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Abstract

Mean square forecast error loss implies a bias-variance trade-off that suggests that struc-

tural breaks of small magnitude should be ignored. In this paper, we provide a test to

determine whether modeling a break improves forecast accuracy. The test is near opti-

mal even when the date of a local-to-zero break is not consistently estimable. The results

extend to forecast combinations that weight the post-break sample and the full sample

forecasts by our test statistic. In a large number of macroeconomic time series, we find

that structural breaks that are relevant for forecasting occur much less frequently than

existing tests indicate.
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1 Introduction

Many macroeconomic and financial time series contain structural breaks as documented by

Stock and Watson (1996). Yet, Stock and Watson also find that forecasts are not substan-

tially affected by the presence of structural breaks. Estimates for break dates and post-break

parameters can often be estimated only imprecisely (Elliott and Müller, 2007, 2014) and the

implicit deterioration of the forecast may offset any gains from modeling a structural break.

Additionally, forecasts are typically evaluated using mean square forecast error loss, which

implies a bias-variance trade-off. Ignoring rather than modeling small breaks may there-

fore lead to more accurate forecasts (Pesaran and Timmermann, 2005). If sufficiently small

breaks can be ignored, the question is: what constitutes sufficiently small?

In this paper, we develop a real-time test for equal forecast accuracy that compares the

expected mean square forecast error (MSFE) of a forecast from the post-break sample to

that from the full sample. The difference in MSFE is a standardized, linear combination of

pre- and post-break parameters with weights that depend on the regressors in the forecast

period. As a result, breaks in the parameter vector, which are the focus of the extant

literature on structural breaks, do not necessarily imply a break in the forecast.

Full sample and post-break sample forecasts achieve equal forecast accuracy at a critical

magnitude of the break. The bias-variance trade-off implies that this critical magnitude is

non-zero. The null of our test therefore differs from the null of existing tests where the

focus is on testing the absence of any parameter instability, such as Ploberger et al. (1989),

Andrews (1993), Andrews and Ploberger (1994), and Dufour et al. (1994). Additionally, the

critical magnitude of the break under the null depends on the unknown break date, which

under local breaks is not consistently estimable. Using results from Andrews (1993) and

Piterbarg (1996), we show that our test is optimal as the size of the test tends to zero.

We provide evidence that the power of test remains close to that of the optimal test for

conventional choices of the nominal size. The reason is that critical magnitudes that follow

from the MSFE loss function are relatively large, which result in accurate estimates of the

break date. This near optimality does not depend on whether our Wald-statistic is used in

its homoskedastic form or whether a heteroskedastic version is used, as long as the estimator

of the variance is consistent.

The competing forecasts in our test are from the full sample and from the post-break

sample. Yet, Pesaran et al. (2013) show that forecasts based on post-break samples can be

improved by using all observations and weighting them such that the MSFE is minimized.

We show that this forecast can be written as a combination of the forecasts based on the

post-break sample and the full sample. The relative weight is a function of the test statistic

introduced in this paper. This approach is similar to that proposed by Hansen (2009), who

minimizes the in-sample mean square error using weights based on the Mallows criterion.

We find that for small break magnitudes, where the break date is not accurately identi-

fied, the combined forecast is less accurate than the full sample forecast. However, compared
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to the post-break sample forecast, we find that the combined forecast is more accurate for

a large area of the parameter space. We therefore propose a second version of our test that

compares the forecast accuracy of the combined forecast to the full sample forecast.

More generally, we propose a testing framework that incorporates the loss function, here

the mean square forecast error, into the test. Similar to the work of Trenkler and Toutenburg

(1992) and Clark and McCracken (2012), our test is inspired by the in-sample MSE test of

Toro-Vizcarrondo and Wallace (1968) and Wallace (1972). However, compared to the tests

of Trenkler and Toutenburg (1992) and Clark and McCracken (2012), our testing framework

is much simpler in that, under a known break date, our test statistic has a known distribution

that is free of nuisance parameters.

Our test shares some similarity with the work of Dette and Wied (2016), who consider

CUSUM tests in the spirit of Brown et al. (1975) but allow for a constant parameter dif-

ferences under the null. They do, however, not consider local-to-zero breaks, which would

eliminate break date uncertainty in our asymptotic framework. Also, we show that the crit-

ical magnitude of the break depends on the break date and is therefore not identical across

samples.

Forecast accuracy tests of the kind suggested by Diebold and Mariano (1995) and Clark

and McCracken (2001) assess forecast accuracy ex post (see Clark and McCracken (2013) for

a review). In contrast, the test we propose in this paper is a real-time test of the accuracy

of forecasts of models that do or do not account for breaks.

Giacomini and Rossi (2009) assess forecast breakdowns by comparing the in-sample fit

and out-of-sample forecast accuracy of a given model. The main focus of their work is

on assessing pseudo-out-of-sample forecasts. However, they also consider forecasting the

loss differential of in-sample and out-of-sample forecast performance by modeling it with

additional regressors. This contrasts with our approach, which targets the out-of-sample

period directly in the construction of the test statistic. Of interest for our work is that,

while a structural break is only one possible source of forecast breakdowns, Giacomini and

Rossi find that it is a major contributor to forecast breakdowns in predicting US inflation

using the Phillips curve. Similiary, Giacomini and Rossi (2010) use a pseudo-out-of-sample

period to assess competing models in the presence of instability. Our test, in contrast, does

not require a pseudo-out-of-sample period but is a real-time test.

Substantial evidence for structural breaks has been found in macroeconomic and finan-

cial time series by, for example, Pastor and Stambaugh (2001), Paye and Timmermann

(2006), Pesaran and Timmermann (2002), Pettenuzzo and Timmermann (2011), Rapach

and Wohar (2006), Rossi (2006), and Stock and Watson (1996, 2007). We apply our test to

macroeconomic and financial time series in the FRED-MD data set of McCracken and Ng

(2016). We find that breaks that are important for forecasting under MSFE loss are between

a factor two to three less frequent than the sup-Wald test by Andrews (1993) would indicate.

Incorporating only the breaks suggested by our test substantially reduces the average MSFE

3



in this data set compared to the forecasts that take the breaks suggested by Andrews’ sup-

Wald test into account. Our paper, therefore, provides theoretical support for the finding

of Stock and Watson (1996) that many breaks do not appear to have a substantial effect on

forecast accuracy even though they are a prominent feature of macroeconomic data.

The paper is structured as follows. In Section 2, we start with a motivating example

using the linear regression model with a break of known timing. The model is generalized

in Section 3 using the framework of Andrews (1993). In Section 4, we derive the test, show

its near optimality, and extend the test to cover the forecast that combines the full-sample

and post-break forecasts based on the derived test statistic. Simulation results in Section 5

shows that the near optimality of the test is in fact quite strong, with power very close to the

optimal, but infeasible, test conditional on the true break date. Finally, the application of

our tests to the large set of time series in the FRED-MD data set is presented in Section 6.

2 Motivating example

In order to gain intuition, initially consider a linear regression model with a structural break

that is know to be at time Tb

yt = x′tβt + εt, εt ∼ iid(0, σ2) (1)

where

βt =

{
β1 if t ≤ Tb
β2 if t > Tb

xt is a k × 1 vector of exogenous regressors, and βi a k × 1 vector of parameters. The

parameter vectors β1 and β2 can be estimated by OLS in the two subsamples. If the break

is ignored, a single vector of parameter estimates, β̂F , can be obtained via OLS using the

full sample.

Denote V i = (Ti − Ti−1)Var(β̂i), for i = 1, 2, T0 = 0, T1 = Tb, T2 = T and V F =

TVar(β̂F ) as the covariance matrices of the vectors of coefficient estimates. Initially, assume

these matrices to be known; later they will be replaced by their probability limits.

In this paper, we would like to test whether the expected mean squared forecast error

(MSFE) from the h-step ahead forecast using the full sample, ŷFT+h = x′T+hβ̂F , is smaller

or equal to that of the post-break sample, ŷPT+h = x′T+hβ̂2. In this motivating example, we

consider h = 1, and extend the results to the more general case in Section 4.

The MSFE for the forecast from the post-break sample estimate, β̂2, conditional on

xT+1, is

MSFE(x′T+1β̂2) = E

[(
x′T+1β̂2 − x′T+1β2 − εT+1

)2
]

=
1

T − Tb
xT+1V 2xT+1 + σ2

(2)
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where the first term in the second line represents the estimation uncertainty in the shorter

post-break sample and the second term the uncertainty of the disturbance term in the

forecast period.

Using the full sample estimate, β̂F , we have

MSFE(x′T+1β̂F ) = E

[(
x′T+1β̂F − x′T+1β2 − εT+1

)2
]

= E
[(
x′T+1β̂F − x′T+1β2

)]2
+

1

T
x′T+1V FxT+1 + σ2

=

[
Tb
T
x′T+1V FV

−1
1 (β1 − β2)

]2

+
1

T
x′T+1V FxT+1 + σ2

(3)

where, in the last line of the equation, the first term is the square bias that arises from

estimating the parameter vector over the two sub-periods, the second term represents the

estimation uncertainty in the full sample, and the final term is the uncertainty of the dis-

turbance term in the forecast period.

Comparing (2) and (3), we see that the full sample forecast is at least as accurate as the

post-break sample forecast if

ζ = Tτ2
b

[
x′T+1V FV

−1
1 (β1 − β2)

]2
x′T+1

(
V 2

1−τb − V F

)
xT+1

p→ Tτb(1− τb)
[
x′T+1(β1 − β2)

]2
x′T+1V xT+1

≤ 1

(4)

where τb = Tb/T and the second line assumes that the covariance matrices asymptotically

satisfy plimT→∞ V i = V for i = 1, 2, F .

To test H0 : ζ = 1 note that

W (τb) = Tτ2
b

[
x′T+1V FV

−1
1 (β̂1 − β̂2)

]2

x′T+1

(
V 2
1−τ − V F

)
xT+1

p→

[
x′T+1(β̂F − β̂2)

]2

x′T+1Var(β̂F − β̂2)xT+1

∼ χ2(1, ζ)

(5)

Furthermore, given that we are interested in the null of ζ = 1, the test statistic has a

χ2(1, 1)-distribution under the null, which is free of nuisance parameters.

A more conventional and asymptotically equivalent form of the test statistic is

W (τb) = T

[
x′T+1(β̂1 − β̂2)

]2

x′T+1

(
V 1
τb

+ V 2
1−τb

)
xT+1

∼ χ2(1, ζ) (6)
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which can be recognized as a Wald test statistic with the regressors at T + 1 as weights.

The results of the test will, in general, differ from the outcomes of the classical Wald

test on the difference between the parameter vectors β1 and β2 for two reasons. The first

is that the multiplication by xT+1 can render large breaks irrelevant. Alternatively, it can

increase the importance of small breaks in the coefficient vector for forecasting. The second

reason is that under H0 : ζ = 1, we compare the test statistic against the critical values of

the non-central χ2-distribution, instead of the central χ2-distribution. The critical values of

these distributions differ substantially: the α = 0.05 critical value of the χ2(1) is 3.84 and

that of the χ2(1, 1) is 7.00.

As is clear from (4), if the difference in the parameters, β1 − β2, converges to zero at a

rate T−1/2+ε for some ε > 0, then the test statistic diverges to infinity as T →∞, which is

unlikely to reflect the uncertainty surrounding the break date in empirical applications. In

the remainder of the paper, we will therefore consider breaks that are local in nature, i.e.

β2 = β1 + 1√
T
η, rendering a finite test statistic in the asymptotic limit. Local breaks have

been intensively studied in the recent literature, see for example Elliott and Müller (2007,

2014) and Elliott et al. (2015). An implication of local breaks is that no consistent estimator

for the break date is available. A consequence is that post-break parameters cannot be

consistently estimated. This will deteriorate the accuracy of the post-break window forecast

compared the full sample forecast, which, in turn, increases the break magnitude that yields

equal forecasting performance between full and post-break sample estimation windows.

3 Model and estimation

We consider a possibly non-linear, parametric model, where parameters are estimated using

the generalized method of moments. The general estimation framework is that of Andrews

(1993). The observed data are given by a triangular array of random variables {W t =

(Y t,Xt) : 1 ≤ t ≤ T}, Y t = (y1, y2, . . . yt), and Xt = (x1,x2, . . . ,xt)
′. Assumptions can be

made with regard to the dependence structure of W t such that the results below apply to a

range of time series models. We make the following additional assumption on the noise and

the relation between yt, lagged values of yt and exogenous regressors xt.

