diffusion 𝑑𝑑𝑥𝑥 = −𝜇𝜇𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑ℬ. 
11  The optimal return point 𝑥𝑥∗ is the profit-maximizing reset price gap that satisfies 𝑣𝑣′(𝑥𝑥∗) = 0. See 

Appendix A of Alvarez and Lippi (2014). We note that the units of the cost function are expressed as a 
fraction of forgone (steady state) profits. Given the CES demand system, to express these units in 
terms of the revenues (and output) they must be divided by 𝜂𝜂. 

12  The notion of a generalized hazard function was developed in seminal papers by Caballero and Engel 
(1993a,b), a derivation from first principles based on random adjustment costs was provided in 
Caballero and Engel (1999) and Dotsey et al. (1999), and later revisited using information theoretical 
foundations by Woodford (2009) and Costain and Nakov (2011b). 

13  The optimal value of 𝑥𝑥∗ depends on the inflation rate. At zero inflation 𝑥𝑥∗ = 0 and remains roughly 
constant at around zero until inflation enters the two-digit region. See Alvarez et al. (2019b) for the 
theory and an empirical illustration. 
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Chart 4 
The firm decision rule for price changes: Λ(𝑥𝑥) 

 

Notes: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a 
frequency of 𝑁𝑁 = 2.4 price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15% respectively. 

It is helpful to compare the generalized hazard function Λ(𝑥𝑥) with the workhorse 
Calvo (1983) model, where the adjustment probability is assumed to be constant, as 
depicted by the horizontal line in Chart 4. The key difference is that price-setting 
decisions in our model depend on the firm’s desired adjustment, 𝑥𝑥. Such state 
dependence is appealing theoretically, see e.g. Barro (1972); Sheshinski and Weiss 
(1977); Dixit (1991); Golosov and Lucas (2007), and has been found to be relevant 
empirically, see e.g. Fougere et al. (2007); Dias et al. (2007); Eichenbaum et al. 
(2011); Gautier et al. (2022), Gautier and Le Saout (2015), Karadi et al. (2023).14 We 
will show below that a key implication of this framework is that state dependence is 
essential to understand the propagation of large aggregate shocks. Intuitively, after a 
large shock many firms find themselves with a price that is far away from where it 
should be. This leads the firms to dedicate more resources to resetting their prices, 
causing an increase in the frequency of price changes, akin to what was shown in 
Chart 2. This increased activity will be important to understand the consequences of 
the large inflationary shock for misallocation, as measured by the dispersion of the 
price gaps, as well as to measure the amount of resources that are used to “keep 
prices right,” a wasteful activity that is reminiscent of the shoe-leather cost of 
inflation. 

The distribution of the price gaps, described by the density 𝑓𝑓(𝑥𝑥), is important for 
several questions. In a steady state, 𝑓𝑓(𝑥𝑥) is uniquely determined by the hazard 

 
14  Several authors have employed the generalized hazard function in applications and empirical work. For 

recent applications see e.g., Costain and Nakov (2011a); Carvalho and Kryvtsov (2018); Sheremirov 
(2020); for empirical work see e.g., Berger and Vavra (2018); Petrella et al. (2018), and for related 
theoretical work Baley and Blanco (2021). Many models are nested by this framework, including the 
canonical Calvo model with a constant hazard Λ(𝑥𝑥) = 1/𝜅𝜅 as 𝛾𝛾 ↑ ∞ the Golosov and Lucas (2007) 
model with 𝑥𝑥 bounded by the adjustment thresholds where the hazard is flat (almost zero) over a range 
of 𝑥𝑥 and then spikes up. Intermediate cases cover the so called Calvo-Plus model by Nakamura and 
Steinsson (2010) and the random menu cost problem of Dotsey and Wolman (2020). 
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function Λ(𝑥𝑥) and the law of motion of price gaps.15 The distribution contains 
information on the inefficiencies at the steady state. For instance, as shown by Gali 
(2008), the consumer’s welfare losses triggered by the presence of the non-zero 
price gaps are proportional to the variance of the price gaps, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥). Intuitively, an 
economy where the firms have small values of 𝑥𝑥 is preferable to one where the 
variance of 𝑥𝑥 is large. 

Chart 5 
The cross-section distribution of price gaps: 𝑓𝑓(𝑥𝑥) 

 

Notes: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a 
frequency of 𝑁𝑁 = 2.4 price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15%, respectively. 

Chart 5 illustrates two density functions produced in a steady state with a 2 percent 
inflation by two models, both featuring a standard deviation of the size of price 
changes equal to 15%, as in the Euro area data discussed below. The blue dotted 
density is the one generated by the hazard function Λ(𝑥𝑥) shown in Chart 4. The red 
dashed function is the density generated by the corresponding Calvo model. 
Although both distributions give rise to price-setting behaviors that look alike in the 
steady state (similar frequency and size of price changes), there are important 
differences. First, it is apparent that the Calvo model has “fatter tails.” This 
observation, confirmed by a rigorous analysis of the model, implies that the welfare 
costs of misallocation are larger in the Calvo model compared to a state-dependent 
model fitting the same price-setting behavior. Second, we will show that despite the 
steady state similarities, these models imply very different behavior in response to a 
large aggregate shock. 

These considerations suggest that it is of interest for several policy questions to 
estimate 𝑓𝑓(𝑥𝑥) as precisely as possible. Unfortunately, since price gaps are 
unobservable, the density 𝑓𝑓 cannot be directly measured in the data. To address this 
challenge, we calibrate the model and identify 𝑓𝑓 using the observed distribution of 
the sizes of price changes. 

