Measuring Inflation in the Modern Economy – a Micro Price-Setting View

Aviv Nevo and Arlene Wong

discussed by Michael Weber

June 20, 2018

Inflation over time in the U.S.

- Sample Jan 1970 May 2018
- Average CPI inflation of 4% p.a.
- Last 10 years below historical mean

Inflation over time in the U.S.

- Sample Jan 1960 May 2018
- Average CPI inflation of 3.4% p.a.
- Last 10 years below historical mean

Inflation over time in the U.S.

- Sample Jan 1990 May 2018
- Average CPI inflation of 2.4% p.a.
- Currently below historical mean?

Inflation over time in the Eurozone

- Sample Jan 2002 April 2018
- Average CPI inflation of 1.7% p.a.
- Currently below historical mean

Low Inflation? Determinants

- Depending on sample period inflation historically low
- What are potential drivers?
 - Change in age composition of workforce?
 - Change in market power?
 - Change in expectations?

Change of Age Composition of Labor Force

- Substantial heterogeneity in inflation across industries
- Large heterogeneity in age composition across industries over time
- Recent trend: tech industry top employer for college grads
- Increasing age in middle-class jobs

Low wage-bargaining power in industries with primarily old workers?

Aging Middle-Class Job

Source: This Job Is "Getting Old" by Autor & Dorn, AER P&P (2009)

- Routine-task jobs getting older
- High & low skill jobs younger

Age Composition and Industry Inflation

- Automation drives out routine-task middle class jobs
- Results in aging labor force within those industries
- Do industries with larger share of old workers have lower inflation?
- Does lower wage growth drive lower inflation?

Age Composition and Industry Inflation cont.

- Use Census IPUMS data to create senior to all ratio (S2A)
 - Hours worked by workers with age btw. 55 & 64 to total hours worked
- Average 5-year PPI industry inflation data from BLS (INF)
- Labor intensity (INT) as ratio of labor costs to value added
- Add. controls: shipping costs (CE), industry unemployment (UE), unionization (MEM), commodity-price inflation

Age Composition and Industry Inflation by Schoefer, Weber, & Yin

Empirics

Age Composition and Industry Inflation: Evidence

	(1)	(2)	(3)	(4)	(5)	(6)
S2A	-0.0603 * (0.03)	* -0.1389*** (0.03)	* - 0.3763** (0.07)	** - <mark>0.3617</mark> ** (0.07)	* - <mark>0.3680</mark> ** (0.07)	*-0.2961*** (0.07)
INT				-0.0349 * - (0.02)	* -0.0335 * (0.02)	* -0.0074 (0.03)
S2A \times INT				-0.0014 *	* -0.0015 * (0.00)	* - 0.0023 * * (0.00)
SC				(0.00)	0.0711 (0.10)	-0.0083 (0.08)
UE					-0.0729	-0.0919
MEM					(0.07) 0.0049 (0.02)	(0.06) 0.0106 (0.02)
Nobs	825	825	825	825	825	825
R2	0.009	0.2516	0.687	0.6935	0.6954	0.7721
Ind FE		Х	х	Х	Х	Х
Period FE			Х	Х	х	Х
Commodity Prices						Х

Standard errors in parentheses

*p < 0.10, **p < 0.05, ***p < 0.01

• Higher ratio of old workers negatively associated with future inflation: S2A 1 std higher \rightarrow inflation 0.5 std lower

Especially in industries with higher labor intensity

Age Composition and Industry Inflation: Evidence over Time

Residualized industry inflation and ratio of old-to-all workers negatively associated

Age Composition and Industry Inflation: Evidence over Time

Residualized industry inflation and ratio of old-to-all workers negatively associated

Age Composition and Industry Inflation: Evidence over Time

Residualized industry inflation and ratio of old-to-all workers negatively associated

Empirics

Age Composition and Industry Inflation: Channel

	(1)	(2)	(3)	(4)	(5)	(6)
S2A	-0.0736 * *	-0.1051***	-0.1891***	-0.1792***	-0.1940***	-0.1569 * *
	(0.03)	(0.03)	(0.05)	(0.05)	(0.05)	(0.07)
NT					-0.0261 * *	
				(0.01)	(0.01)	(0.03)
S2A \times INT				-0.001*	-0.0011 * *	
				(0.00)	(0.00)	(0.00)
SC					0.1343	0.0876
UE					(0.08) -0.1252 * *	(0.07)
UE					-0.1252 * * (0.05)	(0.05)
MEM					-0.0052	-0.0125
					(0.01)	(0.01)
					(0.01)	(0.01)
Nobs	825	825	825	825	825	825
R2	0.0184	0.1731	0.6597	0.6646	0.6719	0.7441
Ind FE		Х	Х	Х	Х	X
Period FE			Х	Х	Х	Х
Commodity Prices						Х

Standard errors in parentheses

*p < 0.10, **p < 0.05, ***p < 0.01

• More old workers negatively associated with future wage growth: S2A 1 std higher $ightarrow \Delta$ wages 0.3 std lower

Especially in industries with higher labor intensity

Industry Concentration and Price Setting

- Growing industry concentration over time
- Lower pass-through of shocks in more concentrated industries?
- Evidence from AC Nielsen retail scanner data

