Inflation and Misallocation in New Keynesian models

Alberto Cavallo, Francesco Lippi, Ken Miyahara

Harvard Business School LUISS & EIEF LUISS & EIEF

ECB Forum on Central Banking, Sintra, June 2023

Introduction

- We focus on two questions:
 - Q1: The mechanism behind the recent inflation dynamics
 - Q2: The quantification of the "welfare costs"

Classic analyses: "inflation as a tax on real balances" Bailey, Friedman, Fisher, Lucas, Lagos-Wright

Today: analysis within CB's dominant paradigm (NK model)

Welfare costs in CB's dominant paradigm

- Phillips-curve (sticky-price) models imply:
 - suboptimal pricing, $p_i \neq p_i^*$: misallocation of resources: χ
 - costly repricing: waste of resources: ϕ

- Measure unobserved distortions using model
 - in a (low inflation) steady state and after a large cost shock
 - select a model that can account for main data patterns

Motivation

Large energy shocks followed by two-digit inflation in Europe

HICP inflation, Euro area

Our stylized view: firms' marginal costs increase by approx 10 - 20%

After 2022: higher frequency of price changes

... frequency higher in all sectors

Banque de France Monthly business survey (see Dedola et al. 2023)

Price-Gap
$$x_i(t) = \log P_i(t) - \log P_i^*(t)$$
 where $P_i^*(t) \equiv \underbrace{\frac{\eta}{\eta - 1}}_{\text{markun}} \cdot \underbrace{\text{mc}_i(t)}_{\text{Marg. Cost}}$

Price-Gap
$$x_i(t) = \log P_i(t) - \log P_i^*(t)$$
 where $P_i^*(t) \equiv \underbrace{\frac{\eta}{\eta - 1}}_{\text{markup}} \cdot \underbrace{\text{mc}_i(t)}_{\text{Marg. Cost of }}$

► The firm's decision problem (Caballero-Engel , 1999)

$$V(x) = \mathbb{E}\left[\int_0^\infty e^{-\rho s} \min_{x^*, \Lambda \ge 0} \left(\underbrace{\frac{\eta(\eta - 1)}{2} x(s)^2}_{\text{costly mispricing}} + \underbrace{(\kappa \Lambda)^{\gamma}}_{\text{costly repricing}}\right) ds \mid x(0) = x\right]$$

Optimal firm's policy $\Lambda(x)$: probability to reset price gap x

Price-Gap
$$x_i(t) = \log P_i(t) - \log P_i^*(t)$$
 where $P_i^*(t) \equiv \underbrace{\frac{\eta}{\eta - 1}}_{\text{markup}} \cdot \underbrace{\text{mc}_i(t)}_{\text{Marg. Cost of }}$

► The firm's decision problem (Caballero-Engel , 1999)

$$V(x) = \mathbb{E}\left[\int_0^\infty e^{-\rho s} \min_{x^*, \Lambda \ge 0} \left(\underbrace{\frac{\eta(\eta - 1)}{2} x(s)^2}_{\text{costly mispricing}} + \underbrace{(\kappa \Lambda)^{\gamma}}_{\text{costly repricing}}\right) ds \mid x(0) = x\right]$$

Optimal firm's policy $\Lambda(x)$: probability to reset price gap x

▶ 3 model parameters: $\{\sigma, \kappa, \gamma\}$ identified by 3 data moments

Hazard function $\Lambda(x)$, the firm's decision rule

Recall: Price gap $x \equiv p_i - p_i^*$; if adjust set $x \approx 0$; inflation 2%

Frequency of price changes : $N \equiv \int \Lambda(x) f(x) dx$

Hazard function $\Lambda(x)$: evidence from related studies

Prob. of price-change depends on "gap" from ideal price $x_i \equiv p_i - p_i^*$

Strong evidence of state-dependent behavior

Steady state distribution of price gaps

The firm hazard Λ implies cross-sectional distribution f(x)

interesting object for our questions, but not observable....