Assumption 1 The model for the dependent variable yt consists of a signal and additive

noise

yt = ft(βt, δ;Xt,Y t−1) + εt (7)

where the function ft is fixed and differentiable with respect to the parameter vector θt =

(β′t, δ
′)′.

In (7), while the parameter vector δ is constant for all t, the parameter vector βt could

be subject to a structural break. When ignoring the break, parameters are estimated by
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minimizing the sample analogue of the population moment conditions

1

T

T∑
t=1

E[m(W t,β, δ)] = 0

which requires solving

1

T

T∑
t=1

m(W t, β̂F , δ̂)′γ̂
1

T

T∑
t=1

m(W t, β̂F , δ̂) =

inf
β̃,δ̃

1

T

T∑
t=1

m(W t, β̃, δ̃)′γ̂
1

T

T∑
t=1

m(W t, β̃, δ̃)

(8)

where β̂F is estimator based on the full estimation window. Throughout we set the weighting

matrix γ = S−1 and

S = lim
T→∞

Var

(
1√
T

T∑
t=1

m(W t,β, δ)

)

for which a consistent estimator is assumed to be available.

As discussed above, we consider a null hypothesis that allows for local breaks,

βt = β1 +
1√
T
η(τ)

where η(τ) = b I(τ < τb), I(A) is the indicator function, which is unity if A is true and zero

otherwise, b is a vector of constants, and τ = t/T .

The partial sample parameter vectors β1 and β2 satisfy the partial sample moment

conditions

1

τT

τT∑
t=1

m(W t,β1, δ) = 0, and
1

(1− τ)T

T∑
t=Tτ+1

m(W t,β2, δ) = 0

Define

m̄(β1,β2, δ, τ) =
1

τT

τT∑
t=1

(
m(W t,β1, δ)

0

)
+

1

(1− τ)T

T∑
t=Tτ+1

(
0

m(W t,β2, δ)

)

Then, the partial sum GMM estimators can be obtained by solving (8) with m(·) replaced

by m̄(·) and γ̂ replaced by

γ̂(τ) =

(
1
τ Ŝ
−1

0

0 1
1−τ Ŝ

−1

)
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Forecasts are constructed as

ŷFT+h = fT+h(β̂F , δ̂; IT ) (9)

ŷPT+h = fT+h(β̂2, δ̂; IT ) (10)

where IT is the information set at time T and includes any exogenous and lagged dependent

variables that are needed to construct the forecast. If h > 1, the forecasts can be iterated

or direct forecasts and the function fT+h will depend on which type of forecast is chosen.

As the function fT+h can be non-linear in the parameters, iterated forecasts are covered by

our analysis. Direct forecasts, in contrast, leads to residual autocorrelation, which can be

addressed using a robust covariance matrix Pesaran et al. (2011). In order not to complicate

the notation further, we do not distinguish between the different forecasts for h > 1. The

comparison between ŷFT+h and ŷPT+h is, however, non-standard as, under a local break, even

the parameter estimates of the model that incorporates the break may not be unbiased.

Our aim is to determine whether the full sample forecast (9) is more precise in the MSFE

sense than the post-break sample forecast (10). We start by providing the asymptotic

properties of the estimators in a model that incorporates the break and in a model that

ignores the break. The asymptotic distributions derived by Andrews (1993) depend on the

following matrices, for which consistent estimators are assumed to be available,

M = lim
T→∞

1

T

T∑
t=1

E

[
∂m(W t,β, δ)

∂β

]
, M δ = lim

T→∞

1

T

T∑
t=1

E

[
∂m(W t,β, δ)

∂δ

]

To simplify the notation, define

X̄
′
= M ′S−1/2

Z̄
′
= M ′

δS
−1/2

Partial sample estimator The partial sample estimators converge to the following Gaus-

sian process indexed by τ

√
T


β̂1(τ)− β2

β̂2(τ)− β2

δ̂ − δ

⇒

τX̄

′
X̄ 0 τX̄

′
Z̄

0 (1− τ)X̄
′
X̄ (1− τ)X̄

′
Z̄

τZ̄
′
X̄ (1− τ)Z̄

′
X̄ Z̄

′
Z̄


−1

×


X̄
′
B(τ) + X̄

′
X̄
∫ τ

0 η(s)ds

X̄
′
[B(1)−B(τ)] + X̄

′
X̄
∫ 1
τ η(s)ds

Z̄
′
B(1) + Z̄

′
X̄
∫ 1

0 η(s)ds


(11)

where B(τ) is a Brownian motion defined on the interval [0, 1] and ⇒ denotes weak conver-

gence. We subtract β2 from both estimators β̂1 and β̂2 as our interest is in forecasting future

observations, which are functions of β2. The remainder that arises if τ 6= τb is absorbed in
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the integral on the right hand side.

Define the projection matrix P X̄ = X̄(X̄
′
X̄)−1X̄

′
, its orthogonal complement asM X̄ =

I − P X̄ , and

V = (X̄
′
X̄)−1

H = Z̄
′
M X̄Z̄

L = (X̄
′
X̄)−1X̄

′
Z̄(Z̄

′
M X̄Z̄)−1

H̃ = LHL′

(12)

The inverse in (11) yields the asymptotic variance covariance matrix of
(
β̂1(τ)′, β̂2(τ)′, δ̂

′)′

ΣP =


1
τV + H̃ H̃ −L

H̃ 1
1−τV + H̃ −L

−L′ −L′ H−1


Hence,

√
T (β̂1(τ)− β2)⇒ 1

τ

[
(X̄
′
X̄)−1X̄

′
B(τ) +

∫ τ

0
η(s)ds

]
− (X̄

′
X̄)−1X̄

′
Z̄(Z̄

′
M X̄Z̄)−1Z̄

′
M X̄B(1)

√
T (β̂2(τ)− β2)⇒ 1

1− τ

[
(X̄
′
X̄)−1X̄

′
(B(1)−B(τ)) +

∫ 1

τ
η(s)ds

]
− (X̄

′
X̄)−1X̄

′
Z̄(Z̄

′
M X̄Z̄)−1Z̄

′
M X̄B(1)

√
T (δ̂ − δ)⇒ (Z̄

′
M X̄Z̄)−1Z̄

′
M X̄B(1)

(13)

where the convergence occurs jointly. These expressions are analogous to those resulting

from the Frisch-Waugh-Lovell theorem in a multivariate regression problem.

Full sample estimator For estimators that ignore the break, we have

√
T

(
β̂F − β2

δ̂ − δ

)
⇒

[
X̄
′
X̄ X̄

′
Z̄

Z̄
′
X̄ Z̄

′
X̄

]−1 [
X̄
′
B(1) + X̄

′
X̄
∫ 1

0 η(s)ds

Z̄
′
B(1) + Z̄

′
X̄
∫ 1

0 η(s)ds

]
(14)

Using the notation defined in (12), the inverse in (14) is

ΣF =

(
V + H̃ −L
−L′ H−1

)
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and, therefore,

√
T
(
β̂F − β2

)
⇒ (X̄

′
X̄)−1X̄

′
B(1) +

∫ 1

0
η(s)ds

− (X̄
′
X̄)−1X̄

′
Z̄(Z̄

′
M X̄Z̄)−1Z̄

′
M X̄B(1)

√
T
(
δ̂ − δ

)
⇒ (Z̄

′
M X̄Z̄)−1Z̄

′
M X̄B(1)

(15)

Note that for the parameters δ̂, the expression is identical to partial sample estimator.

Later results require the asymptotic covariance between the estimators from the full

sample and the break model, which is

plim
T→∞

T Cov(β̂2(τ), β̂F ) = V + H̃ = plim
T→∞

T Var(β̂F )

which corresponds to the results by Hausman (1978) that, under the null of no misspecifica-

tion, a consistent and asymptotically efficient estimator should have zero covariance with its

difference from an consistent but asymptotically inefficient estimator, i.e. plimT→∞ TCov(β̂F , β̂F−
β̂2(τ)) = 0. A difference here is that, under a local structural break, β̂F and β̂2(τ) are both

inconsistent.

4 Testing for a break

In this section, we apply the estimation framework in the previous section to generalize the

motivating example from Section 2. We briefly consider the case of a known break date and

then proceed to the case of an unknown break date. A complication in the testing procedure

arises when mapping the null hypothesis of equal predictive accuracy to one based on the

break magnitude because the latter varies with the unknown break date. Nevertheless, a

test which has correct size and near optimal power can be established.

4.1 A local break of known timing

Conditional on the information set IT , which contains the regressor set necessary to construct

the forecast, the h-step-ahead forecast is

ŷT+h = fT+h(β̂2, δ̂|IT )

Denote the derivative of fT+h with respect to a parameter vector θ as f θ, where we drop

the time subscript for notational convenience. Equal predictive accuracy is obtained when

the break magnitude satisfies

ζ = T (1− τb)τb

[
f ′β2(β1 − β2)

]2
f ′β2V fβ2

= 1 (16)
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Details of the derivation can be found in Appendix A.1. As in the motivating example of

Section 2, the null hypothesis of equal mean squared forecast error maps into a hypothesis

on the standardized break magnitude, ζ1/2.

A test for H0 : ζ = 1 can be derived by noting that, asymptotically, TVar(β̂1 − β̂2)
p→

1
τb(1−τb)V and, therefore,

W (τb) = T (1− τb)τb

[
f ′β2(β̂1 − β̂2)

]2

ω̂

a∼ χ2(1, ζ) (17)

where ω̂ is any consistent estimator of f ′β2V fβ2 . The test statistic, W (τb), can be compared

against the critical values of the χ2(1, 1) distribution to test for equal forecast performance.

4.2 A local break of unknown timing

The preceding section motivates the use of the Wald-type test statistic (17) to test for

equal predictive accuracy between a full-sample and post-break forecast. In this section, we

adjust the test statistic to a local-to-zero break of unknown date and provide its asymptotic

distribution.

When the break date is unknown, we consider the following test statistic

sup
τ∈I

W (τ) = sup
τ∈I

T (1− τ)τ

[
f ′β2(β̂1(τ)− β̂2(τ))

]2

ω̂

 (18)

with I = [τmin, τmax]. Since the function f ′β2 in (18) is fixed, the results in Andrews (1993)

and the continuous mapping theorem show that, under local alternatives and as T → ∞,

W (τ) in (18) weakly converges to

Q∗(τ) =

[
B(τ)− τB(1)√

τ(1− τ)
+

√
1− τ
τ

∫ τ

0
η(s)ds−

√
τ

1− τ

∫ 1

τ
η(s)ds

]2

= [Z(τ) + µ(τ ; θτb)]
2 (19)

where Z(τ) = B(τ)−τB(1)√
τ(1−τ)

is a self-normalized Brownian bridge with expectation zero and

variance equal to one, and

µ(τ ; θτb) = θτb

[√
1− τ
τ

τbI(τb < τ) +

√
τ

1− τ
(1− τb)I(τb ≥ τ)

]
(20)

arises when a structural break is present. For a fixed break date, Q∗(τ) follows a non-central

χ2-distribution with one degree of freedom and non-centrality parameter µ(τ ; θτb)
2.

11



Throughout, we use the following estimate of the break date

τ̂ = arg sup
τ∈I

W (τ)⇒ arg sup
τ∈I

Q∗(τ) (21)

4.2.1 MSFE under an unknown break date

The difference between the expected asymptotic MSFE of the partial sample forecast based

on the true break date and that of the full sample forecast, standardized by the variance of

the post-break forecast, is

∆(τb) = lim
T→∞

{
MSFE(β̂2(τ̂), δ̂)−MSFE(β̂F , δ̂)

}
/f ′β2V fβ2

where MSFE(θ̂) is the asymptotic MSFE under parameter estimates θ̂.