 
15  Formally, the density 𝑓𝑓(𝑥𝑥) solves the Kolmogorov forward equation Λ(𝑥𝑥) ⋅ 𝑓𝑓(𝑥𝑥) = 𝜇𝜇𝑓𝑓′(𝑥𝑥) + 𝜎𝜎2

2
𝑓𝑓′′(𝑥𝑥), for 

each 𝑥𝑥 ≠ 𝑥𝑥∗, with boundary conditions lim
𝑥𝑥↓𝑥𝑥∗

𝑓𝑓(𝑥𝑥) = lim
𝑥𝑥↑𝑥𝑥∗

𝑓𝑓(𝑥𝑥); 1 = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 ∞
−∞ , and lim

𝑥𝑥→∞
𝑓𝑓(𝑥𝑥) = lim

𝑥𝑥→−∞
0. 
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3 Price-setting behavior: data vs. theory 

This section presents statistics of price-setting behavior that allows calibrating the 
model’s steady state to match the empirical evidence. We first use data from the 
years before 2022, before the large energy shocks hit Europe, to infer behavior in a 
steady state. We present a few critical predictions of the model about the frequency 
and the size distribution of the price changes. We argue that the GHF model is able 
to account for several key patterns observed in the data. 

In Section 3.1 we use the model to study the response of prices to a large energy 
shock. This exercise serves two purposes. First, it provides a validation of the model 
by comparison of the predictions for e.g. the frequency of price changes with the 
actual data for 2022 and 2023. Second, it allows us to quantify the welfare costs 
following the large shocks, an issue that we will inspect in Section 4.2. 

Overall, this section shows that a data-consistent model of price-setting implies that 
the economy’s response to a large shock differs markedly from the response to a 
small shock. In particular, a large shock will give rise to a much faster passthrough 
from costs to prices, resulting in a period of temporarily-high inflation. 

A brief description of the dataset. We base our analysis on granular data on price-
setting behavior, as in Cavallo (2018). These data contain detailed information on the 
frequency and size of daily price changes for a large number of firms and provide the 
information required to solve the inverse inference problem of unobservable price 
gaps mentioned above. Our dataset was provided by PriceStats, a private company 
related to the Billion Prices Project (see Cavallo and Rigobon (2016)). It is generated 
using a technology known as web scraping, which automatically scans the code of 
publicly available web pages daily to gather and store relevant data. The dataset 
includes product details like price, category, and sale indicators. The data is 
uncensored, covering the entire lifespan of all products sold by these retailers, and 
provides prices similar to those obtained in offline stores (Cavallo 2017). We use a 
subset of data from retailers in 9 European countries: France, Germany, Greece, 
Ireland, Italy, the Netherlands, Spain, Poland, and the UK. The period ranges from 
January 1st, 2019 to May 1st, 2023. We focus on the “Food and Beverages” 
category, which has experienced one of the highest rates of inflation during this 
period in many countries. 

This dataset offers several advantages over traditional data sources such as 
Consumer Price Index (CPI) and Scanner Data. Firstly, it provides daily price 
updates, free from unit values, time-averaging, and imputations, which are common 
issues in CPI and Scanner Data. This high-frequency data collection allows for a 
more accurate identification of sales and price changes (Cavallo, 2018). Another 
major advantage of this dataset is the uncensored price spells. Unlike with other 
data, prices here are continuously recorded from the day they are first offered to 
consumers until they are discontinued, offering a complete and unaltered view of the 
product’s price life cycle. Furthermore, the data is comparable across countries, 
collected using identical techniques for similar categories of goods over the same 
time period. Finally, it offers real-time availability, providing up-to-date information 
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without processing delays. This makes it a potentially valuable tool for central banks 
and policymakers in real-time estimation of price stickiness and related statistics. 

In Table 1, we present summary statistics of price-setting behavior for several Euro 
area countries using data provided by PriceStats. We identify regular prices using 
the sales indicator provided by PriceStats. Additionally, we present aggregate 
statistics from related studies to complement our analysis. In particular, we use the 
statistic for the frequency of price changes from Gautier et al. (2022), who use data 
underlying the CPI. They report several statistics using data from the large-scale 
Price-Setting Microdata Analysis (PRISMA) network led by the ECB. The statistics of 
mean, standard deviation, and kurtosis of price changes were kindly provided by the 
authors upon request. We also use statistics from supermarket scanner data in 4 
Euro Area countries from Karadi et al. (2023). The source of those data is IRI. To 
compute the standard deviation of the size of price changes for the supermarket 
scanner data, we use their reported measure for the mean absolute deviation (MAD) 
and the assumption that the distribution is close to normal so that 𝑆𝑆𝑆𝑆𝑆𝑆(Δ𝑥𝑥) ≈ √2 ⋅
𝑀𝑀𝑀𝑀𝑆𝑆(Δ𝑥𝑥). 

Our choice of reported statistics is guided by theoretical insights. The frequency of 
price changes gives information about the cost of price management. Moreover, 
when analyzed with the standard deviation of price changes, they allow us to infer 
the size of idiosyncratic productivity shocks affecting firms. In turn, kurtosis has been 
shown to reveal important information about the response of an economy to 
aggregate shocks. In Alvarez et al. (2016), the authors remark that kurtosis encodes 
information about the “selection” of price changes: the idea that the observed price 
changes come from firms who need it the most and not from a random sample. A 
large kurtosis indicates a relatively large mass of late price adjusters, which implies a 
more persistent effect of a cost shock. The Calvo model, with a kurtosis of 6, does 
not feature “selection” of price changes since the adjusters are a random sample 
each period. 