Industry Concentration and Price Setting: Definitions

- Market: identify products that are substitutable within market
- Baseline: designated market area (DMA) × product module
- Examples:
 - DMA: SF-Oakland-San Jose
 - Module: Candy-Chocolate
- Use first 6 digits of UPC to proxy for firms
- Concentration measures: Herfindahl-Hirschman Index (HHI) and "leave-out version" $HHI_{S,t} = \sum_{i(t) \in M(t)} \left(\frac{Sale_{i,t}}{\sum_{i(t) \in M(t)} Sale_{i,t}} \right)^2$

Concentration Trends in Retail

- Decreasing concentration in retail over time
- Robust feature across measures and market definition

Empirics

Concentration and Price Setting: Evidence

$LogP_{M,t} = \alpha + \beta HHi_{M,t} + \gamma FE_{M,t}$	$t + \varepsilon_{M,t}$
---	-------------------------

	(1)	(2)	(3)	(4)	(5)	(6)	
ННІ	-0.056 * ** (0.02)	-0.056 * ** (0.01)	-0.058 * ** (0.02)	—0.058 (0.04)	-0.056 * ** (0.02)	-0.056 * ** (0.02)	
			$\times DMA$	× DMA	imes Chain	× Chain	
FE	$Firm\timesYear$	$Firm\timesYear$	$Firm\timesYear$	$Firm\timesYear$	$Firm\timesYear$	$Firm\timesYear$	
Cluster	Firm	$DMA\timesChain$	Firm	$DMA\timesChain$	Firm	$DMA \times Chain$	
Nobs	16,816,747	16,816,747	12,620,216	12,620,216	16,346,276	16,346,276	
Standar	Standard errors in parentheses						

*p < 0.10, **p < 0.05, ***p < 0.01

- Focus on main product for each firm by sales for practical purposes
- Lower prices in more concentrated markets
- Holds across definitions for concentration and in changes
- Need better understanding of IO of retail sector

Empirics

Inflation Expectations

■ New Keynesian Philipps Curve: inflation = f(inflation expectations)

$$= \pi_t = \beta \mathbb{E}_t \pi_{t+1} + \frac{(1-\theta)(1-\theta\beta)}{\theta} \hat{m} c_t^r$$

- Low inflation because low inflation expectations?
- How do households form inflation expectations?
- Did households revise expectations upward with forward guidance?

Shopping Experiences and Inflation Expectations

- Central Banks typically focus on core inflation
- Gas and food prices volatile
- Trips to grocery store frequent price experience
- Well-known "fact": women higher inflation perception than men
- Do households extrapolate from salient price changes to overall inflation?

D'Acunto, Malmendier, Ospina, Weber (2018):

Large Salient Price Changes, Inflation Expectations, and Household Behavior

Shopping Experiences and Inflation Expectations: Evidence

From gender effect to "grocery effect". LHS: perceived inflation

	All	All	Women	Men
Male	-1.32*** (0.18)	-0.46 (0.32)		
Makes Groceries		1.64*** (0.32)	3.89*** (0.60)	4.89*** (1.06)
Household FE	Х	Х		
Nobs Adjusted R ²	25,595 0.95	25,595 0.95	17,246 0.99	8,349 0.99

- Run customized survey on AC Nielsen panel: identify main grocery shopper within household
- Grocery shopping drives gender effect
- Households extrapolate from shopping experience to overall inflation and act on inflation expectations

Cognitive Abilities and Inflation Expectations

"[We assume] Unrealistic cognitive abilities of decision makers"

Woodford (2018)

- Many policies complex and difficult to understand
- Large XS heterogeneity in cognitive abilities + complex policies
- (How much) Does limited cognition matter for policy effectiveness?
- Main empirical hurdles
 - Need to measure cognitive abilities for a representative sample
 - Need to measure impact on policy effectiveness

D'Acunto, Hoang, Paloviita, Weber (2018): Human Frictions to the Transmission of Economic Policy

Mean Absolute Forecast Error by IQ

- Absolute forecast errors twice as large for low IQ men than for high IQ men
- Monotonic relationship btw absolute forecast error and IQ

Empirics

Euler Equations: Good Time to Purchase Durables

Marginal Effects:
$$\frac{\partial P(y=t|x)}{\partial x} = P(y=t|x) \left[\beta_{tx} - \sum_{z=0,1,2} P(y=z|x) \beta_{zx} \right]$$

	Men high IQ (1)	Men low IQ (2)
Inflation expectation	<mark>0.0358***</mark> (0.0119)	-0.0096 (0.0138)
Demographics	Х	Х
Pseudo R ²	0.0108	0.0091
Nobs	16,606	16,256

Standard errors in parentheses

*p < 0.10, **p < 0.05, ***p < 0.01

- Strong positive assocation for men with high IQ: if expect higher inflation, 4% more likely to purchase durables
- No assocation for men with low IQ

ECB Deposit Facility Rate: Beginning of Quarter

- Until end of 2001: rate falls from 3.75% to 2.25%
- Trough of 1% in June 2003
- December 2005 rates start to increase; 2.5% end of 2006

Propensity to take out Loan: High IQ

- Early 2001: average propensity to take out loans is about 2.5
- 2001-2003: rates fall and propensities increase to more than 3
- Until mid-2005: rates and propensities flat
- 2005-2007: rates increase, propensities fall

Propensity to take out Loan: Low IQ

- Early 2001: average propensity to take out loans of around 2.6
- 2011-2007: propensities flat, hover around 2.8

Conclusion

- Inflation might have been historically low in last 10 years
- Aging societies possibly play a role
- Little evidence for increasing competition in retail
- Shopping experiences matter
- Complexity of policies crucial: *human frictions*
- Role for policy salience, policy communication, and education