Lemma 1 If the break date is estimated using (21) then difference in the standardized mean

squared forecast error, ∆(τ), is

∆(τb) = lim
T→∞

T

(
E

{[
fT+h(β̂2(τ̂), δ̂|IT )− fT+h(β2, δ|IT )

]2
}

−E

{[
fT+h(β̂F , δ̂|IT )− fT+h(β2, δ)|IT )

]2
})

/f ′β2V fβ2 (22)

= lim
T→∞

T

(
E

{[
f ′β2(β̂2(τ̂)− β2)

]2
}
− E

{[
f ′β2(β̂F − β2)

]2
})

/f ′β2V fβ2

The proof is provided in Appendix A.2. Lemma 1 shows that the difference in the MSFE is

not affected by the estimation of the parameter vector δ, which is constant over the sample.

Note that if instead of estimating the break date, one considers a fixed value τ , then Lemma

1 holds with τ̂ replaced by the fixed value τ . The difference in the standardized mean

squared forecast error is then a function of both τb and τ .

Using (13) and (15) in (22) yields

∆(τb) = E


 1

1− τ̂
f ′β2V X̄

′
(B(1)−B(τ̂))√
f ′β2V fβ2

+
1

1− τ̂

∫ 1

τ̂

f ′β2η(s)√
f ′β2V fβ2

ds

2
−

∫ 1

0

f ′β2η(s)√
f ′β2V fβ2

ds

2

− 1 (23)

The results in (23) are valid for a general form of instability η(τ). Define J(τ) =∫ 1
τ (f ′β2V fβ2)−1/2f ′β2η(s)ds and note that, for fixed f ′β2 ,

(f ′β2V fβ2)−1/2f ′β2V X̄
′
[B(1)−B(τ̂)] = B(1)−B(τ̂)

12



where B(·) is a one-dimensional Brownian motion. Then

∆(τb) = E

{[
1

1− τ̂
(B(1)−B(τ̂)) +

1

1− τ̂
J(τ̂)

]2
}
− J(1)2 − 1

which could be used to test whether the use of a partial sample will improve forecast accuracy

compared to the full sample under various forms of parameter instability. The expectation

can be evaluated analytically if the size of the partial sample is exogenously set to some

fraction of the total number of observations.

Under a structural break, η(τ) = bI(τ < τb), where b =
√
T (β2−β1), and (23) becomes

∆(τb) = E

{[
1

1− τ̂
(B(1)−B(τ̂)) + θτb

τb − τ̂
1− τ̂

I[τ̂ < τb]

]2
}
− θ2

τb
τ2
b − 1 (24)

where θτb =
f ′β2

b√
f ′β2

V fβ2

=
√
ζ/(τb(1− τb)).

If the break date is known, then τ̂ = τb and the critical break magnitude of the previous

section is obtained. If τb is estimated, then the expectation in (24) has to be taken with

respect to both the stochastic process B(·) and the distribution of the estimate τ̂ .

The distribution of τ̂ is not analytically tractable and we evaluate (24) for different values

of τb and θτb via simulation. Since ∆(τb) > 0 for θτb = 0, and ∆(τb) < 0 when |θτb | → ∞,

there is a value of |θτb |—and thus for ζτb—for which ∆(τb) = 0 for each τb. Numerical results

in Appendix A.8 show that ∆(τb) is a monotonically decreasing function of θτb , which implies

that ∆(τb) = 0 for a unique value of θτb . This supports the use of (18) to test ∆(τb) = 0.

The break magnitude θτb that yields ∆(τb) = 0 depends on the unknown break date, τb.

This implies that critical values u = u(τb) will differ across different values of the unknown

break date. However, as we will show, our testing framework remains valid when the critical

value u(τb) is replaced with u(τ̂).

4.2.2 Testing under unknown break date

While the structural break case is our main focus, the results in this section hold for a

general form of structural change as long as the change point is identified.

Assumption 2 The function µ(τ ; θτb) has a unique extremum at τ = τb.

For the structural break model it is easy to verify that Assumption 2 holds. The extremum

value of (20) is given by µ(τb; θτb) = θτb
√
τb(1− τb) = ζ

1/2
τb .

Under Assumption 2, and for a small nominal size, we show below that rejections are

found only for break locations that are close to τb. The following theorem shows that the

estimated location of the break is close to the true break date.

13



Theorem 1 (Location concentration) Suppose Q∗(τ) = [Z(τ) + µ(τ ; θτb)]
2 where Z(τ)

is a zero mean Gaussian process with variance equal to one and |µ(τ ; θτb)| satisfies Assump-

tion 2, then as u→∞

P

(
sup
τ∈I

Q∗(τ) > u2

)
= P [Z(τ) > u− |µ(τ ; θτb)| for some τ ∈ I1] [1 + o(1)]

where I = [τmin, τmax], I1 = [τb − δ(u), τb + δ(u)] and δ(u) = u−1 log2 u.

The proof is presented in Appendix A.3. The location concentration is necessary to show

that the proposed test controls size and has near optimal power. Close inspection of the

proof of Theorem 1 reveals that for the break magnitudes we find when solving (24) the

concentration is expected to hold for conventional choices of the level of the test. This is

indeed confirmed by the simulation results in Section 5.

For each break date τb and corresponding break magnitude θτb for which (24) equals

zero, we can obtain a critical value u(τb) such that P (supτ∈I Q
∗(τ) > u(τb)

2) = α. This

yields a sequence of critical values u(τb) that depend on the unknown break date τb.

Assumption 3 (Slowly varying critical values) Suppose that u(τb) is a differentiable

function with respect to τb, then the critical values are slowly varying with τb in comparison

to the derivative of the function µ(τ ; θτb) with respect to τ on the interval I1, i.e.∣∣∣∣∂u(τb)

∂τb

∣∣∣∣ < ∣∣∣∣∂µ(τ ; θτb)

∂τ

∣∣∣∣ <∞
In the structural break model, the derivative γ =

∂µ(τ ;θτb)
∂τ = θτb [τb(1 − τb)]−1/2. The

assumptions that critical values vary slowly relates the dependence of the critical values on τb

to the identification strength of the break date as the derivative of µ(τ ; θτb) with respect to τ

scales linearly with the break magnitude. It was shown in Section 2 that θτb
√
τb(1− τb) ≥ 1,

where the equality holds if the break date is known with certainty. Therefore,

γ =
θτb√

τb(1− τb)
≥ 1

τb(1− τb)

A sufficient condition for the slowly varying assumption is therefore∣∣∣∣∂u(τb)

∂τb

∣∣∣∣ ≤ 1

τb(1− τb)
(25)

This inequality can be verified once critical values are obtained. In Appendix A.7 we show

that the inequality holds for the case of the structural break model.

Under the assumptions above, the following theorem guarantees that the size of the test

is controlled at the desired level once the critical value u(τb) is replaced by the critical value

u(τ̂).

14



Theorem 2 (Size) Suppose u(τb) is a sequence of critical values such that, for a break of

magnitude θτb at time τb, we have that

P

(
sup
τ∈I

Q∗(τ) > u(τb)
2

)
= α (26)

Then as u(τb)→∞

P

(
sup
τ∈I

Q∗(τ) > u(τ̂)2

)
= α (27)

where τ̂ is given in (21).

The proof is in Appendix A.4. Using critical values u(τ̂), we can also establish that

the test is near optimal in the sense that the power converges to the power of a test con-

ditional on τb. Suppose the critical values for the latter test are given by v(τb) such that

PH0

(
Q∗(τb) > v(τb)

2
)

= α, then we can establish the following theorem.

Theorem 3 (Near optimal power) Suppose Assumption 3 holds, then

PHa

[
sup
τ
Q∗(τ) > u(τ̂)2

]
− PHa

[
Q∗(τb) > v(τb)

2
]

≥ PHa
[
Q∗(τb) > u(τb)

2
]
− PHa

[
Q∗(τb) > v(τb)

2
]

= 0

(28)

where τ̂ = arg supτ Q
∗(τ) and PHa denotes the crossing probability under the alternative.

Appendix A.5 contains the proof.

A test based on the Wald statistic (18) uses critical values that depend on the estimated

break date. The following corollary provides a test statistic with critical values that are

independent of the break date in the limit where u→∞.

Corollary 1 A test statistic with critical values that are independent of τb for u → ∞ is

given by

S(τ̂) = sup
τ∈I

√
T

∣∣∣f ′β2 (β̂2(τ)− β̂1(τ)
)∣∣∣√

f ′β2

(
V̂ 1
τ + V̂ 2

1−τ

)
fβ2

− |µ(τ̂ ; θτ̂ )| (29)

where τ̂ maximizes the first term of S or, equivalently, the Wald statistic (18).

The proof is presented in Appendix A.6.

Finally, following from the location concentration established in Theorem 1, in the limit

where α→ 0, inference following a rejection is standard.

Corollary 2 (Corollary 8.1 of Piterbarg (1996)) As u → ∞, the distribution of the

break location denoted by D converges converges to a delta function located at τ = τb for
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excesses over the boundary u2, i.e.

D

(
τ̂ : Q∗(τ̂) = sup

τ∈I
Q∗(τ)

∣∣∣∣sup
τ∈I

Q∗(τ) > u2

)
a∼ δτb as u→∞

4.2.3 Testing procedure

To summarize, we use the following steps to make the test for ∆(τb) = 0 in (24) operational

1. Using (21), evaluate (24) by simulation to find the break magnitude θτb that yields

∆(τb) = 0 for each τb.

2. For each τb and corresponding θτb obtain a critical value u(τb) such that P (supτ∈I Q
∗(τb) >

u(τb)
2) = α.

3. Now the test statistic supτ∈I Q
∗(τ) or its finite sample analogue can be compared to

the critical value u(τ̂)2 with τ̂ from (21).

• This test controls size P (supτ∈I Q
∗(τ) > u(τ̂)2) = α when α is sufficiently small

per Theorem 2.

• The power of this test approaches that of the infeasible test P (Q∗(τb) > v(τb)
2)

per Theorem 3.

The above procedure can also be performed to operationalize test statistic (29), which leads

to critical values that are independent of the unknown break date for sufficiently small size.

We will present critical values for both test statistics in Section 5.

4.3 Combining post-break and full sample forecasts

Pesaran et al. (2013) derive optimal weights for observations in an estimation sample such

that, in the presence of a structural break, the MSFE of the one-step-ahead forecast is mini-

mized. Conditional on the break date, the optimal weights take one value for observations in

the pre-break regime and one value for observations in the post-break regime. This implies

that we can write the optimally weighted forecast as a convex combination of the forecasts

from pre-break observations and post-break observations

ŷcT+h(τ) = ωfT+h(β̂1) + (1− ω)fT+h(β̂2)

where the optimal forecast is denoted with superscript c. This forecast can be rewritten

as a combination of the post-break sample forecast and the full sample forecast forecast as

follows. For ease of exposition, we assume here that all parameters break.

The asymptotic, expected mean square forecast error minus the variance of the forecast
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period’s error is

lim
T→∞

E
[
T
(
ŷcT+h − fT+h(β2)

)2]
=

= lim
T→∞

E

[
T
(
ωf ′β2(β̂1 − β̂2) + f ′β2(β̂2 − β2)

)2
]

+ o(1)

= ω2T
[
f ′β2 (β1 − β2)

]2
+ ω2f ′β2

(
1

τb
+

1

1− τb

)
V fβ2

− 2ω
1

1− τb
f ′β2V fβ2 +

1

τb
f ′β2V fβ2 + o(1)

(30)

where fβ2
=

∂fT+h(β2)
∂β2

and the first equality relies on a Taylor expansion and the local-to-

zero nature of the breaks. See Appendix A.9 for details.

Maximizing (30) with respect to ω and ignoring the lower order term, yields

ω∗ = τb

1 + T

[
f ′β2(β1 − β2)

]2
f ′β2

(
1
τb

+ 1
1−τb

)
V f ′β2

−1

(31)

where the denominator contains the Wald statistic, W (τb), derived above.

Alternatively, we can combine the full sample forecast and the post-break sample forecast.

Since, β̂F = τbβ̂1 + (1− τb)β̂2 + op(T
−1/2),

ŷcT+h = ωfT+h(β̂1) + (1− ω)fT+h(β̂2) + op(T
−1/2)

=
ω

τb
fT+h(β̂F ) +

(
1− ω

τb

)
fT+h(β̂2) + op(T

−1/2)

and after applying a Taylor expansion of the forecast function fT+h, the optimal weight on

the full sample forecast is given by

ω∗F =
ω∗

τb
=

1

1 +W (τb)
(32)

The forecast ŷcT+h is therefore a convex combination of the full sample and post-break sample

forecast with weights that are determined by our Wald test statistic.