Table 1 shows that the standard deviation of the size of price changes is similar 
across countries except for Italy and Ireland. The kurtosis measure is also similar 
across Euro area countries and ranges between 2.1 and 2.7, apart from Ireland, with 
a kurtosis of 1.6. The frequency of price changes in the food and beverages sector is 
larger than the aggregate data and differs across countries. For instance, the UK 
displays a frequency of 0.7 price changes per year, whereas the French one of 3.6 
price changes per year. 
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Table 1 
Price-setting Behaviour before 2022 

Euro area CPI data (PRISMA data, period 2005-19, Gautier et al. 2022) 

 Mean (𝚫𝚫𝚫𝚫) STD (𝚫𝚫𝚫𝚫) Kurtosis (𝚫𝚫𝚫𝚫) Frequency 𝛍𝛍� 

 0.019 0.10 4.1 1 0.019 

Euro area supermarket data (IRi data, period 2013-17, Karadi et al. 2023) 

 Mean (Δx) STD (Δx) Kurtosis (Δx) Frequency μ� 

 - 0.13 3.2 1.1 - 

Euro area Food and Beverages data (PriceStats data, period 2019-21) 

 Mean (Δx) STD (Δx) Kurtosis (Δx) Frequency μ� 

France -0.001 0.13 2.3 3.6 -0.002 

Germany 0.008 0.13 2.5 1.4 0.017 

Greece 0.003 0.10 2.7 2.0 0.005 

Ireland 0.001 0.32 1.6 1.6 0.001 

Italy -0.002 0.23 2.1 2.1 -0.003 

Netherlands 0.009 0.11 2.3 2.8 0.022 

Spain 0.008 0.16 2.5 2.9 0.016 

EA Average 0.004 0.15 2.4 2.4 0.007 

Other countries Food and Beverage data (PriceStats, period 2019-21) 

 Mean (Δx) STD (Δx) Kurtosis (Δx) Frequency μ� 

Poland 0.013 0.21 2.2 2.8 0.023 

UK 0.002 0.29 1.9 0.7 0.002 

Notes: The PriceStats data uses a sample of changes in regular prices (excluding sales). The statistics are computed after dropping 
price changes larger than 1.50 log points in absolute value and products with less than 3 price spells for the period 2019-2021. 
Kurtosis is computed using a correction for unobserved heterogeneity proposed by Alvarez et al. (2022). The statistic for the frequency 
of price changes from the Price-setting Microdata Analysis (PRISMA) network is obtained from Table 7 in Gautier et al. (2022). The 
other statistics were kindly provided by the authors. We report the statistics after dropping outliers corresponding to the bottom and top 
2.5% of the distribution of price changes. These data cover the period from 2005 to 2019. The statistics from Karadi et al. (2023) are 
taken from their Table 2 and correspond to the average of 4 Euro Area countries: Germany, France, Italy, and the Netherlands 
between 2013 and 2017. 

Calibration. We calibrate the model to match the standard deviation, the kurtosis, 
and the frequency of price changes. We use the identity 𝜎𝜎2 = 𝑁𝑁 ⋅ 𝑉𝑉𝑉𝑉𝑉𝑉(Δ𝑥𝑥) since this 
relationship holds for a wide variety of models when 𝜇𝜇 ≈ 0, see Alvarez et al. (2022). 
We use standard values for the additional parameters of elasticity of substitution and 
intertemporal preference: 𝜂𝜂 = 6 (which implies a markup of 20%) and a time discount 
𝜌𝜌 = 0.05 . We choose an inflation rate of 𝜇𝜇 = 2% consistent with inflation at steady 
state. The selection of a kurtosis value of 2.8 for the PRISMA data stems from the 
acknowledgment that the value of 4.1 does not account for unobserved 
heterogeneity. In a comparable investigation employing French CPI data, Alvarez et 
al. (2021) control for heterogeneity through an appropriate filter. As a result, their 
analysis yields a reduced kurtosis estimate that is 32% lower, providing a basis for 
deriving the value of 2.8 mentioned above. 
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Chart 6 
The Size of Price Adjustments, 𝑞𝑞(𝛥𝛥𝑥𝑥), in France – Food and Beverages sector 

 

Notes: The right panel shows the distribution for regular price changes with absolute value less of than one standard deviation which in 
this case is 13%.  

Next, we use a GMM estimator to calibrate the parameters of the effort cost function 
κ, γ to match the standard deviation and kurtosis of price changes. With the 
described estimation method, the model is exactly identified, and there is a one-to-
one mapping between the mentioned moments and the parameters of the cost 
function. The calibrated parameters are shown in Table 2. Recall that the kurtosis of 
a Calvo model is equal to 6, while the kurtosis of a canonical menu cost model is 1. 
The data suggest a somewhat intermediate situation. Next, we present a few key 
predictions of the model about the frequency and the size distribution of the price 
changes. 

Table 2 
Calibration for Price-Setting Behaviour in the Euro Area before 2022 

Parameters 
CPI data (PRISMA data) 

Gautier et al. 2022 
Supermarket data (IRi data) 

Karadi et al. 2023 
Food and Beverages data 

(PriceStats data) 

 𝝈𝝈 = √𝑵𝑵 ⋅ 𝑺𝑺𝑺𝑺𝑺𝑺(𝚫𝚫𝚫𝚫) 0.10 0.14 0.23 

 𝜸𝜸  3.30 4.19 2.61 

 𝜿𝜿 0.21 0.28 0.09 

Matched moments    

STD(𝚫𝚫𝒙𝒙) 0.10 0.13 0.15 

Kurt(𝚫𝚫𝒙𝒙)  2.8(𝑎𝑎) 3.2 2.4 

Frequency (𝑵𝑵) 1 1.1 2.4 

Notes: (a): The matched value of kurtosis for the PRISMA data is corrected for heterogeneity using a multiple from Alvarez et al. 
(2021) who perform the correction for French CPI data. Parameters 𝛾𝛾, 𝜅𝜅 are calibrated using a GMM estimator to match the standard 
deviation and kurtosis of price changes in data (Table 1). The drift of price gaps is 𝜇𝜇 = 2%. The additional parameters are set to 
standard values: 𝜂𝜂 = 6, 𝜌𝜌 = 0.05. 

