Discussion of

Daly, Hryshko and Manovskii: **Reconciling Estimates of Earnings Processes in Growth Rates and Levels**

Fourth Conference on Household Finance and Consumption

Jirka Slacalek

European Central Bank www.slacalek.com

Frankfurt, December 2015

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

The views expressed are mine and do not necessarily reflect those of the ECB.

Key Contribution

• Standard permanent/persistent (p)-transitory (τ) income process:

$$y_{it} = \alpha_i + p_{it} + \tau_{it}$$

$$p_{it} = \phi_p p_{it-1} + \xi_{it}$$

$$\tau_{it} = \theta(L) \epsilon_{it}$$

- Reconcile / understand discrepancies between estimates of var(ξ) and var(ε) in levels and differences (growth rates)
- Discrepancies driven by large variation of income around missing observations
- Missing observations affect estimates consumption insurance a la BPP (2008)

Estimation of Variances

• Estimation based on autocovariance moments $E[y_{it}y_{it+j}]$ or $E[\Delta y_{it}\Delta y_{it+j}]$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

- ▶ Following Heathcote, Perri, Violante (2010)
- Levels

Differences

► var
$$\xi = E[\Delta y_t \Delta y_{t-1}] + E[\Delta y_t \Delta y_t] + E[\Delta y_t \Delta y_{t+1}]$$

► var $\epsilon_t = -E[\Delta y_t \Delta y_{t+1}]$

Findings

- Moments: Cross-sectional averages
- Moments for differences can be based on fewer observations than for levels
- E.g. when missing observations
- Results in bias if NOT missing at random, eg if large variance around missing obs's
- Empirically, discrepancy b/w estimates in diffs and levels is driven by earnings at the beginning / end of sample and around missing values

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Results

- Missing data associated with high variance of rare (large) shocks
- Unmodeled rare shocks around missing obs's bias level estimates of transitory var upward
- Level moments blow up vars of transitory shocks because they confuse them with rare shocks
- > Estimates of perm var in differences are biased upward

Lessons

- Level estimates of perm shock variance are unbiased
- Difference estimates of trans shock variance are unbiased
- Size of biases depends on how mean/variance of rare shocks differs from 'normal' shocks

Data

Large administrative datasets from Denmark and Germany

An Aside: Survey vs Administrative Data

- ► Administrative data
 - Typically more precise, large samples
 - Can be particularly useful given this application with missing observations
- BUT survey data may cover whole year
 - Asking about monthly income & number of months
 - Incomplete years at beginnig/end of sample in administr data could be adjusted/annualized?
 - ► May be better for some households, eg self-employed, grey economy

Estimates of Variances in Unbalanced Samples

		9 co:	nsec.			20 not nec. consec.								
	German data		Danish data		Germa	ın data	Danis	h data						
	Levs. (1)	Diffs. (2)	Levs. (3)	Diffs. (4)	Levs. (5)	Diffs. (6)	Levs. (7)	Diffs. (8)						
$\hat{\phi}_p$	$0.980 \\ (0.001)$	0.992 (0.0008)	0.964 (0.0008)	$0.990 \\ (0.0004)$	$0.995 \\ (0.001)$	0.997 (0.001)	0.967 (0.0007)	0.989 (0.0006)						
$\hat{\sigma}_{\xi}^2$	0.007 (0.0002)	0.019 (0.0003)	$0.007 \\ (0.0001)$	$0.012 \\ (0.0001)$	$0.0046 \\ (0.0001)$	0.008 (0.0002)	$0.0066 \\ (0.0001)$	$\begin{array}{c} 0.0103 \\ (0.0001) \end{array}$						
$\hat{\phi}_{ au}$	$\begin{array}{c} 0.173 \\ (0.006) \end{array}$	$\begin{array}{c} 0.173 \\ (0.014) \end{array}$	0.289 (0.003)	$0.285 \\ (0.004)$	$\begin{array}{c} 0.158\\ (0.009) \end{array}$	$\begin{array}{c} 0.316\\ (0.012) \end{array}$	$\begin{array}{c} 0.184\\ (0.004) \end{array}$	$\begin{array}{c} 0.355 \\ (0.004) \end{array}$						
$\hat{\sigma}_{\epsilon}^2$	$0.025 \\ (0.0004)$	0.009 (0.0003)	$\begin{array}{c} 0.022\\ (0.0002) \end{array}$	$\begin{array}{c} 0.014 \\ (0.0001) \end{array}$	$0.016 \\ (0.0003)$	0.011 (0.0003)	$\begin{array}{c} 0.023\\ (0.0002) \end{array}$	$\begin{array}{c} 0.016 \\ (0.0001) \end{array}$						