The empirical results in Pesaran et al. (2013) suggest that uncertainty around the break

date substantially deteriorates the accuracy of the optimal weights forecast. As a conse-

quence, Pesaran et al. (2013) derive robust optimal weights by integrating over the break

dates, which yield substantially more accurate forecasts in their application. Given the

impact that break date uncertainty has on choosing between the post-break and the full

sample forecasts, it is not surprising that the same uncertainty should affect the weights. If

this uncertainty is not taken into account, the weight on the post-break forecast will be too

high. It will therefore be useful to test whether the break date uncertainty is small enough

to justify using the combined forecast.

As the Wald statistic in (32) is conditional on the true break date, consider the combined
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forecast for a general value of τ

ŷcT+h(τ) =
1

1 +W (τ)
fT+h(β̂F ) +

W (τ)

1 +W (τ)
fT+h(β̂2(τ))

⇒ 1

1 +Q∗(τ)
fT+h(β̂F ) +

Q∗(τ)

1 +Q∗(τ)
fT+h(β̂2(τ))

(33)

where the last line holds by the continuous mapping theorem. The asymptotic expressions

for β̂2 and β̂F are provided in (13) and (15). The difference in MSFE between the combined

forecast and the full sample forecast, after applying a Taylor expansion on the forecast

function fT+h, is given by

∆c = TE

[(
1

1 +Q∗(τ̂)
f ′β2(β̂F − β2) +

Q∗(τ̂)

1 +Q∗(τ̂)
f ′β2(β̂2(τ̂)− β2)

)2
]

−TE

[(
f ′β2(β̂F − β2)

)2
]

+ o(1) (34)

where we solve for ∆c = 0 numerically to obtain the break magnitude that corresponds to

equal predictive accuracy. Numerical results in Appendix A.8 show that equal predictive

accuracy is associated with a unique break magnitude for each τb. The testing procedure

outlined in Section 4.2.3 can be applied to find the appropriate critical values.

5 Simulations

5.1 Asymptotic analysis for standard size

The theoretical results of the previous section are derived under the assumption that the

nominal size tends to zero. In this section, we investigate the properties of our tests using

simulations under conventional choices for nominal size, α = {0.10, 0.05, 0.01}, while main-

taining the assumption that T → ∞. We will study for which break magnitude the MSFE

from the post-break forecast equals that of the full sample forecast. Conditional on this

break magnitude, we use simulation to obtain critical values. Finally, we study the size and

power properties of the resulting tests.

5.1.1 Implementation

We simulate (19) with (20) for different combinations of break date and magnitude {τb, θτb}.
Here, we focus on τb = {τmin, τmin + δτ , . . . , τmax} where τmin = 0.15, τmax = 1 − τmin and

δτ = 0.01. Additionally, we ran simulations for τmin = 1− τmax = 0.05 and those results are

reported in Appendix B. For the break magnitude, θτb , we consider θτb = {0, 0.5, . . . , 20}.
The Brownian motion is approximated by dividing the [0, 1] interval in n = 1000 equally

spaced parts, generating εi ∼ N(0, 1) and B(τ) = 1√
n

∑nτ
i=1 εi, see Bai and Perron (1998).

By maximizing (19) we obtain a distribution of the estimated break date τ̂ that can
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Figure 1: Break magnitude for equal predictive accuracy between post-break and full sample
forecasts
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Note: The graph shows the standardized break magnitude, ζ1/2, in (35) for

which forecasts from post-break and full sample achieve the same MSFE,

that is, ∆ in (23) equals zero.

be used to evaluate (23). To approximate the expectation, we use 50,000 repetitions for

each break date and break magnitude. For each value of τb, we obtain the θτb that yields

equal predictive accuracy in (23) for full sample and post-break forecasts. This translates

the null hypothesis of equal predictive accuracy into a null hypothesis regarding the break

magnitude conditional of the break date τb. By simulating under the null hypothesis for

each τb, we obtain critical values that are conditional on τb. Accurate estimation of the

break date implies that these critical values can be used for testing without correction. The

magnitude of the breaks that we find under the null hypothesis suggest that the estimated

break date will, in fact, be quite accurate.

5.1.2 Post-break versus full-sample forecast: break magnitude for equal fore-

cast accuracy

Using (23), we simulate the break magnitude for which the full sample and the post-break

sample achieve equal predictive accuracy. Figure 1 shows the combinations of break magni-

tude and break date for which equal predictive accuracy is obtained. The break magnitude

is given in units of the standardized break magnitude,

ζ1/2 =
√
T (1− τb)τb

f ′β2(β1 − β2)√
f ′β2V fβ2

(35)

so that it can be interpreted as a standard deviations from a standard normal.

The figure shows that for each break date τb, the break magnitude of equal forecast

accuracy is substantially larger than that under a known break date, which is ζ1/2 = 1,
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because the uncertainty of the break date estimation increases the MSFE of the post-break

sample forecast. If a break occurs early the sample, τ = 0.15, then the post-break forecast

is more precise only if the break magnitude is larger than three standard deviations. The

break magnitude uniformly decreases as the break date, τ , increases and reaches about 1.2

standard deviations at τ = 0.85.

The intuition for the downward sloping nature of the break magnitude of equal forecast

accuracy is as follows. The local-to-zero nature of the break implies that, even asymptot-

ically, the break date is estimated with uncertainty and has a non-degenerate distribution

around the true break date. The uncertainty surrounding the break date implies that es-

timated post-break samples may be too short, increasing the forecast variance, or too long

and include a pre-break sample, introducing a forecast bias. The former leads to an increase

in MSFE. The latter can reduce the MSFE as it trades off the increase in the bias for a

reduction in variance (Pesaran and Timmermann, 2007). However, this benefit decreases as

the post-break sample increases.

Additionally, supremum type test statistics require a trimming of dates over which breaks

are allowed. Trimming leads to a truncation of the distribution of break dates at both ends

of the sample. From a forecasting perspective, the effect of this truncation is not symmetric

over the break dates. If the true break is early in the sample, the distribution is left truncated

and the break date is likely to be, on average, estimated too late. The forecasts are therefore

less likely to benefit from the MSFE reduction of a longer sample and more likely to have

an estimation sample that is too short, which implies a larger variance without the benefit

of a bias reduction. If, in contrast, the true break date is late in the sample, the distribution

will be right truncated and therefore lead to an estimated break date that is, on average,

too early. The estimation window will likely contain a short pre-break sample that reduces

the MSFE and is less likely to be inefficiently short. Therefore, if the break is late, the

break magnitude for which the post-break forecast is preferred over the full-sample forecast

is smaller compared to the case when the break is early. This is reflected in the downward

slope of the critical break magnitude observed in Figure 1.

5.1.3 Critical values, size, and power

After finding the break magnitude for which post-break sample and full sample forecasts

yield equal predictive accuracy, we can compute critical values for both the Wald-type test

statistic in (18), which we will denote as W for simplicity from here, and the α-asymptotic

statistic in (29), denoted as S, for a grid of break dates, τb. Condition (25), which is required

for the near optimality result does hold for all τb—details are available in Appendix A.7.

The first line of the right panel of Table 1 shows that the test has the correct size for

α = 0.01. For α = 0.05 and 0.1 size is still very close to the asymptotic size. At the beginning

and the end of the sample, however, some size distortion occurs. Using the corrected test

statistic (29) largely remedies these size distortions.
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Table 1: Critical values and size of the ζ and S test statistics

Critical values Size

Test α 0.15 0.25 0.50 0.75 0.85 0.15 0.25 0.50 0.75 0.85

W 0.01 30.54 27.29 22.29 18.22 15.82 0.01 0.01 0.01 0.01 0.01
0.05 23.71 20.99 16.74 13.30 11.37 0.07 0.06 0.06 0.04 0.03
0.10 20.44 17.99 14.13 11.04 9.36 0.13 0.12 0.11 0.09 0.06

S 0.01 2.76 2.81 2.87 2.80 2.60 0.01 0.01 0.01 0.01 0.01
0.05 2.12 2.18 2.23 2.14 1.94 0.05 0.05 0.06 0.05 0.04
0.10 1.78 1.84 1.89 1.80 1.59 0.10 0.10 0.11 0.11 0.08

Note: Reported are critical values and size for, first, W , the Wald test statistic (18)
and, second, S, the test statistic (29), which is independent of τb when the nominal size
tends to zero.

The critical values are given in the left panel of Table 1. Critical values for a finer grid

of the true break date can be found in Appendix B. The large break magnitude that yields

equal forecast accuracy implies a major increase in critical values when using the Wald test

statistic (18), compared to the standard values of Andrews (1993). For a nominal size of

[0.10, 0.05, 0.01] the critical values in Andrews are equal to [7.17, 8.85, 12.35].

The critical values for the α-asymptotic test statistic, S, in (29) are independent of τ̂

in the limit where α → 0. Under a known break date, critical values would be from a

one-sided normal distribution, that is, they would be [1.64, 2.33, 2.58] for nominal size of

[0.10, 0.05, 0.01]. The critical values for the corrected test, S, vary substantially less over τ̂

than those for the Wald statistic, W . The results in Section 4.2.2 suggest that the differences

to the critical values that would be used if the break date is known diminish as α→ 0 and

this can be observed in Table 1.

Given that the break magnitudes that lead to equal forecast performance are reasonably

large, we expect the tests to have relatively good power properties. The power curves in

Figure 2 show that the power of both tests is close to the power of the optimal test which uses

the known break date to test whether the break magnitude exceeds the boundary depicted

in Figure 1. The good power properties are true for all break dates. This confirms that the

theoretical results for vanishing nominal size extend to conventional choices of the nominal

size.

5.1.4 Forecast combination versus full-sample forecast

Figure 3 shows the combination of τb and break magnitude for which the forecast combination

of Section 4.3 and the full sample forecast that weights observations equally have the same

MSFE, which is represented by the solid line in the graph. For comparison, the dashed line

gives the combination of post-break and full sample forecasts that have the same MSFE,

that is, the line from Figure 1. It can be seen that the break magnitude of equal forecast

performance for the combined forecast is lower than for the post-break sample forecast. This
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Figure 2: Asymptotic power when testing between a post-break and full-sample forecast at
α = 0.05
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Note: The plots show the power for tests at a nominal size of α = 0.05 with the null hypothesis given by

the break magnitude depicted in Figure 1. The panels show power for different values of the (unknown)

break date. The power of infeasible test conditional on the true break date is given as the dashed line, that

of the test statistic W as the solid line with stars, and that of the test statistic S as the dashed line with

diamonds. The solid horizontal line indicates the nominal size, and the vertical solid line indicates the break

magnitude at which equal predictive accuracy is achieved corresponding to Figure 1.

implies that combining the post-break and full sample forecasts offers improvements over

the post-break forecast for smaller break magnitudes for a given break date. However, the

difference is relatively small and breaks need to be quite large before the combined forecast

is more precise than the full sample forecast.

In order to determine whether to use the combined forecast, critical values can be ob-

tained as before and are presented in Table 2. Again, the size is close to the theoretical size

with small size distortions when using W , which are largely remedied when using S. Critical

values on a finer grid of the true break date are presented in Appendix B.

Figure 4 displays the power curves of the tests that compare the combined forecast

and the full sample, equal weights forecast. Since, the break magnitudes for equal forecast

performance are similar to the post-break sample forecast, it is not surprising that the

properties in terms of size and power of the tests for the combined forecast are largely the

same as those for the post-break forecast.
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Figure 3: Break magnitude for equal predictive accuracy of forecast combination and full
sample forecasts
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Note: The solid line shows the standardized break magnitude for which

the forecast combination (33) achieves the same MSFE as the full sample

forecast, in which case (34) equals zero. For comparison, the dashed line

shows the break magnitude for which the post-break forecast and the full

sample forecast achieve equal MSFE.

5.1.5 Forecast combination versus the post-break forecast

Finally, we investigate the break magnitudes that leads to equal forecast performance of

the post-break forecast and the forecast that combines the post-break with the full sample

forecast. Figure 5 plots the ratio of the MSFE of the combined forecast over that of the

post-break forecast. For nearly all break magnitudes and dates, the combined forecast

outperforms the post-break forecast. Only when the break occurs at the end of the sample

and is relatively large, the post-break forecast is slightly more accurate.