Frequency of price changes. The cross-sectional distribution of firms’ price gaps 
𝑓𝑓(𝑥𝑥) and the generalized hazard function Λ(𝑥𝑥) can be used to compute several 
objects that are observable in data. The steady-state frequency of price adjustments 
𝑁𝑁 is given by 

𝑁𝑁 = ∫ 𝑓𝑓(𝑥𝑥)Λ(𝑥𝑥)𝑑𝑑𝑥𝑥∞
−∞        ( 4 ) 
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The equation has a simple interpretation: it counts the total number of firms with a 
given price gap, 𝑓𝑓 , and their probability of adjustment in a time period (say a year), 
Λ. These price adjustments originate from the firm’s effort ℓ to control the price gaps. 

Distribution of the size of price changes. Recall that upon any price change, the 
firm resets its gap from 𝑥𝑥 to the optimally chosen 𝑥𝑥∗, i.e. the size of the adjustment is 
Δ𝑥𝑥 = 𝑥𝑥∗ − 𝑥𝑥. This occurs with probability Λ(𝑥𝑥) per unit of time. Then the distribution of 
the size of price changes has the following density 𝑞𝑞(Δx): 

𝑞𝑞(Δ𝑥𝑥) ≡ Λ(𝑥𝑥)𝑓𝑓(𝑥𝑥)
𝑁𝑁

        ( 5 ) 

The left panel of Chart 7 shows that the calibrated model can capture some key 
features of the data in Chart 6: the distribution of price changes is bimodal, with a dip 
at zero. The latter is a major difference compared to the prediction of the Calvo 
model, where the constant hazard implies a mode at zero, i.e., that the most 
frequently observed price change has a tiny size. This prediction is counterfactual 
and it is a telltale of the fact that price-setting behavior displays state dependence: 
prices are adjusted only when necessary. 

Chart 7 
Distribution of the size of price adjustments, 𝑞𝑞(Δ𝑥𝑥), in two models 

 

Notes: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a 
frequency of 𝑁𝑁 = 2.4 price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15%, respectively. 

3.1 The propagation of an aggregate cost shock 

In Chart 2, we reported that inflation and the frequency of price adjustments rose 
quickly after a large energy shock. In this subsection, we provide a thought 
experiment that rationalizes these facts. Namely, it takes an economy at steady state 
and hits it with a marginal cost shock, as will be made precise below. We take 
calibrations of the price-setting model presented in Table 2 to study the propagation 
of large and small shocks. We will illustrate that, under a GHF model, large and 
small shocks have different implications for passthrough and the frequency of price 
adjustments. 
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In this study, we will focus on the implications of a large shock characterized by a 
20% rise in marginal costs. The rationale behind this specific figure stems from the 
observed escalation in energy prices, which surged by 200% between January 2021 
and April 2022, as depicted in Chart 1. By considering the proportion of energy 
expenses, estimated to constitute 10% of total input costs, we determine that this 
value of 20% accurately captures the magnitude of the shock under investigation. 

Take an economy characterized by a steady state cross-sectional distribution of price 
gaps 𝑓𝑓 and a policy rule Λ. The economy is then hit by an unexpected once-and-for-
all shock to marginal cost that displaces the distribution of price gaps 𝛿𝛿 percentage 
points to the left, as in Chart 8. Firms would like to increase their prices to close their 
gaps. This incentive shapes the dynamic response of the price level and the 
frequency of price changes after the shock. We will describe the transition of these 
variables back to steady state for small and large shocks. 

Chart 8 
Displacement of price gaps: Large vs Small Cost shock 

 

Notes: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a 
frequency of 𝑁𝑁 = 2.4 price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15% respectively. The GHF 
is plotted relative to the right vertical axis. 

To understand the mechanism behind the propagation of the shock, notice that in 
Chart 8, the distribution after the shock places most firms’ prices in a region far from 
their desired prices (at a price gap of around −20%). In this region, the probability of 
adjustment Λ(𝑥𝑥), plotted in dotted black, is higher. This means that a large shock 
triggers an increase in the number of price adjustments, whereas for a small shock 
this effect is much weaker. 
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Chart 9 
Size-dependent propagation of shocks 

 

Notes: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a 
frequency of 𝑁𝑁 = 2.4 price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15% respectively. 

Chart 9 plots the response of the frequency and the price level after shocks of 
different sizes. The model predicts that the frequency of price changes increases 
sharply after a large shock. This is due to many firms lying in a region far from their 
desired gap 𝑥𝑥∗, i.e., a region where the hazard, Λ(𝑥𝑥), is relatively high. This yields a 
persistent increase in the frequency of price adjustments. Notice that this effect 
cannot be generated by the constant hazard of the Calvo model. 

Chart 10Dynamics of inflation 

 

Notes: The model displays the dynamics of inflation of a cost shock with 𝛿𝛿 = 20%. The state-dependent model uses the calibration for 
the food and beverages sector of euro area countries in Table 2. The calibration matches a frequency of 𝑁𝑁 = 2.4 price changes a year, 
the kurtosis and standard deviation of price changes of 2.4 and 15% respectively. The time-dependent model is a Calvo model with 𝑁𝑁 
= 2.4. 

We now study how a large cost shock propagates to the price level in an economy 
characterized by the Euro Area food and beverages sector data. The left panel of 
Chart 10 presents the dynamics of inflation after a 20% shock to marginal costs in 
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such an economy. Namely, for the GHF model calibrated with the PriceStats data in 
Table 2. The figure further depicts the inflation dynamics implied by a Calvo model 
with an identical steady-state frequency of price adjustments (dotted red line). The 
figure illustrates the economy’s swifter response to the large shock in comparison to 
the corresponding reaction predicted by the Calvo model. Put another way, the figure 
shows the forecast error associated with the use of a Calvo model: failing to account 
for the large increase in the frequency of price revisions, the Calvo model leads to a 
substantial initial underestimation of inflation followed by a subsequent 
overestimation. 