- ▶ $var(\xi)$: 0.0046–0.019, $var(\epsilon)$: 0.009–0.025
- $var(\xi)$ almost twice as high for diffs
- ► Level of earnings lower after missing spells, volatility higher

Estimates of Variances in Balanced Samples

- Discrepancy nearly absent in balanced samples
- 50% reduction in permanent shocks when diffs, 50% reduction in transitory shocks when levels

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Estimates of Consumption Insurance a la Blundell et al. (2008)

- Use PSID to replicate BPP estimates of insurance
- \blacktriangleright Dropping income outliers lowers substantially estimates of insurance against perm shocks: 74% \rightarrow 40%

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Friedman Permanent–Transitory Income Process

$$y_t = \alpha + p_t + \tau_t$$
$$p_t = p_{t-1} + \xi_{it}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Clean, sharp separation b/w permanent and transitory income shocks
- Convenient computationally (normalization)
- BUT results in (some?) misspecification

Variation in Estimates of Variances—Literature Review

	Permanent	Transitory		
Authors	σ_{ξ}^2	σ_{ϵ}^2		
Individual data				
MaCurdy (1982)	0.013	0.031		
Topel (1991)	0.013	0.017		
Topel and Ward (1992)	0.017	0.013		
Meghir and Pistaferri (2004)	0.031	0.032		
Nielsen and Vissing-Jorgensen (2006)	0.005	0.015		
Krebs, Krishna, and Maloney (2007)	\sim 0.01	~ 0.1		
Jensen and Shore (2008)	0.054	0.171		
Guvenen (2009)	0.015	0.061		
Heathcote, Perri, and Violante (2010)	0.01-0.03	0.05-0.1		
Hryshko (2012)	0.038	0.118		
Low, Meghir, and Pistaferri (2010)	0.011	-		
Sabelhaus and Song (2010)	0.03	0.08		
Guvenen, Ozkan, and Song (2012)	~ 0.05	~ 0.125		
Karahan and Ozkan (2012)	\sim 0.013	~ 0.09		
Blundell, Graber, and Mogstad (2013)	\sim 0.015	\sim 0.025		
Household data				
Carroll (1992)	0.016	0.027		
Carroll and Samwick (1997)	0.022	0.044		
Storesletten, Telmer, and Yaron (2004a)	0.017	0.063		
Storesletten, Telmer, and Yaron (2004b)	0.008-0.026	0.316		
Blundell, Pistaferri, and Preston (2008)	0.010-0.030	0.029-0.055		
Review of Economic Dynamics (2010)	0.02-0.05	0.02-0.1		
Blundell, Low, and Preston (2013)	~ 0.005			
DeBacker, Heim, Panousi, Ramnath, and Vidangos (2013)	0.007-0.010	0.15-0.20		
Implied by Daly, Hryshko, Manovskii	~ 0.01	~ 0.02	-	

To What Extent Does Misspecification Matter? I Carroll, Slacalek, Tokuoka (2014)