5.2 Finite sample analysis

5.2.1 Set up of the Monte Carlo experiments

We analyze the performance of the tests in finite sample for an AR(1) model with varying

degree of persistence. We consider the two tests for equal predictive accuracy between the

post-break forecast and the full-sample forecast based on the Wald statistic (18) and on the

S-statistic (29). Next, we consider the same test statistics but now test for equal predictive

accuracy between the forecast combination (33) and the full-sample, equal weighted forecast.

All tests are carried out at a nominal size α = 0.05, using sample sizes of T = {120, 240, 480}
and break dates τb = [0.15, 0.25, 0.50, 0.75, 0.85]. While the sample sizes may appear large,

note that τb = 0.15 and T = 120 yield only 18 post-break observations. Parameter estimates

are obtained by least squares, and the results are based on 10,000 repetitions.

23



Table 2: Critical values and size: forecast combination versus full sample
forecasts

Critical values Size

Test α 0.15 0.25 0.50 0.75 0.85 0.15 0.25 0.50 0.75 0.85

W 0.01 28.74 25.57 20.74 17.03 15.02 0.02 0.01 0.01 0.01 0.01
0.05 22.15 19.51 15.43 12.34 10.74 0.07 0.07 0.06 0.04 0.03
0.10 19.01 16.63 12.95 10.19 8.82 0.14 0.13 0.11 0.08 0.06

S 0.01 2.82 2.87 2.91 2.82 2.63 0.01 0.01 0.01 0.01 0.01
0.05 2.18 2.24 2.27 2.17 1.98 0.05 0.05 0.06 0.05 0.04
0.10 1.85 1.90 1.93 1.82 1.63 0.10 0.10 0.11 0.11 0.08

Note: Reported are critical values and size when testing for equal MSFE of the forecast
combination (33) and the full sample forecast using, first, W , the Wald test statistic
in (18) and, second, S, the test statistic (29) that is independent of τb when the nominal
size tends to zero.

The data generating process (DGP) is given by

yt = µt + ρyt−1 + εt, εt ∼ N(0, σ2) (36)

where σ2 = 1 and

µt =

{
µ1 if t ≤ τbT
µ2 if t > τbT

We set µ1 = −µ2 and µ1 = 1
2
√
T
ζ1/2(τb) + 1

2
λ√

Tτb(1−τb)
. When λ = 0 the experiments deliver

the finite sample size, whereas λ = {1, 2} shows the power of the tests. The influence of the

degree of persistence on the results is analyzed by varying ρ = {0.0, 0.3, 0.6, 0.9}.

5.2.2 Results

The results in Table 3 show that for models with low and moderate persistence, ρ = 0.0 and

0.3, the size of the W and S tests are extremely close to the nominal size irrespective of the

sample size and the break date. As persistent increases to ρ = 0.9, some size distortions

become apparent for T = 120. Those do, however, diminish as T increases. These size

distortions are similar for W and S and are the result of the small effective sample size in

this setting. Power increases with λ. For T = 120 it is slightly larger when the break is in

the middle of the sample but this effect disappears with increasing T . Overall, differences

between W and S are small.

The results for the tests that compare the forecast combination against the full sample,

equal weights forecast in Table 4 are very similar to the results for the test with the post-

break sample forecast under the alternative. Size is very close to the nominal size for large

effective sample sizes and power increases in λ and, mildly, in T .

Overall, the results suggest that the W and S tests have good size and power properties
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Figure 4: Asymptotic power when testing at α = 0.05 between forecast combination and
full-sample forecast
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Note: The plots show asymptotic power curves when testing for equal predictive accuracy between the

forecast combination (33) and the full-sample forecast using the break magnitude depicted in Figure 3 for

different values of the break date τb. For more information, see the footnote of Figure 2.

unless the persistence of the time series is very high and this is combined with a small

effective T .

6 Application

We investigate the importance of structural breaks for 130 macroeconomic and financial time

series from the St. Louis Federal Reserve (FRED-MD) database, which is a monthly updated

database. We use the vintage from May 2016. The data are described by McCracken and

Ng (2016), who suggest various transformations to render the series stationary and to deal

with discontinued series or changes in classification. In the vintage used here, the data start

in January 1959 and end in April 2016. After the transformations, all 130 series are available

from January 1960 until October 2015. Our first forecast is for July 1970 and we recursively

construct one-step ahead forecasts until the end of the sample.

The data are split into 8 groups: output and income (OI, 17 series), labor market (LM, 32

series), consumption and orders (CO, 10 series), orders and inventories (OrdInv, 11 series),

money and credit (MC, 14 series), interest rates and exchange rates (IRER, 21 series), prices
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Figure 5: Relative MSFE of forecast combination and post-break sample forecasts
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Note: The graph shows the relative performance of the forecast combination (33) and

the post-break sample forecast as a function of the standardized break magnitude ζ1/2

for different values of the break date τb. The horizontal solid line corresponds to equal

predictive accuracy. Values below 1 indicate that the forecast combination is more

precise.

(P, 21 series), and stock market (S, 4 series).

Following Stock and Watson (1996), we focus on linear autoregressive models of lag

length p = 1 and p = 6 and test whether the intercept is subject to a break. We esti-

mate parameters on a moving windows of 120 observations to decrease the likelihood of

multiple breaks occurring in the estimation sample. Test results are based on heteroskedas-

ticity robust Wald statistics, which use the following estimate of the covariance matrix

V̂ i = (X ′iXi)
−1X ′iΩ̂iXi(X

′
iXi)

−1 with [Ω̂i]kl = ε̂2
k/(1 − hk)

2 if k = l and [Ω̂i]kl = 0

otherwise, and hk is the k-th diagonal element of PX = X(X ′X)−1X ′. See MacKinnon

and White (1985) and Long and Ervin (2000) for discussions of different heteroskedasticity

robust covariance matrices. We have also obtained test results and forecasts using a larger

window of 240 observations and using the homoskedastic Wald test and, qualitatively, our

results do not depend on these choices.

6.1 Structural break test results

In this forecast exercise, we compare our Wald test statistic, W , in (18), the S-test in (29),

those tests based on the combined forecast, which we denote as W c and Sc, and the supW

of Andrews (1993). For all tests we use α = 0.5 and τmin = 0.15. In Table 5, we report

the fraction of estimation samples where the tests indicate a break. It is clear that a large

fraction of the breaks picked up by Andrews’ supW are judged as irrelevant for forecasting

by W , S, W c, and Sc. The fraction of forecasts for which a break is indicated is lower by a

factor of two for the AR(1) and by factor of up to three for the AR(6).
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Table 3: Finite sample analysis: size and power when testing between post-break and full-sample
forecast

T = 120 T = 240 T = 480

ρ λ\τb 0.15 0.25 0.50 0.75 0.85 0.15 0.25 0.50 0.75 0.85 0.15 0.25 0.50 0.75 0.85

Wald-test (18)

0.0 0 0.05 0.05 0.06 0.05 0.03 0.06 0.06 0.06 0.04 0.03 0.06 0.06 0.06 0.05 0.03
1 0.17 0.20 0.22 0.21 0.17 0.21 0.22 0.23 0.21 0.16 0.24 0.24 0.23 0.21 0.16
2 0.43 0.48 0.52 0.53 0.47 0.52 0.54 0.55 0.53 0.48 0.57 0.56 0.56 0.55 0.49

0.3 0 0.04 0.05 0.06 0.05 0.03 0.05 0.06 0.06 0.04 0.03 0.06 0.06 0.06 0.05 0.03
1 0.13 0.17 0.21 0.21 0.17 0.18 0.20 0.22 0.20 0.16 0.22 0.23 0.22 0.21 0.16
2 0.33 0.40 0.47 0.50 0.46 0.46 0.50 0.53 0.52 0.47 0.54 0.54 0.55 0.55 0.48

0.6 0 0.03 0.05 0.06 0.05 0.04 0.04 0.05 0.06 0.05 0.03 0.05 0.06 0.06 0.05 0.03
1 0.08 0.12 0.19 0.20 0.16 0.13 0.17 0.20 0.20 0.15 0.18 0.20 0.22 0.21 0.15
2 0.19 0.26 0.39 0.46 0.43 0.33 0.40 0.47 0.50 0.45 0.47 0.49 0.52 0.53 0.47

0.9 0 0.02 0.05 0.10 0.09 0.06 0.02 0.04 0.08 0.07 0.04 0.03 0.05 0.06 0.06 0.04
1 0.04 0.07 0.17 0.24 0.20 0.04 0.08 0.16 0.21 0.16 0.07 0.11 0.17 0.20 0.15
2 0.09 0.12 0.24 0.44 0.44 0.09 0.14 0.28 0.43 0.39 0.16 0.24 0.37 0.46 0.41

S-test (29)

0.0 0 0.03 0.04 0.06 0.06 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.05 0.06 0.06 0.04
1 0.13 0.16 0.21 0.23 0.22 0.16 0.18 0.21 0.23 0.21 0.17 0.19 0.21 0.23 0.21
2 0.34 0.41 0.48 0.56 0.55 0.43 0.48 0.52 0.56 0.56 0.48 0.51 0.53 0.58 0.56

0.3 0 0.03 0.04 0.06 0.06 0.04 0.04 0.05 0.06 0.05 0.04 0.04 0.05 0.06 0.06 0.04
1 0.09 0.14 0.19 0.23 0.22 0.13 0.16 0.20 0.23 0.20 0.16 0.18 0.21 0.23 0.21
2 0.25 0.34 0.44 0.53 0.54 0.36 0.43 0.50 0.55 0.55 0.44 0.49 0.52 0.58 0.56

0.6 0 0.02 0.04 0.06 0.07 0.05 0.03 0.04 0.05 0.05 0.04 0.04 0.05 0.06 0.06 0.05
1 0.05 0.09 0.17 0.23 0.21 0.09 0.13 0.19 0.22 0.21 0.13 0.16 0.20 0.23 0.21
2 0.13 0.21 0.36 0.50 0.52 0.24 0.33 0.44 0.53 0.53 0.37 0.43 0.49 0.56 0.55

0.9 0 0.02 0.04 0.10 0.12 0.08 0.02 0.03 0.07 0.08 0.06 0.02 0.04 0.06 0.07 0.05
1 0.03 0.05 0.16 0.28 0.26 0.02 0.06 0.14 0.24 0.22 0.04 0.08 0.16 0.23 0.21
2 0.06 0.08 0.22 0.49 0.54 0.05 0.10 0.25 0.47 0.49 0.10 0.18 0.33 0.50 0.51

Note: The table presents finite sample size and power properties for the test comparing the post-break and full sam-
ple based forecasts. The DGP is yt = µt+ρyt−1 +εt, εt ∼ N(0, 1), µ1 = −µ2 and µ1 = 1

2
√
T
ζ1/2(τb)+ 1

2
λ√

Tτb(1−τb)

where ζ1/2(τb) corresponds to Figure 1. The empirical size of the tests is obtained when λ = 0 and power when
λ = {1, 2}. Tests are for a nominal size of 0.05.

Figure 6 displays the number of estimation samples per series for which the tests were

significant when forecasting with the AR(1), where within each category we sort the series

based on the fraction of breaks found by W . Across all categories Andrews’ supW test is

more often significant than the W and S tests for both, post-break and combined forecast.