Chart 11 
The distribution of price changes after a large shock 

 

Notes: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a 
frequency of 𝑁𝑁 = 2.4 price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15% respectively. 

Chart 11 presents an additional validation of the model, showcasing the dynamics of 
the price change distribution in response to a large shock. The right panel illustrates 
the distribution of price changes following the shock, while the left panel displays the 
distribution of price changes for France before and after the energy price shock. 
Notably, the model successfully reproduces the qualitative characteristics observed 
in the French data, namely an asymmetric distribution with a greater mass of positive 
price adjustments. 

In summary, the state-dependent model, supported by the granular empirical 
evidence, features a dynamic response to a large cost shock that resembles the 
patterns for inflation and the frequency of price adjustments following the recent 
energy cost shocks in Europe. Furthermore, the forecast of the frequency of price 
changes and the path of inflation can be markedly different depending on the model 
the analyst is using. When shocks are large, the Calvo model, or more generally any 
time-dependent model, will fail to capture the change in the frequency of price 
adjustments and hence yield a biased forecast of inflation, as illustrated in Chart 10. 

4 Quantifying the welfare cost of inflation 

In this section, we analyze the welfare costs in NK models in two steps. First, we 
measure both welfare costs, 𝜒𝜒 and 𝜑𝜑, in a steady state. We assess these costs using 
data from the low inflation period that prevailed before 2022. Second, we study the 
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dynamics of these welfare costs following a large shock to the firms’ marginal costs. 
Specifically, we explore the change in welfare costs that follow the large energy price 
increases in March 2022. 

We focus on two inefficiencies that arise in the new Keynesian framework due to the 
sticky-price friction. The first is due to price gap dispersion: sticky prices introduce a 
wedge between the marginal rate of substitution and the marginal rate of 
transformation for consumers and workers. These wedges give rise to an inefficient 
allocation of resources. We call this the welfare cost of “misallocation” and denote it 
by 𝜒𝜒. The second one arises when firms waste resources to keep prices close to 
their optimal levels. This corresponds to a deadweight loss, akin to the shoe-leather 
cost of inflation in textbook models of money demand. We call this the welfare cost 
of “price management” and denote it by 𝜑𝜑. Since the welfare costs depend on the 
distribution of price gaps, which is unobservable, we derive a mapping between the 
welfare costs (𝜒𝜒 and 𝜑𝜑) and a set of observable moments from the distribution of the 
size of price changes and the frequency of price changes. 

We use three different data sets to inform our analysis. First, we use granular data 
for the food and beverages sector of several European countries taken from 
PriceStats (Cavallo, 2018). Although these data cover only a fraction of the CPI, the 
high quality of the measurement, based on daily observations, is important to identify 
key features of price-setting behavior. Second, we use some descriptive statistics for 
the Euro Area taken from the Price-setting Microdata Analysis (PRISMA) network 
(Gautier et al., 2022) that uses data underlying the CPI in several Euro area 
countries. Thirdly, we use some descriptive statistics from Karadi et al. (2023), who 
use supermarket data for some Euro Area countries. 

4.1 Measuring the welfare costs in NK models in steady state 

Misallocation. As explained above, the first component of the welfare costs is due to 
wedges introduced by price gaps. Namely, it is related to price gap dispersion. These 
welfare costs also scale with the parameter of elasticity of demand. Intuitively, this is 
due to a larger resource-shifting reaction caused by a more sensitive demand. It can 
be shown that the welfare cost of misallocation denoted by χ is given by 

𝜒𝜒(𝑡𝑡) ≡ 𝑈𝑈−𝑈𝑈�

𝑈𝑈𝑐𝑐⋅𝐶𝐶̅
≈ 𝜂𝜂

2
𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝑥𝑥),       ( 6 ) 

where the index 𝑡𝑡 emphasizes that this expression can be used in steady state as 
well as along a transition after a shock. The cost 𝜒𝜒 is expressed in terms of GDP 
percentage loss relative to the efficient GDP level. Notice that the expression above, 
up to first order, is the one used in traditional monetary policy analyses presented by 
Gali (2008) (pp. 63) and Woodford (2003) (pp. 396).16 

The expression in equation (6) gives us a direct map from the distribution of price 
gaps to welfare losses due to misallocation. However, price gaps are unobservable, 
see equation (2), since they require observing firms’ productivity. To address this 

 
16  Recall that we analyse a steady state problem so second order effects (risk) are not present. 
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issue, we derive a mapping from data moments to the variance of price gaps. It can 
be shown that in a low inflation steady state, the variance of price gaps satisfies, 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥)  =  𝑉𝑉𝑎𝑎𝑉𝑉(Δ 𝑥𝑥)⋅𝐾𝐾𝐾𝐾𝑉𝑉𝑡𝑡(Δ 𝑥𝑥)
6

.        

This expression, together with equation (6) and an estimate for the elasticity of 
demand, allows the researcher to gauge the level of misallocation costs due to sticky 
prices in steady state. 

We are not the first ones to attempt measuring price gap dispersion. However, we 
emphasize the limited informativeness of measuring price level dispersion, even at 
the product level (Sheremirov, 2020), with regard to assessing misallocation. It is 
crucial to recognize that variations in prices can be attributed to differences in 
productivity, which do not necessarily indicate inefficiency.17 Instead, examining the 
standard deviation of price changes and its kurtosis proves to be an appropriate 
approach in this context. 

Firstly, emphasizing the magnitude of price changes yields valuable insights into 
inefficiency wedges, given that such changes reveal the pre-adjustment price gap 𝑥𝑥, 
a point made by Nakamura et al. (2018).  However, relying solely on this statistic 
may be insufficient, as various models can exhibit identical standard deviations of 
price changes while displaying different levels of misallocation. 