Scenario	$\begin{array}{l} \text{Baseline} \\ \sigma_{\psi}^2 = 0.01 \\ \sigma_{\theta}^2 = 0.01 \end{array}$	Low σ_{ψ}^2 $\sigma_{\psi}^2 = 0.005$ $\sigma_{\theta}^2 = 0.01$	$\begin{array}{l} \text{High } \sigma_{\theta}^2 \\ \sigma_{\psi}^2 = 0.01 \\ \sigma_{\theta}^2 = 0.05 \end{array}$	Very High σ_{θ}^2 $\sigma_{\psi}^2 = 0.01$ $\sigma_{\theta}^2 = 0.10$
Overall				
Average	0.12	0.12	0.14	0.17
By wealth-to-permanent	income rat	io		
Top 1%	0.06	0.06	0.06	0.06
Top 10%	0.06	0.06	0.06	0.06
Top 20%	0.06	0.06	0.06	0.06
Top 40%	0.06	0.06	0.06	0.07
Top 50%	0.07	0.07	0.05	0.07
Top 60%	0.07	0.06	0.07	0.08
Bottom 50%	0.17	0.17	0.22	0.26

Table 5 The MPC Under Alternative Variances of Income Shocks

- \blacktriangleright Transitory shocks: increase MPC among wealth-poor $0.22 \rightarrow 0.26$
- Permanent shocks: affect shape of C function negligibly

To What Extent Does Misspecification Matter? II

Druedahl and Jørgensen (2015): Misspecification of persistence ϕ_p

- Biases upward estimates of CRRA coef, up to 30%
- BUT affects little MPCs

Figure 4.1: MPC and MPCP Age Profiles ($\rho = 2$).

Notes: Figure 4.1 shows average age profiles of 500.000 simulated households. For the case without misspecification the *levels* are reported; otherwise the *differences* between the *estimated* and the *true* model are shown. All households are initialized without any wealth.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Conclusions

- Careful paper investigating biases in estimates of income variances
- Important work analyzing cross-country administrative data
- Need to understand more implications for modelling
- ▶ First-best may be to have age-specific shocks or rare shocks in income process

References |

- BLUNDELL, RICHARD, MICHAEL GRABER, AND MAGNE MOGSTAD (2013): "Labor Income Dynamics and the Insurance from Taxes, Transfers, and the Family," mimeo, University College London.
- BLUNDELL, RICHARD, HAMISH LOW, AND IAN PRESTON (2013): "Decomposing changes in income risk using consumption data," Quantitative Economics, 4(1), 1–37.
- BLUNDELL, RICHARD, LUIGI PISTAFERRI, AND IAN PRESTON (2008): "Consumption Inequality and Partial Insurance," American Economic Review, 98(5), 1887–1921.
- CARROLL, CHRISTOPHER D. (1992): "The Buffer-Stock Theory of Saving: Some Macroeconomic Evidence," Brookings Papers on Economic Activity, 1992(2), 61-156, http://econ.jhu.edu/people/ccarroll/BufferStockBPEA.pdf.
- CARROLL, CHRISTOPHER D., AND ANDREW A. SAMWICK (1997): "The Nature of Precautionary Wealth," Journal of Monetary Economics, 40(1), 41-71.
- DEBACKER, JASON, BRADLEY HEIM, VASIA PANOUSI, SHANTHI RAMNATH, AND IVAN VIDANGOS (2013): "Rising Inequality: Transitory or Persistent? New Evidence from a Panel of U.S. Tax Returns," *Brookings Papers on Economic Activity*, Spring, 67–122.

GUVENEN, FATIH (2009): "An Empirical Investigation of Labor Income Processes," Review of Economic Dynamics, 12.

GUVENEN, FATIH, SERDAR OZKAN, AND JAE SONG (2012): "The Nature of Countercyclical Income Risk," working paper 18035, NBER.

- HEATHCOTE, JONATHAN, FABRIZIO PERRI, AND GIOVANNI L. VIOLANTE (2010): "Unequal we stand: An empirical analysis of economic inequality in the United States, 1967–2006," *Review of Economic Dynamics*, 13(1), 15–51.
- HRYSHKO, DMYTRO (2012): "Labor Income Profiles Are Not Heterogeneous: Evidence from Income Growth Rates," Quantitative Economics, 2(3), 177–209.
- JENSEN, SHANE T., AND STEPHEN H. SHORE (2008): "Changes in the Distribution of Income Volatility," Manuscript.
- KARAHAN, FATIH, AND SERDAR OZKAN (2012): "On the persistence of income shocks over the life cycle: Evidence, theory, and implications," *Review of Economic Dynamics*, pp. 1–25.
- KREBS, TOM, PRAVIN KRISHNA, AND WILLIAM MALONEY (2007): "Human Capital, Trade Liberalization, and Income Risk," Research Working papers.
- LOW, HAMISH, COSTAS MEGHIR, AND LUIGI PISTAFERRI (2010): "Wage Risk and Employment Over the Life Cycle," American Economic Review, 100(4), 1432–1467.