Distribution of the size of price changes $q(\Delta x)$

$$q(\Delta x) \equiv \frac{\Lambda(x)f(x)}{N}$$
 , $\Delta x \equiv x^* - x$

Food and beverages; PriceStats data 2021

Key pricing moments observed before 2022

	Euro Area: Food and Beverages Sector (PriceStats, 2019-21)			
EA6 Average	STD (Δx) 0.15	Kurtosis (Δx) 2.4	Frequency (N) 2.4	Drift $\hat{\mu}$ 0.007

Map between Data and Model

$$\{\underbrace{\mathsf{STD}(\Delta x)}_{\mathit{size}}, \underbrace{\mathsf{Kurt}(\Delta x)}_{\mathit{shape}}, \underbrace{\mathsf{N}}_{\mathit{frequency}}\} \Leftrightarrow \{\underbrace{\kappa, \sigma, \gamma}_{\mathit{3} \; \mathsf{model} \; \mathsf{parameters}}\}$$

Key pricing moments observed before 2022

size

frequency

shape

3 model parameters

The steady state welfare costs (due to p-stickiness)

Welfare cost of misallocation for $\mu \approx 0$

$$\chi = \frac{\eta}{2} \underbrace{\text{Var}(x)}_{\text{gaps dispersion}} = \frac{\eta}{2} \frac{\text{Var}(\Delta x) \text{Kurt}(\Delta x)}{6}$$

Welfare cost of price management ϕ (implied by model)

The steady state welfare costs (due to p-stickiness)

Welfare cost of misallocation for $\mu \approx 0$

$$\chi = \frac{\eta}{2} \underbrace{\operatorname{Var}(x)}_{\text{gaps dispersion}} = \frac{\eta}{2} \frac{\operatorname{Var}(\Delta x) \operatorname{Kurt}(\Delta x)}{6}$$

Welfare cost of price management ϕ (implied by model)

Loss Estimates as a fraction of Consumption ; assume $\eta=6$ Euro area CPI data (PRISMA data, period 2005-19, Gautier et al. 2022)

Misallocation Cost Price-management cost $\widehat{\chi}$ 0.015

0.005

Distribution of price gaps after small shock

Distribution of price gaps after Large (20%) shock

Large shocks are different (non-linear Phillips Curve)

Frequency of price changes: N(t)

time-dependent model is ok when shocks are small

Large shocks are different (non-linear Phillips Curve)

Frequency of price changes: N(t)

state-dependent model matches data

Insight #1: Large shocks make prices "more flexible"

Inflation is front loaded after a large shock

inflation starts earlier, and stops earlier (than "Calvo" suggests)

Welfare costs dynamics after large cost shock

Summary measure of welfare costs after large shock

Cumulative cost (as a fraction of GDP)

Model calibration $\delta = 20\%$	Misallocation	Price-management
CPI data , PRISMA data Gautier et al. 2022	0.015	0.014
Supermarket data Karadi et al. 2023	0.019	0.013
Food and Beverages data PriceStats	0.004	0.006

Summary measure of welfare costs after large shock

Cumulative cost (as a fraction of GDP)

Model calibration $\delta = 20\%$	Misallocation	Price-management
CPI data , PRISMA data Gautier et al. 2022	0.015	0.014
Supermarket data Karadi et al. 2023	0.019	0.013
Food and Beverages data PriceStats	0.004	0.006

Insight # 2: large energy shock increase welfare costs (3% GDP)

Summing up

We focussed on two questions:

- Q1: The propagation of the cost shock
 - Policy insight: large shocks travel fast
 - Do not use mechanistic "Old Phillips curve" to forecast inflation

Summing up

We focussed on two questions:

- Q1: The propagation of the cost shock
 - Policy insight: large shocks travel fast
 - Do not use mechanistic "Old Phillips curve" to forecast inflation
- Q2: The quantification of the "welfare costs" in NK economy
 - Large energy shock boosts distortions (an additional 2.9% of GDP)
 (1/2 of the increase due to price management activity)

Summing up

We focussed on two questions:

- Q1: The propagation of the cost shock
 - Policy insight: large shocks travel fast
 - Do not use mechanistic "Old Phillips curve" to forecast inflation
- Q2: The quantification of the "welfare costs" in NK economy
 - Large energy shock boosts distortions (an additional 2.9% of GDP)
 (1/2 of the increase due to price management activity)
- Future: enhance measurement and theory (transitory shocks, sticky wages, HH heterogeneity)

Thank you

Steady-state welfare cost at different inflation μ

Cost of Price Management: $\phi(\mu)$

- ▶ Both $\chi(\mu)$ and $\phi(\mu)$ are symmetric functions, hence $\frac{\partial \chi(\mu)}{\partial \mu}\Big|_{\mu=0} = \frac{\partial \phi(\mu)}{\partial \mu}\Big|_{\mu=0} = 0$
- In the Calvo model e.g. $\chi(\mu)=rac{\eta}{2}\; Var(x)=rac{\eta}{2}\left[\left(rac{\mu}{\zeta}
 ight)^2+rac{\sigma^2}{\zeta}\right]$