The kurtosis of price changes, which encodes the “selection” effect, is the second 
key statistic to measure misallocation. A large kurtosis is an indicator of a relatively 
large mass of late price adjusters which implies larger misallocation (Alvarez et al., 
2016). For example, fixing the standard deviation of price changes, the Calvo model, 
with a kurtosis of 6, does not feature “selection” of price changes since the adjusters 
are a random sample each period. In contrast, a canonical menu cost model has a 
kurtosis of 1. The evidence in Table 1 seems to suggest an intermediate point with 
kurtosis hovering around 2 and 3.5. 

In a related study, Blanco et al. (2022) have estimated the extent of misallocation 
and menu costs leveraging data underlying the CPI in the UK. Their estimations 
share a similar order of magnitude when compared to our favored calibration for the 
Euro Area, with a misallocation cost accounting for 2 percentage points of GDP and 
menu costs amounting to 2.4 percentage points of firms’ revenues for the UK.18 

Nakamura et al. (2018) investigate the effect of inflation on misallocation. They argue 
that misallocation comoves with the size of price changes. They aim to shed light on 
the effects of inflation using observations on the absolute size of price changes. 
Intuitively, an increase in the size of the price changes suggests an increase in 
misallocation. While such an approach provides information on the change of the 
welfare costs, it is silent about their level, as we argued above. 

 
17  Sheremirov (2020) acknowledges this limitation and undertakes a significant endeavour to control for 

many determinants of productivity across retailers to shed light on inefficient price dispersion. 
18  Their model includes some features absent in ours e.g., strategic complementarity in pricing decisions. 
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Price management. The second source of inefficiency is due to the forgone 
resources used to perform price-management activities by firms. 

Zbaracki et al. (2004) present an interpretation based on empirical findings from 
managerial reports in the United States. The authors posit that pricing activities 
require managers to spend resources on processes such as information acquisition, 
decision-making, and communication costs. Additionally, they claim that the 
magnitude of these allocated resources increases in a convex manner with the 
absolute size of the price change. They estimate the costs of price management to 
be around 1 percentage point of GDP. 

We can observe that the price-management technology of the model presented in 
Section 2 shares the qualitative features described in Zbaracki et al. (2004). Recall 
that firms face a convex cost (𝜅𝜅ℓ)𝛾𝛾 corresponding to the effort ℓ of managing prices. 
Since the optimal effort rate ℓ∗ = Λ(𝑥𝑥) increases with the absolute size of the price 
change |𝑥𝑥∗ − 𝑥𝑥| then the price-management cost is convex in the absolute size of 
adjustment. 

The expression giving the cost of price management in the GHF model is 

𝜙𝜙(𝑡𝑡) ≡ 1
𝜂𝜂
⋅ 𝔼𝔼𝑡𝑡��𝜅𝜅Λ(𝑥𝑥)�𝛾𝛾�       ( 7 ) 

This equation has the following interpretation: it counts the total effort cost 
(resources) used to affect the probability of price adjustment. Since these costs are 
expressed as a percentage of forgone firm’s profits, the expression is then divided by 
𝜂𝜂, the share of profits in GDP, to obtain a measure as a percentage of GDP. 

Application to data. We next analyze the data through the lenses of the results just 
established. Table 3 reports the estimated steady state welfare costs, measured over 
the low inflation period before 2022, using the datasets described before. 
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 Table 3 
Estimates of Welfare Costs for the Steady State before 2022 

Observables Estimates 

Euro area CPI data (PRISMA data, period 2005-19, Gautier et al. 2022) 

 Frequency STD (𝚫𝚫𝚫𝚫) Kurtosis (𝚫𝚫𝚫𝚫) 𝐕𝐕𝐕𝐕𝐕𝐕� (𝚫𝚫) 𝛘𝛘� 𝛟𝛟�  

 1 0.10 2.8(a) 0.005 0.015 0.004 

Euro area supermarket data (IRi data, period 2013-17, Karadi et al. 2023) 

 Frequency STD (Δx) Kurtosis (Δx) Var� (x) χ� ϕ�  

 1.1 0.13 3.2 0.009 0.027 0.005 

Euro area Food and Beverages data (PriceStats data, period 2019-21) 

 Frequency STD (Δx) Kurtosis (Δx) Var� (x) χ� ϕ�  

France 3.6 0.13 2.3 0.006 0.019 0.007 

Germany 1.4 0.13 2.5 0.007 0.020 0.007 

Greece 2.0 0.10 2.7 0.005 0.014 0.003 

Ireland 1.6 0.32 1.6 0.027 0.080 0.042 

Italy 2.1 0.23 2.1 0.019 0.057 0.021 

Netherlands 2.8 0.11 2.3 0.004 0.013 0.005 

Spain 2.9 0.16 2.5 0.010 0.021 0.009 

EA Average 2.4 0.15 2.4 0.009 0.027 0.008 

Other countries Food and Beverages data (PriceStats data, period 2019-21) 

 Frequency STD (Δx) Kurtosis (Δx) Var� (x) χ� ϕ�  

Poland 2.8 0.21 2.2 0.015 0.046 0.017 

UK 0.7 0.29 1.9 0.027 0.080 0.033 

Notes: Data sources for observables are discussed in Table 1. (a): We use a value of kurtosis of 2.8 for the PRISMA data in an attempt 
to correct for heterogeneity, see the discussion in Table 2. The estimates for the welfare costs are obtained from the model calibrations 
in Table 2 and assume an price elasticity of demand equal to 6 which implies a markup equal to 20%. The calibration matches the 
frequency of price changes per year, the kurtosis and standard deviation of price changes. 