References II

MACURDY, THOMAS (1982): "The Use of Time Series Processes to Model the Error Structure of Earnings in a Longitudinal Data Analysis," Journal of Econometrics, 18(1), 83–114.

- MEGHIR, COSTAS, AND LUIGI PISTAFERRI (2004): "Income Variance Dynamics and Heterogeneity," Journal of Business and Economic Statistics, 72(1), 1–32.
- NIELSEN, HELENA SKYT, AND ANNETTE VISSING-JORGENSEN (2006): "The Impact of Labor Income Risk on Educational Choices: Estimates and Implied Risk Aversion," Manuscript.
- REVIEW OF ECONOMIC DYNAMICS (2010): "Special Issue: Cross-Sectional Facts for Macroeconomists," 13(1), 1–264, edited by by Dirk Krueger, Fabrizio Perri, Luigi Pistaferri and Giovanni L. Violante.

SABELHAUS, JOHN, AND JAE SONG (2010): "The Great Moderation in Micro Labor Earnings," Journal of Monetary Economics, 57(4), 391-403.

- STORESLETTEN, KJETIL, CHRIS I. TELMER, AND AMIR YARON (2004a): "Consumption and Risk Sharing Over the Life Cycle," Journal of Monetary Economics, 51(3), 609–633.
- (2004b): "Cyclical Dynamics in Idiosyncratic Labor-Market Risk," Journal of Political Economy, 112(3), 695–717.

TOPEL, ROBERT H. (1991): "Specific Capital, Mobility and Wages: Wages Rise with Job Seniority," Journal of Political Economy, 99, 145-176.

TOPEL, ROBERT H., AND MICHAEL P. WARD (1992): "Job Mobility and the Careers of Young Men," Quarterly Journal of Economics, 107(2), 439–479.

To What Extent Does Misspecification Matter? I Carroll, Slacalek, Tokuoka (2014)

Scenario		Baseline	Low σ_{ψ}^2	High σ_{θ}^2	Very High σ_{θ}^2						
		$\sigma_{\psi}^{2} = 0.01$	$\sigma_{\psi}^2 = 0.005$	$\sigma_{\psi}^{2} = 0.01$	$\sigma_{\psi}^2 = 0.01$						
		$\sigma_{\theta}^{\bar{2}} = 0.01$	$ \sigma_{\psi}^2 = 0.005 \sigma_{\theta}^2 = 0.01 $	$\sigma_{\theta}^{\tilde{2}} = 0.05$	$\sigma_{\theta}^{\overline{2}} = 0.10$						
Overall											
Average		0.12	0.12	0.14	0.17						
By wealth-	-to-permanent	income rati	0								
	Top 1%	0.06	0.06	0.06	0.06						
	Top 10%	0.06	0.06	0.06	0.06						
	Top 20%	0.06	0.06	0.06	0.06						
	Top 40%	0.06	0.06	0.06	0.07						
	Top 50%	0.07	0.07	0.05	0.07						
	Top 60%	0.07	0.06	0.07	0.08						
	Bottom 50%	0.17	0.17	0.22	0.26						
By income											
	Top 1%	0.09	0.08	0.10	0.11						
	Top 10%	0.09	0.09	0.10	0.12						
	Top 20%	0.10	0.10	0.11	0.12						
	Top 40%	0.11	0.11	0.12	0.14						
	Top 50%	0.12	0.11	0.12	0.14						
	Top 60%	0.12	0.11	0.13	0.15						
	Bottom 50%	0.12	0.13	0.16	0.20						
By employ	ment status										
	Employed	0.11	0.11	0.14	0.16						
	Unemployed	0.23	0.24	0.25	0.27						A□

Table 5 The MPC Under Alternative Variances of Income Shocks