Yet, we see substantial differences between categories. Whereas in the labor market and
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Table 4: Finite sample analysis: size and power when testing between combined and full-sample
forecast

T = 120 T = 240 T = 480

ρ λ\τb 0.15 0.25 0.50 0.75 0.85 0.15 0.25 0.50 0.75 0.85 0.15 0.25 0.50 0.75 0.85

Wald-test (18)

0.0 0 0.05 0.06 0.06 0.04 0.03 0.06 0.06 0.06 0.04 0.03 0.07 0.07 0.06 0.05 0.03
1 0.18 0.21 0.22 0.21 0.16 0.22 0.23 0.22 0.20 0.15 0.24 0.24 0.23 0.21 0.15
2 0.45 0.49 0.52 0.52 0.46 0.53 0.55 0.55 0.53 0.47 0.57 0.57 0.56 0.54 0.48

0.3 0 0.05 0.06 0.06 0.05 0.03 0.06 0.06 0.06 0.04 0.03 0.06 0.07 0.06 0.05 0.03
1 0.15 0.19 0.22 0.20 0.16 0.20 0.21 0.22 0.20 0.15 0.23 0.23 0.22 0.21 0.15
2 0.36 0.42 0.48 0.51 0.45 0.48 0.51 0.53 0.52 0.46 0.55 0.55 0.55 0.54 0.47

0.6 0 0.04 0.06 0.07 0.05 0.04 0.05 0.06 0.06 0.04 0.03 0.06 0.06 0.06 0.05 0.03
1 0.10 0.14 0.20 0.20 0.16 0.15 0.18 0.21 0.20 0.15 0.20 0.21 0.22 0.20 0.15
2 0.22 0.30 0.42 0.47 0.43 0.36 0.42 0.49 0.50 0.44 0.48 0.51 0.53 0.52 0.46

0.9 0 0.03 0.07 0.12 0.10 0.07 0.04 0.05 0.09 0.07 0.05 0.04 0.06 0.07 0.06 0.04
1 0.06 0.09 0.21 0.26 0.21 0.06 0.10 0.19 0.22 0.17 0.09 0.13 0.20 0.21 0.16
2 0.11 0.15 0.30 0.48 0.45 0.12 0.18 0.34 0.46 0.41 0.20 0.28 0.41 0.47 0.42

S-test (29)

0.0 0 0.04 0.05 0.06 0.06 0.04 0.04 0.05 0.06 0.05 0.04 0.04 0.05 0.06 0.06 0.04
1 0.13 0.16 0.21 0.24 0.22 0.15 0.18 0.21 0.23 0.20 0.17 0.19 0.21 0.23 0.20
2 0.34 0.42 0.49 0.56 0.55 0.42 0.47 0.52 0.56 0.55 0.46 0.50 0.53 0.58 0.56

0.3 0 0.03 0.05 0.06 0.06 0.04 0.04 0.05 0.06 0.05 0.04 0.04 0.05 0.06 0.06 0.04
1 0.10 0.14 0.20 0.23 0.22 0.13 0.17 0.20 0.23 0.20 0.16 0.18 0.21 0.23 0.20
2 0.25 0.35 0.45 0.54 0.54 0.36 0.43 0.50 0.56 0.54 0.43 0.48 0.52 0.58 0.55

0.6 0 0.03 0.05 0.07 0.07 0.05 0.03 0.05 0.06 0.06 0.04 0.04 0.05 0.06 0.06 0.05
1 0.06 0.10 0.19 0.24 0.22 0.09 0.14 0.19 0.23 0.20 0.13 0.16 0.20 0.23 0.20
2 0.14 0.23 0.39 0.52 0.52 0.25 0.35 0.45 0.54 0.53 0.37 0.43 0.49 0.56 0.55

0.9 0 0.02 0.05 0.12 0.12 0.09 0.02 0.04 0.09 0.09 0.06 0.03 0.04 0.07 0.08 0.06
1 0.03 0.06 0.19 0.31 0.28 0.03 0.07 0.17 0.25 0.23 0.05 0.10 0.18 0.25 0.21
2 0.06 0.11 0.27 0.53 0.56 0.07 0.12 0.30 0.50 0.51 0.12 0.21 0.37 0.52 0.52

Note: The table presents finite sample size and power properties of the tests comparing the forecast combina-
tion (33) and the full-sample, equal weights forecast, using a nominal size of 0.05. For further details, see the
footnote of Table 3.

consumption and orders categories some of the series contain a significant break in up to

70% of the estimation samples when the W or S tests are used, the prices and stock market

series hardly show any significant breaks from a forecasting perspective. This finding concurs

with the general perception that, for these type of time series, simple linear models are very

hard to beat in terms of MSFE.
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Table 5: Fractions of estimation samples with a
significant structural break

supW W S W c Sc

AR(1) 0.219 0.102 0.108 0.119 0.126
AR(6) 0.114 0.037 0.042 0.046 0.053

Note: supW refers to the Andrews’ (1993) sup-Wald test,
W and S refer to the tests developed in this paper that
compare post-break and full sample forecasts, and W c

and Sc refer to the tests that compare combined and full
sample forecasts. All tests are carried out at α = 0.05.

Figure 7 displays the number of estimation samples with significant breaks for the AR(6)

model. Compared to the results for the AR(1) in Figure 6, far fewer estimation samples

contain a significant break, and this is true even in the consumption and orders category,

which contained series with many breaks when using the AR(1). Consistent with the results

for the AR(1), however, the W and S tests find fewer estimation samples with breaks than

Andrews’ supW test for virtually all series.

Figure 8 shows the occurrence of significant breaks over the different estimation samples

when using the AR(1) model, where the end date of the estimation sample is given on

the horizontal axis. In the top panel are the results for the test comparing the post-break

estimation window with the full estimation window. In the bottom panel are the tests

comparing the combined forecast and the full sample, equal weights forecast. It is clear

that Andrews’ supW test finds more breaks in for the vast majority of estimation samples,

whereas the results from the W and S tests are extremely similar.

A number of interesting episodes can be observed. While in the initial estimation samples

the tests find a comparable number of samples with beaks, from 1985 Andrews’ supW test

finds many more series that contain breaks that are insignificant for the W and S test. This

remains true until 2009 where the W and S tests find the same and, in the case of the

combined forecast, even more breaks that are relevant for forecasting than Andrews’ supW

test. From 2010 onwards, breaks that are relevant for forecasting decrease sharply, whereas

Andrews’ supW tests continues to find a large number of breaks. The intuition is that, as

demonstrated in Figures 1 and 3, breaks early in the sample are less likely to be relevant for

forecasting. However, Andrews’ SupW test does not use this information.

Figure 9 shows the results for the AR(6) model. In general, all tests find fewer estimation

samples with breaks compared to the AR(1) model. The evolution over the estimation

samples is, however, similar to the AR(1) case. In the initial estimation samples up to 1985

all tests agree that a small number of series are subject to a structural break. From 1985 to

1990, however, Andrews’ supW test finds breaks in up to a third of the estimation samples,

most of which the W and S tests do not find important for forecasting. The same is true for

breaks around 2000. In contrast, in the period following the dot com bubble and following

the financial crisis of 2008/9 the W and the S tests find as many and, in the case of the
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Figure 6: Fraction of significant structural break test statistics per series - AR(1)
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Note: The upper panel depicts the fraction of estimation samples with a significant break when

testing under the alternative of the post-break forecast; the lower panel when testing under the

alternative of the forecast combination (33). Dashed lines indicate the fraction of estimation sam-

ples with significant Andrews’ supW test, dashed-dotted lines indicate the fraction of estimation

samples where the break test W in (18) indicates a break, and solid lines indicate the fraction of

estimation samples with significant S test in (29).

combined forecasts, more series, where taking a break into account will improve forecast

accuracy than Andrews’ supW test. Again, the number of series that should take a break

into account declines sharply towards the end of our sample when using the W and S tests

but not when using Andrews’ supW tests.

6.2 Forecast accuracy

Given the different test results, we now investigate whether forecasts conditional on the

W and S tests are more accurate than forecasts based on Andrews’ supW test. We use

each test to determine whether to use the post-break or the full sample for forecasting

or, alternatively, whether to use the combined or the full sample forecast and, given these

results, we construct the respective forecast.
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Figure 7: Fraction of significant structural break test statistics per series - AR(6)
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Note: See footnote of Table 6

Table 6 reports the MSFE of the respective forecasting procedures relative to the MSFE

of the forecast based on the supW test of Andrews with the results for the AR(1) in the top

panel and those for the AR(6) in the bottom panel. For each model, we report the average

relative MSFE over all series in the first line, followed by the average relative MSFE for

the series in the different categories. We report only the results for the estimation windows

where at least one test finds a break as the estimation samples where no test finds a break

will to lead to identical full sample forecasts.

The results show that using the W test in place of Andrews’ supW test leads to a 5.5%

improvement in accuracy on average for the AR(1) and a 7.6% improvement in accuracy on

average for the AR(6) model. This gain is similar for the S test with improvements of 4.9%

and 6.5%. These improvements are found for series in all categories. The only exception is

the use of the S test in the AR(1) model on the category ‘prices’. This suggests that the

improvements are robust across the different series.

When the combined forecast is used in conjunction with the W c or Sc test, the accuracy

of the forecasts is very similar as those of the post-break forecasts. This can be expected
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Figure 8: Fraction of significant structural break test statistics over estimation samples –
AR(1)
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Note: The plots show the fractions of series with a significant break for each estimation sample

when using an AR(1) model with a break in intercept. The top panel shows results when testing

between the post-break sample based forecast and the full sample based forecast and the lower

panel when testing between the combined forecast and the full sample, equal weights forecast. The

dashed line indicates the fraction of series when testing using Andrews’ supW test at α = 0.05,

the solid line when testing using the S-test in (29), and the dashed-dotted line when testing using

the W-test in (18). The dates displayed on the horizontal axis are the end dates of the estimation

samples.

since we reject the test when the Wald statistic, that governs the combination weights, is

relatively large. This implies that upon rejection of the test statistic, a forecast is used that

is relatively close to the post-break forecast. The last column shows that using the combined

forecast in conjunction with Andrews’ supW test leads to forecasts that, while more precise

than post-break forecasts based on the same test, are clearly dominated by the W c and

Sc tests. In fact, for all categories and both models the W c test leads to more accurate

forecasts, as does the Sc tests with the exception of the AR(1) and prices.
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Figure 9: Fraction of significant structural break test statistics over estimation samples –
AR(6)
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Note: The plots show the fractions of series with a significant break for each estimation sample

when using an AR(6) model with a break in intercept. For additional details, see the footnote of

Figure 8.

7 Conclusion

In this paper, we formalize the notion that ignoring small breaks may improve the accuracy

of forecasts. We quantify the break magnitude that leads to equal forecast accuracy between

forecasts based on the full sample and based on a post-break sample with an estimated break

date. This break magnitude is substantial, which points to a large penalty that is incurred

by the uncertainty around the estimated break date. Additionally, the break magnitude

that leads to equal forecast performance depends on the unknown break date.

We derive a test for equal forecast performance. Under a local break, no consistent

estimator is available for the break date. Yet, we are able to prove near optimality of our

test in the sense that the power of an infeasible test conditional on the break date is achieved

for small enough nominal size. This allows the critical values of the test to depend on the

estimated break date. We show that under the break magnitudes we consider under our

33



Table 6: Relative MSFE compared to Andrews’ supW test

Post-break Combination

W S W S supW

AR(1) All series 0.948 0.953 0.948 0.949 0.983

OI 0.972 0.981 0.970 0.972 0.986
LM 0.950 0.951 0.948 0.948 0.979
CO 0.978 0.973 0.975 0.969 0.992
OrdInv 0.955 0.974 0.955 0.973 0.983
MC 0.966 0.974 0.971 0.972 0.991
IRER 0.878 0.891 0.889 0.892 0.974
P 0.973 1.004 0.969 1.010 0.988
S 0.924 0.961 0.926 0.928 0.979

AR(6) All series 0.929 0.938 0.935 0.939 0.982

OI 0.949 0.978 0.960 0.972 0.983
LM 0.953 0.961 0.951 0.959 0.978
CO 0.956 0.954 0.955 0.952 0.989
OrdInv 0.926 0.953 0.935 0.948 0.983
MC 0.948 0.957 0.960 0.974 0.990
IRER 0.851 0.854 0.872 0.870 0.975
P 0.921 0.940 0.939 0.914 0.985
S 0.963 0.957 0.961 0.959 0.987

Note: The table reports the average of the ratio of the respective fore-
casts’ MSFE over that of the forecasts resulting from Andrews’ supW test
at α = 0.05. Forecasts for which none of the tests indicate a break are
excluded. Results are reported for the test statistic W in (18) and S
in (29). ‘Post-break’ and ‘Combination’ indicate that under the alterna-
tive the post-break forecast, respectively the forecast combination (33),
are used. The acronyms in the first column with corresponding series after
excluding series without breaks (AR(1)|AR(6)): OI: output and income
(16|17 series), LM: labor market (28|29), CO: consumption and orders
(10|10), OrdInv: orders and inventories (11|11), MC: money and credit
(2|8), IRER: interest rates and exchange rates (17|21), P: prices (2|6), S:
stock market (4|4).

null hypothesis, this optimality is achieved relatively quickly, that is, for finite nominal size.