For clarity, we used the granular European countries' data on food and beverages to 
illustrate the application of our main findings. But the results can be applied to 
measure the welfare costs in various sectors and countries where micro-data are 
available. The requirements for this assessment are the frequency, standard 
deviation, and kurtosis of the distribution of the sizes of price changes and an 
estimate for the elasticity of demand. We attempt a preliminary extension of our 
exercise using the pricing statistics collected by the Price-setting Microdata Analysis 
(PRISMA) in Gautier et al. (2022) and supermarket data for four Euro area countries 
taken from Karadi et al. (2023). As described in Table 1, we take the statistic of 
frequency of price changes from Table 7 of Gautier et al. (2022), whereas the other 
observables were kindly provided by the authors upon request. The choice of 2.8 as 
a value for the kurtosis of price changes is discussed in Table 2. The model 
calibrated to the Euro Area using the PRISMA data (Gautier et al., 2022) suggests 
that the costs of misallocation are in the order of 1.5% of GDP (fifth column of the 
table). The model also allows us to gauge the welfare costs due to the price 
management, which turn out to be smaller, in the order of 40 basis points of GDP 
(last column of the table). This magnitude is close to the direct estimates of 1% in the 
literature (Zbaracki et al., 2004). 
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The findings derived from the analysis presented in Table 3 are contingent upon an 
accurate estimation of three key values: the price elasticity of demand, the standard 
deviation of price changes, and the kurtosis of price changes. Based on our 
observations, the estimated values for kurtosis generally lie within the range of 2 to 
3.5, while standard deviation values typically range from 10% to 20%. Consequently, 
while it is prudent to approach point estimates with caution, we can reasonably 
assert that the estimated magnitudes fall within a narrow range depending on the 
particular price-setting behavior in the economy. 

Next, we will briefly discuss the effects of a change in the steady-state inflation rate 
and the associated welfare costs. However, we argue that this approach is not 
suitable for studying the welfare implications of the recent inflation surge. 
Consequently, we will proceed under the assumption that the steady-state inflation 
rate remains constant. This amounts to assuming that the shock only has a 
temporary effect on inflation but that it does not alter the long run inflation 
expectations. Our focus will be on studying the impact of a large cost shock, which 
we interpret as the recent energy experience in Europe during 2022 

Steady state inflation. One viable approach to analyze the costs associated with 
inflation is to consider alternative steady states with different inflation rates. 
Interestingly, most models considered before display little variation in the level of 
welfare costs as long as inflation remains below two digits. Chart 12 illustrates this 
result: the steady-state welfare costs as a function of inflation have a flat profile 
around zero inflation. This result occurs because, when inflation is low, the costs of 
misallocation in equation (6) are closely related to the size of price changes, which 
aligns with the firms’ desire to minimize such gaps. Stated differently, the firms’ 
optimal response to steady-state inflation mitigates the costs of misallocation. 

In particular,  Alvarez and Lippi (2022) show that all even moments of the distribution 
of price changes feature a low sensitivity to steady-state inflation. Chart 12 illustrates 
that both the cost of misallocation and price-management activities increase by 50 
basis points of GDP as steady-state inflation rises from 0% to 20%. As a matter of 
fact, the Calvo model allows us to obtain a closed-form solution of the price gap 
dispersion that arises under steady-state inflation. The cost χ in the Calvo model is 
proportional to Var(x) following equation (6), where the latter is given by 

(𝑉𝑉𝑉𝑉𝑉𝑉 𝑥𝑥)(𝜇𝜇) = �𝜇𝜇
𝑁𝑁
�
2

+ 𝜎𝜎2

𝑁𝑁
        

We observe that the variance of price gaps is flat at 𝜇𝜇 = 0, meaning that for small 
changes in steady-state inflation, the costs of misallocation remain essentially 
unchanged. 

The observations above need not be true for high inflation environments in steady 
state, as in e.g., Argentina or Turkey. Nevertheless, recent results by Baley and 
Blanco (2021) allow us to obtain an inverse mapping between observables and the 
variance of price gaps under high inflation. 
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Chart 12 
Steady-state inflation vs welfare cost (in % of GDP) 

 

Notes: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a 
frequency of 𝑁𝑁 = 2.4 price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15% respectively. 

4.2 The welfare cost of a large cost shock 

This section analyzes the welfare costs using a calibrated economy’s reaction to a 
large cost shock. We argue that a large portion of the recent inflation surge can be 
attributed to the large shock in energy prices that hit Europe in 2022. Additionally, we 
posit that this shock has not substantively affected expectations regarding the steady 
state level of inflation, which we maintain to be approximately 2% across our 
exercises. 

As documented above, a large shock triggers a sizeable increase in price-setting 
activity. A proper assessment of the welfare costs must account for the fact that since 
firms are more active (and more price changes are observed), both the degree of 
misallocation 𝜒𝜒 and the resources for price-setting activity 𝜑𝜑 are likely to change. The 
cumulative welfare costs of misallocation and price-management activities are given 
by 

𝐶𝐶IR[χ(t)]  =  ∫ (χ(s) − s)dst
0 ,    ,    CIR[ϕ(t)] = ∫ (ϕ(s) − ϕ)ds,t

0    ( 8 ) 

where 𝜒𝜒(𝑡𝑡) and 𝜙𝜙(𝑡𝑡), are defined in equation (6) and equation (7), respectively, and 
their steady-state values 𝜒𝜒 and 𝜙𝜙 are computed using the steady-state cross-
sectional distribution of price gaps 𝑓𝑓 . The cumulative response 𝐶𝐶𝐶𝐶𝐶𝐶[𝜒𝜒(𝑡𝑡)] in equation 
(8), measures the welfare costs of misallocation above and beyond the steady state 
cost. Likewise, the cumulative response 𝐶𝐶𝐶𝐶𝐶𝐶[𝜙𝜙(𝑡𝑡)] gives the total excess welfare cost 
of price management after time t has elapsed from the large shock. 