Simulations confirm this and show only a minor loss of power compared to the test that is

conditional on the true break date.

We also consider the optimal weights forecast of Pesaran et al. (2013) and show that it is

a combination of the post-break and full sample forecasts, with our test statistic governing

the combination weights. Our test extends in a straightforward way to test whether the

combined forecast will be more accurate than the full sample forecast.

We apply the test to a large set of macroeconomic time series and find that breaks that

are relevant for forecasting are rare. Pretesting using the test developed here improves over

pretesting using the standard test of Andrews (1993) in terms of MSFE. Similar improve-

ments can be made by considering an optimal weights or forecast combination under the
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alternative.
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Ploberger, W., Krämer, W., and Kontrus, K. (1989). A new test for structural stability in

the linear regression model. Journal of Econometrics, 40(2):307–318.

Rapach, D. E. and Wohar, M. E. (2006). Structural breaks and predictive regression models

of aggregate U.S. stock returns. Journal of Financial Econometrics, 4(2):238–274.

Rossi, B. (2006). Are exchange rates really random walks? Some evidence robust to param-

eter instability. Macroeconomic Dynamics, 10(1):20–38.

Stock, J. H. and Watson, M. W. (1996). Evidence on structural instability in macroeconomic

time series relations. Journal of Business & Economic Statistics, 14(1):11–30.

Stock, J. H. and Watson, M. W. (2007). Why has u.s. inaflation become harder to forecast?

Journal of Money, Credit and Banking, 39(1):3–33.

Toro-Vizcarrondo, C. and Wallace, T. D. (1968). A test of the mean square error crite-

rion for restrictions in linear regression. Journal of the American Statistical Association,

63(322):558–572.

Trenkler, G. and Toutenburg, H. (1992). Pre-test procedures and forecasting in the regression

model under restrictions. Journal of Statistical Planning and Inference, 30(2):249–256.

Wallace, T. D. (1972). Weaker criteria and tests for linear restrictions in regression. Econo-

metrica, 40(4):689–698.

37



Appendix A Additional mathematical details

A.1 A break of known timing

Forecasts are obtained using (9)

ŷT+h = fT+h(β̂2, δ̂|IT )

where the information set IT contains the regressors required for the forecast.

For a known break date, the results of the previous section imply the following asymptotic

distribution of the parameters

√
T


β̂1 − β1

β̂2 − β2

δ̂ − δ

 a∼ N




0

0

0

 ,


1
τV + H̃ H̃ −L
H̃ 1

1−τV + H̃ −L
−L′ −L′ H−1


 (37)

For the full sample estimator we have

√
T

(
β̂F − β2

δ̂ − δ

)
a∼ N

[(
τb(β1 − β2)

0

)
,

(
V + H̃ −L
−L′ H−1

)]
(38)

and

β̂F −
[
β̂2 + τb(β̂1 − β̂2)

]
p→ 0

Define fβ2 =
∂fT+h(β2,δ|IT )

∂β2
and f δ =

∂fT+h(β2,δ|IT )
∂δ . Using a first order Taylor expansion,

(37) and (38), we have that

√
T
(
fT+h(β̂2, δ̂|IT )− fT+h(β2, δ|IT )

)
=
√
T
[
f ′β2(β̂2 − β2) + f ′δ(δ̂ − δ) +O(T−1)

]
a∼ N (0,Σβ2 + Σr)

√
T
(
fT+h(β̂F , δ̂|IT )− fT+h(β2), δ|IT )

)
=
√
T
[
f ′β2(β̂F − β2) + f ′δ(δ̂ − δ) +O(T−1)

]
a∼ N

(
τbf
′
β2(β1 − β2),ΣβF + Σr

)
where

Σβi = plim
T→∞

Tf ′β2Var(β̂i)fβ2 , for i = 2, F

Σr = plim
T→∞

T
(
f ′δVar(δ̂)f δ + 2f ′β2Cov(β̂F , δ̂)f δ

) (39)

and we use that, asymptotically, T
(

Cov(β̂F , δ̂)− Cov(β̂2, δ̂)
)

p→ 0. Using previous results
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on the covariance matrix of the estimators, and the notation in (12), we have

Σβ2 =
1

1− τb
f ′β2V fβ2 + f ′β2H̃fβ2

ΣβF = f ′β2V fβ2 + f ′β2H̃fβ2

For the expected MSFEs using β2 and βF , we have

lim
T→∞

TE

[(
fT+h(β̂2, δ̂|IT )− fT+h(β2, δ|IT )

)2
]

=
1

1− τb
f ′β2V fβ2 + f ′β2H̃fβ2 + Σr

lim
T→∞

TE

[(
fT+h(β̂F , δ̂|IT )− fT+h(β2, δ|IT )

)2
]

=
[
τbf
′
β2(β1 − β2)

]2
+ f ′β2V fβ2 + f ′β2H̃fβ2 + Σr

Hence, the full sample based forecast improves over the post-break sample based forecast if

ζ = T (1− τb)τb

[
f ′β2(β1 − β2)

]2
f ′β2V fβ2

≤ 1 (40)

This reiterates that the null hypothesis of equal mean squared forecast error translates into

a hypothesis on the standardized break magnitude, ζ.

Similar to Section 2, a test for H0 : ζ = 1 can be derived by by noting that, asymptoti-

cally, TVar(β̂1 − β̂2)
p→ 1

τb(1−τb)V and, therefore,

W (τb) = T (1− τb)τb

[
f ′β2(β̂1 − β̂2)

]2

ω̂

a∼ χ2(1, ζ) (41)

where ω̂ is a consistent estimator of f ′β2V fβ2 . The test statistic, ζ̂, can be compared against

the critical values of the χ2(1, 1) distribution to test for equal forecast performance.

The above can be immediately applied to the simple structural break model (1) where

fT+1(β̂2;xT+1) = x′T+1β̂2, and fβ2 = xT+1. The full sample forecast is more accurate if

ζ = Tτb(1− τb)
[
x′T+1(β1 − β2)

]2
x′T+1V xT+1

≤ 1 (42)

identical to the result in (4).
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A.2 Proof of Lemma 1

Define ∆(τ̂) = ∆1 −∆2 where

∆1 = lim
T→∞

TE

[(
f ′β2(β̂2(τ̂)− β2) + f ′β2(δ̂ − δ)

)2
]
/f ′β2V fβ2

= lim
T→∞

TE

[(
f ′β2(β̂2(τ̂)− β2)

)2
+
(
f ′β2(δ̂ − δ)

)2
+

+2f ′β2(β̂2(τ̂)− β2)f ′β2(δ̂ − δ)
]
/f ′β2V fβ2

(43)

and similarly for ∆2

∆2 = lim
T→∞

TE

[(
f ′β2(β̂F − β2) + f ′β2(δ̂ − δ)

)2
]
/f ′β2V fβ2

= lim
T→∞

TE

[(
f ′β2(β̂F − β2)

)2
+
(
f ′β2(δ̂ − δ)

)2
+

+2f ′β2(β̂F − β2)f ′β2(δ̂ − δ)
]
/f ′β2V fβ2

(44)

To prove the theorem, we need that

lim
T→∞

TE
[
f ′β2(β̂2(τ̂)− β̂F )f ′β2(δ̂ − δ)

]
/f ′β2V fβ2 = 0

Define

X(τ) = f ′β2(β̂2(τ)− β̂F )/
√
/f ′β2V fβ2

Y = f ′β2(δ̂ − δ)/
√
f ′β2V fβ2

Note that X2
τ = ζ̂(τ), so that τ̂ is found by maximizing X2

τ . We know that for given τ ,

asymptotically these are jointly normally distributed. It is easy to show that

E[X(τ)Y ] = 0

for any given τ . Together with the joint normality of X(τ) and Y , this implies independence

between X(τ) and Y for given τ , i.e. X(τ) ⊥ Y .

However, we need to prove

X(τ̂) ⊥ Y, τ̂ = arg sup
τ∈Π

X(τ)2

Denote

g(X(τ)) = sup
τ∈Π

X(τ), h(X(τ)) = inf
τ∈Π

X(τ)

Since X(τ) is a stochastic process with continuous sample paths, g(·) and h(·) are measurable
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functions of X(τ), which implies

g(X(τ)) ⊥ Y, h(X(τ)) ⊥ Y

In terms of g(·) and h(·) we can write

X(τ̂) = f(g(·), h(·)) = g(·) + [h(·)− g(·)]I[g(·) + h(·) ≤ 0]

with I[·] the indicator function. Now g(X(τ)) and h(X(τ)) are measurable functions of

X(τ) and f(g(·), h(·)) is a measurable function of g(·), h(·). Since compositions of mea-

surable functions are measurable, X(τ̂) is a measurable function of X(τ) as well. Since

f(g(X(τ)), h(X(τ)) and Y are independent ifX(τ) and Y are independent and f(g(X(τ)), h(X(τ)))

is a measurable function of X(τ), we have that X(τ̂) is independent of Y . Then E[X(τ̂)Y ] =

0. �

A.3 Proof of Theorem 1

To prove that only points in a small neighborhood of the true break date contribute to the

probability of exceeding a distant boundary, we require the following preliminaries.

Lemma 2 Suppose Z(τ) is a symmetric Gaussian process, i.e. P (Z(τ) > u) = P (−Z(τ) >

u), then as u→∞

P

(
sup
τ×c

[Z(τ) + µ(τ ; θτb)]c > u

)
= P (Z(τ) > u− |µ(τ ; θτb)| for some τ ∈ I) [1 + o(1)]

where c = ±1, τ ∈ I = [τmin, τmax], and the supremum is taken jointly over τ and c.

Proof: Consider first µ(τ ; θτb) > 0 then

P (Z(τ) + µ(τ ; θτb) > u, τ ∈ I) = P (Z(τ) > u− |µ(τ ; θτb)|, τ ∈ I)

P (−Z(τ)− µ(τ ; θτb) > u, τ ∈ I) = P (Z(τ) > u+ |µ(τ ; θτb)|, τ ∈ I)
(45)

where τ ∈ I is shorthand notation for “for some τ ∈ I”. When µ(τ ; θτb) < 0 we have

P (−Z(τ)− µ(τ ; θτb) > u, τ ∈ I) = P (Z(τ) > u− |µ(τ ; θτb)|, τ ∈ I)

P (Z(τ) + µ(τ ; θτb) > u, τ ∈ I) = P (Z(τ) > u+ |µ(τ ; θτb)|, τ ∈ I)
(46)

The bounds in the second lines of (45) and (46) are equal or larger then the bounds in the

first lines. It follows from the results below that the crossing probabilities over the larger

bounds are negligible compared to the crossing probabilities over the lower bounds. This
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implies that for any sign of µ(τ ; θτb) as u→∞

P

(
sup
τ×c

[Z(τ) + µ(τ ; θτb)]c > u

)
= P (Z(τ) > u− |µ(τ ; θτb)| for some τ ∈ I) [1 + o(1)]

(47)

as required. �

In the structural break model, Z(τ) is a locally stationary Gaussian process with corre-

lation function r(τ, τ + s), defined as follows (Hüsler (1990))

Definition 1 (Local stationarity) A Gaussian process is locally stationary if there exists

a continuous function C(τ) satisfying 0 < C(τ) <∞

lim
s→0

1− r(τ, τ + s)

|s|α
= C(τ) uniformly in τ ≥ 0

The correlation function can be written as

r(τ, τ + s) = 1− C(τ)|s|α as s→ 0

The standardized Brownian bridge that we encounter in the structural break model is a

locally stationary process with α = 1 and local covariance function C(τ) = 1
2

1
τ(1−τ) . Since

τ ∈ [τmin, τmax] with 0 < τmin < τmax < 1, it holds that 0 < C(τ) <∞.

Lemma 3 Suppose Z(τ) is a locally stationary process with local covariance function C(τ)

then for δ(u) > 0 if δ(u)u2 →∞ and δ(u)→ 0 as u→∞

lim
u→∞

P

(
sup

[τ,τ+δ(u)]
Z(t) > u

)
=

1√
2π
δ(u)u exp

(
−1

2
u2

)
C(τ) (48)

Proof: see Hüsler (1990).

To prove Theorem 1, we start by noting that for τ ∈ I = [τmin, τmax]

P

(
sup
τ∈I

Q∗(τ) > u2

)
= P

(
sup
τ∈I

√
Q∗(τ) > u

)
= P

(
sup
τ∈I
|Z(τ) + µ(τ ; θτb)| > u

)
= P

(
sup
τ×c

[Z(τ) + µ(τ ; θτb)]c > u

)
with c = ±1

= P (Z(τ) > u− |µ(τ ; θτb)| for some τ ∈ I) [1 + o(1)]

where the supremum is taken jointly over τ ∈ I and c. The last equality follows from

Lemma 2. Now we proceed along the lines of Piterbarg (1996).
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Consider a region close to τb defined by I1 = [τb − δ(u), τb + δ(u)]. In I1, the minimum

value of the boundary is given by

b = inf
τ∈I1

[u− |µ(τ ; θτb)|] = u− |µ(τb; θτb)| (49)

and therefore

lim
u→∞

PI1 = lim
u→∞

P (Z(τ) > u− |µ(τ ; θτb)| for some τ ∈ I1)

≤ lim
u→∞

P (Z(τ) > b for some τ ∈ I1)

= 2δ(b)b
1√
2π

exp

(
−1

2
b2
)
C(τb)

=
2δ(b)√

2π
exp

(
−1

2
b2 + log b

)
C(τb)

where the third line follows from (48).

Next, define the region outside of I1 as IA = I\I1. Then in IA, the minimum value of

the boundary is given by

bA = u− |µ(τb + δ(u); θτb)| (50)

We now expand −|µ(τb + δ(u); θτb)| around δ(u) = 0. Some care must be taken with regard

to the difference between approaching τb from the left or from the right

−|µ(τb + δ(u); θτb)| = −|µ(τb; θτb)|+ γδ(u) +O
[
δ(u)2

]
(51)

where γ = γ+I[δ(u) > 0] + γ−I[δ(u) < 0], γ+ =
∂µ(τ ;θτb )

∂τ

∣∣∣
τ↓τb

and γ− =
∂µ(τ ;θτb )

∂τ

∣∣∣
τ↑τb

. The

important thing to note is that since µ(τ ; θτb) achieves a minimum at τ = τb we have that

γ+ > 0 and γ− < 0, and consequently γδ(u) > 0. Then bA = b+ γδ(u) and

lim
u→∞

PIA = lim
u→∞

P (Z(τ) > u− |µ(τ ; θτb)| for some τ ∈ IA)

≤ lim
u→∞

P (Z(τ) > bA for some τ ∈ IA)

≤ 1√
2π

exp

(
−1

2
b2 − bγδ(u)− 1

2
γ2δ(u)2 + log(b+ γδ(u))

)
C

(52)

where we define C by noting that

∑
Ik∈IA

C(kδ(u))δ(u)
δ(u)→0−→

∫
IA
C(τ)dτ ≤

∫
I
C(τ)dτ = C <∞ (53)

with Ik representing non-overlapping intervals of width δ(u) such that
∞⋃
k=2

Ik = IA and

kδ(u) ∈ Ik
Compare (52) to the probability of a test with a known break date to exceed the critical
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value

P0 = P (Z(τb) > u− |µ(τb; θτb)|) =
1√
2π

exp

(
−1

2
b2 − log(b)

)
(54)

where we use that

1√
2π

∫ ∞
u

exp

(
−1

2
x2

)
dx→ 1√

2πu
exp

(
−1

2
u2

)
as u→∞

Ignoring the lower order term −1
2γ

2δ(u)2 + log(b+ γδ(u)), equation (52) contains an extra

term exp(−bγδ(u)) compared to (54). This term is decreasing as u increases, as we argued

above that γδ(u) > 0. Recalling (49), this implies that PIA = o(P0) if

uδ(u)

log u
→∞

Then, if

δ(u) = u−1 log2(u), (55)

all intervals outside of I1 contribute o(P0) to the probability of crossing the boundary u.

Under (55), we have that for PI1 as u→∞

PI1 ≤ PI ≤ PI1 + PIA

≤ PI1 + o(P0)

We now only need to note that

PI1 = P (Z(τ) > u− |µ(τ ; θτb)| for some τ ∈ I1)

≥ P (Z(τb) > u− |µ(τb; θτb)|) = P0

to conclude that

P (Z(τ) > u− |µ(τ ; θτb)|, τ ∈ I)
u→∞−→ PI1(1 + o(1))

which completes the proof. �

Note that, in (52), the term exp(bδ(u))−γ ensures that PIA = o(P1). In the structural

break model, we see that (51) is given by µ(τb+δ(u); θτb) = θτb
√
τb(1− τb)−1

2θτb
1√

τb(1−τb)
δ(u)+

O
[
δ(u)2

]
. It is clear that γ scales linearly with the break magnitude. Therefore, for a suf-

ficiently large break, asymptotic optimality results are expected to extend to the practical

case when u is finite. The simulations of asymptotic power presented in Section 5 confirm

this.
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A.4 Proof of Theorem 2

Within the interval I1, we have u− ≤ u(τb) ≤ u+ and u− ≤ u(τ̂) ≤ u+. The lower and

upper bounds satisfy

u− = u(τb)−
∣∣∣∣∂u(τb)

∂τb

∣∣∣∣ δ(u) +O(δ(u)2)

≥ u(τb)− Cδ(u) +O(δ(u)2)

u+ = u(τb) +

∣∣∣∣∂u(τb)

∂τb

∣∣∣∣ δ(u) +O(δ(u)2)

≤ u(τb) + Cδ(u) +O(δ(u)2)

(56)

where C <∞ and we used Assumption 3. Then

ε = P (sup
τ
Q∗(τ) > u2

−)− P (sup
τ
Q∗(τ) > u2

+)

=
1√
2π
δ(u)u(τb) exp

(
−1

2
u(τb)

2

)
[exp(−Cδ(u))− exp(+Cδ(u))]C(τb) + o(·)

→ 0 (57)

where o(·) contains lower order terms and the last line uses δ(u) = u−1 log2(u), which was

shown in Theorem 1. Since

P

(
sup
τ
Q∗(τ) > u2

+

)
≤ P

(
sup
τ
Q∗(τ) > u(τb)

2

)
≤ P

(
sup
τ
Q∗(τ) > u2

−

)

P

(
sup
τ
Q∗(τ) > u2

+

)
≤ P

(
sup
τ
Q∗(τ) > u(τ̂)2

)
≤ P

(
sup
τ
Q∗(τ) > u2

−

)
(57) implies that P

(
supτ Q

∗(τ) > u(τb)
2
)

= P
(
supτ Q

∗(τ) > u(τ̂)2
)
. �

A.5 Proof of Theorem 3

To prove Theorem 3, we require the following lemma

Lemma 4 (Convergence of critical values) Let u(τb) be the critical value that controls

size when a break occurs at τb and (18) is used as a test statistic. Let v(τb) be the critical

value when using the test statistic with τ = τb, then u(τb)− v(τb)→ 0.

Proof: By definition of the critical values

P

[
sup
τ
Q∗(τ) > u(τb)

2

]
= P [Z(τ) > u(τb)− |µ(τ ; θτb)| for some τ ∈ I1] = α

P
[
Q∗(τb) > v(τb)

2
]

= P [Z(τb) > v(τb)− |µ(τb; θτb)|] = α

Since τ in the first line is contained in I1, we have by a Taylor series expansion of µ(τ ; θτb)

around τb that max |µ(τ ; θτb)| − |µ(τb; θτb)| = O[δ(u)] and consequently, maxu(τb)− v(τb) =
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O(δ(u)). Since δ(u)→ 0 as u→∞, the difference in the critical values u(τb)− v(τb)→ 0 as

u→∞. �

A proof of Theorem 3 readily follows. With τ̂ from (21) we have

PHa

[
sup
τ
Q∗(τ) > u(τ̂)2

]
= PHa [Z(τ̂) > u(τ̂)− µ(τ̂ ; θτb)]

Under the slowly varying assumption, u(τ̂)−µ(τ̂ ; θτb) has a unique minimum on I1 at τ̂ = τb.

Taking the supremum therefore necessarily leads to at least as many exceedances as consid-

ering τ = τb alone, which proves the inequality in (28). The last line of (28) follows from

Lemma 4. �

A.6 Proof of Corollary 1

The test statistic converges to S(τ̂)→ supτ |Z(τ) +µ(τ ; θτb)| − |µ(τ̂ ; θτ̂ )| where τ̂ maximizes

the first term. As shown before, exceedances of a high boundary are concentrated in the

region [τb − δ(u), τb + δ(u)] where δ(u)→ 0 as u→∞. Then

lim
u→∞

P (S(τ̂) > u) = lim
u→∞

P

(
sup
I1
|Z(τ) + µ(τ ; θτb)| − |µ(τ̂ ; θτ̂ )| > u

)
= lim

u→∞
P (Z(τ̂) > u− |µ(τ̂ ; θτb)|+ |µ(τ̂ ; θτ̂ )|)

Under the slowly varying assumption, the difference −|µ(τ̂ ; θτb)|+ |µ(τ̂ ; θτ̂ )| = O[δ(u)]. This

implies that the critical values of S(τ̂) are independent of τb in the limit where u→∞. �

A.7 Verifying condition (25)

In order to very that (25) holds, that is, that the condition for near optimality, ∂u(τb)/∂τb <

1/[τb(1−τb)], holds. Observe that, in Figure 10, the dashed line, which depicts the derivative

of the critical values for α = 0.05 as a function of the break date τb and is obtained via

simulation, is clearly below the solid line, which depicts the upper bound [τb(1− τb)]−1.

A.8 Uniqueness of the break magnitude that yields equal forecast accu-

racy

In order to ensure the uniqueness of the break magnitude that leads to equal forecast accu-

racy, we evaluate ∆ in (23) and ∆c in (34) numerically using the simulation set-up described

in Section 5. The results in Figure 11 show that the value of |θτb | that leads to equal forecast

accuracy is unique.
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Figure 10: Dependence of the critical values on the break date
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Note: The dashed line depicts the derivative of the critical values for α = 0.05 as a

function of the break date τb. The solid line depicting the upper bound [τb(1− τb)]−1.

Figure 11: Difference in asymptotic MSFEs, ∆ and ∆c
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Note: The left panel shows the difference in the asymptotic MSFE between the post-break forecast

and the full-sample forecast as a function of the standardized break magnitude ζ1/2 in (23) for τb =

{0.15, 0.50, 0.75, 0.85}. The right panel shows the difference in MSFE between the combined forecast and the

full-sample forecast in (34).

A.9 Derivation of equation (30)

From a Taylor series expansion it follows that

E
[
T
(
ŷcT+h − fT+h(β2)

)2]
= E

[
T
(
ωf ′β2β̂1 + (1− ω)f ′β2β̂2 − f ′β2β2

)2
]

+ o(1)

= ω2E

[
T
(
f ′β2(β̂1 − β̂2)

)2
]

+
1

τb
f ′β2V fβ2

+ 2ωf ′β2E
[
T
(
β̂1 − β̂2

)(
β̂2 − β2

)]
fβ2 + o(1)

We analyze the first and third term of the second equality separately.

Using a bias-variance decomposition, the expectation in the first term can be calculated
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as

E

[
T
(
f ′β2(β̂1 − β̂2)

)2
]

= E
[
T
(
f ′β2(β̂1 − β̂2)

)]2
+ TVar

[
f ′β2(β̂1 − β̂2)

]
= T

(
f ′β2 (β1 − β2)

)2
+ f ′β2

(
1

τb
+

1

1− τb

)
V fβ2

since Cov(β̂1, β̂2) = 0.

The term linear in ω is given by

f ′β2E
[
T
(
β̂1 − β̂2

)(
β̂2 − β2

)]
fβ2 = −f ′β2E

[
T (β1 − β2)β′2

]
fβ2

+ f ′β2E
[
T β̂1β̂

′
2 − β̂2β̂

′
2

]
fβ2

= − 1

1− τb
f ′β2V fβ2

Using these two expressions yiels (30).

Appendix B Tables with critical values

Tables 7–8 contain critical values when the break is in the range τb = 0.15 to 0.85, where

Table 7 considers post-break sample and full sample based forecasts and Table 8 considers

forecast combination and full sample based forecasts. Tables 9–10 contain the critical values

when the break can be in the range τb = 0.05 to 0.95 for the same comparisons.
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