The left panel Chart 13 plots the cost of misallocation for the three shock sizes 
studied using the calibration to the Euro Area with data from the PRISMA network 
(Gautier et al., 2022). The cumulative costs of misallocation after a 20% shock are 
around 1.5 percentage points of GDP, as reported in Table 4. At the time of the 
shock, the variance of price gaps is the same as in steady state. However, the mass 
of firms that are displaced very far from their desired price are likely to adjust to 𝑥𝑥∗ 
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immediately after the shock, and this increases the variance of price gaps. More 
precisely, we can see in Chart 8 that 𝑥𝑥∗ is far from the mean price gap so the 
distribution displays more variance than at steady state. 

The cost of price management has no counterpart in our data, but we can use the 
model to infer these aggregate losses. The cumulative costs of price management 
after a 20% shock are around 1.2 percentage points of GDP, reported in Table 4. As 
mentioned before, the magnitude of the shock renders different levels and dynamics 
for the responses. For a large shock, the price-management costs are initially higher. 
First, this is because on average firms’ price gaps 𝑥𝑥 are further away from 𝑥𝑥∗ Which 
renders a high incentive to engage in costly price-management efforts. Second, the 
cost of price-management increases in a convex manner with the absolute size of 
the change. 

Table 4 reports estimates of the welfare costs of an inflationary 20% shock using the 
model. The estimated welfare costs for our preferred Euro Area calibration are 2.7 
percentage points of GDP. Moreover, the estimated costs implied by the supermarket 
data by Karadi et al. (2023) are 3 percentage points of GDP, whereas the costs 
implied by the food and beverages sector are 90 basis points of GDP. The stark 
difference between these welfare costs is attributed mainly to differences in the 
frequency and the kurtosis of price changes. Namely, the food and beverages data 
have a higher degree of price flexibility showcased by more frequent adjustments 
and a relatively lower mass of late adjusters. 

Table 4 
Estimates of welfare costs for the Euro Area triggered by a 20% cost shock 

Model calibration 𝛅𝛅 = 20% 𝐂𝐂𝐂𝐂𝐂𝐂[𝛘𝛘�] 𝐂𝐂𝐂𝐂𝐂𝐂�𝛟𝛟�� 

CPI data (PRISMA data, Gautier et al. 2022) 0.015 0.012 

Supermarket data (Karadi et al. 2023) 0.019 0.011 

Food and Beverages data 0.004 0.005 

Notes: The estimates for the cumulative welfare costs are obtained from model calibrations described in Table 2. 

Although unreported, we measured a lower standard deviation of price changes for 
2022-2023. One might be tempted to think that this standard deviation of price 
changes translates into lower misallocation, but this intuition is misleading. In fact, a 
lower standard deviation of price changes after a large shock is consistent with the 
dynamics predicted by the model and is associated with a higher cost of 
misallocation. 

In the right panel of Chart 13 we also show the evolution of the mean absolute size 
of price changes after a shock. This statistic has been used to gauge changes in the 
costs of misallocation (Nakamura et al., 2018). Indeed, the dynamics of this variable 
do behave qualitatively as the time profile of the costs of misallocation in this model. 
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Chart 13 
Impulse responses of moments of the distribution of price changes 

 

Notes: The model uses the calibration for the Euro area with PRISMA data which covers many sectors in several euro area countries 
(Gautier et al., 2022). For the calibration see Table 2. The calibration matches a frequency of 𝑁𝑁 = 1 price change a year, the kurtosis 
and standard deviation of price changes of 2.8 and 10% respectively. 

Economies with different frequencies of price changes. We presented a welfare 
analysis for a model calibrated to a frequency of 1 price change per year for the Euro 
Area. However, it is important to understand how these welfare costs vary across 
economies with different degrees of price flexibility as measured by their frequency 
𝑁𝑁. It can be proved that the cumulative welfare costs from two economies with the 
same distribution of price changes are inversely proportional to their frequency of 
price changes. 

For example, although not perfect, in Table 4, we can see that the cumulative welfare 
costs of the inflation episode for the food and beverages sector is roughly a third of 
the welfare costs for the aggregate PRISMA data, correspondingly the frequency of 
adjustments in the food and beverages sector is 2.4 times larger. 

5 Concluding remarks 

The New Keynesian paradigm, which greatly influences modern monetary 
economics, assumes that firms' prices are somewhat rigid and unresponsive to 
fundamental shocks, at least temporarily. We concentrate on two inefficiencies that 
emerge from this framework. First, the assumption of sticky prices implies distorted 
prices, impeding efficient resource allocation—this is known as the welfare cost of 
misallocation. Second, firms waste resources to maintain prices near optimal levels, 
resulting in a deadweight loss—we term this as the welfare cost of price 
management. 

We propose a methodology to calculate both welfare costs for the period preceding 
2022 and during the subsequent high inflation period triggered by substantial energy 
shocks in Europe. This task is complex because the welfare costs are not directly 
observable, as is often the case in welfare economics. To measure these costs, we 
apply a tractable sticky-price model, mapping it to detailed data from PriceStats and 
the ECB’s PRISMA project. 
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Our findings reveal significant welfare costs for the Euro Area. In the low-inflation 
environment that prevailed before 2022, the efficiency cost amounts to roughly 2% of 
GDP. About 3/4 of these steady-state costs result from misallocation, while the 
remaining 1/4 is attributed to the costly price management activity.  

Moreover, we estimate how the recent inflationary shock has affected these welfare 
costs. We found that the energy shocks led to an above-average surge in costly 
repricing activity, cumulatively adding to a cost of around 1.2% of GDP. A comparable 
increase in the welfare cost was caused by a temporary increase of the economy's 
misallocation. The total cumulated welfare costs of the energy shock thus range at 
about 2.7% of GDP. 

We see our contribution as providing a first step in quantifying the welfare costs of 
misallocation in NK models.  Indeed, we hope that our analysis will serve as a 
pathway to future research. We emphasize that our findings are initial estimations 
subject to refinement and development as additional data and improved models 
become available. 
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