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Motivation

In economic policy making, dependencies among macroeconomic time series
provide fundamental insights into the state of economy.

Useful for improving forecasts over multiple horizons

Guiding policy decisions and understand their impact

Central banks set national target interest rates based on (implicit or explicit)
utility/loss considerations that weigh future outcomes of inflation and
measures of the real economy.

Crucial to understand the (time-varying) dependencies of these measures

Researchers and policy makers therefore use multivariate models (e.g., VARs
and DSGEs)
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Motivation: Policymaking in practice

To produce accurate and useful forecasts, policy makers routinely rely on
multiple sources to produce forecasts.

Forecast combination (Bates and Granger (1969) and Timmermann (2006))

To ensure appropriate normative decision making as well as reflecting
increased uncertainty into the future, it has become popular, particularly for
central banks, to provide probabilistic (density) forecasts.

See monetary policy reports of the Bank of England, Norges Bank, Swedish
Riksbank, and recently also for the Federal Reserve Bank.
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Motivation: Combining probabilistic forecasts

Building on earlier work in statistics by West (1992) and West and Crosse
(1992) the research interest in forecast combination has more recently
focused on the construction of combinations of predictive densities

Combining predictive densities (Hall and Mitchell (2007), Jore et. al (2010)
and Aastveit et al. (2014))

Optimal prediction pool: Geweke and Amisano (2011)

Time varying weights: Koop and Korobilis (2012)

Time varying weights with learning and model set incompleteness: Billio et al.
(2013) and Casarin et al. (2015) Aastveit et al. (2017).

Bayesian predictive synthesis: McAlinn and West (2017)
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Motivation: Combining probabilistic forecasts

But most of these papers focus on univariate forecasting...

Exceptions: Andersson and Karlsson (2008), Amendola and Sorti (2015) and
Amisano and Geweke (2017)

But restrict attention to direct extensions of univariate methods, with models
combined linearly using one metric for overall performance.

Limiting as: ignores inter-dependencies among series and that some models
might be good at forecasting one series but poor in another (or poor overall).

Economic policy makers use “ad hoc” strategies, which either rely on:

The policy maker’s “favorite” model, or

Ignore inter-dependencies all together.

Need a coherent methodology that gives policy makers flexibility in
incorporating multivariate density forecasts from multiple sources.
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Contribution of this paper

We develop the methodology of Bayesian predictive synthesis (BPS) models
for multivariate time series forecasting.

Extend the recently introduced foundational framework of BPS in McAlinn
and West (2017) to the multivariate setting

BPS is a coherent Bayesian framework for evaluation, calibration, comparison,
and combination of multiple forecast densities.

As a multivariate extension we use a flexible dynamic latent factor model with
seemingly-unrelated regression structure (DFSUR model)

In an application using various TVP-VARs for forecasting six monthly US
macroeconomic time series for 1-, 12-, and 24-month ahead we find that our
multivariate BPS:

Improve forecast accuracy for each of several multiple macroeconomic series
together at multiple horizons

Can adapt to time-varying biases and miscalibration of multiple models or
forecasters

Adapt and account for patterns of time-varying relationships and dependencies
among sets of models or forecasters
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On-line posterior correlation of BPS model coefficients at
2003/10
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On-line posterior correlation of BPS model coefficients at
2009/03
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On-line posterior correlation of BPS model coefficients at
2014/06
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BPS background

A Bayesian decision maker D receive forecast distributions for y from each of
J agents

Agent Aj provides a probability density function hj (xj ) = p(y|Aj ).

The information set H = {h1(·), . . . , hJ(·)} now available to D.

D will then use the information set H to predict y using the implied posterior
p(y|H) from a full Bayesian prior-to-posterior analysis.

West (1992) showed that for a subset of all Bayesian models D’s posterior
has the mathematical form

p(y|H) =

∫
X
α(y|X)

∏
j=1:J

hj (xj )dxj (1)

where each xj is a latent q×1−dimensional vector, X = [x1, . . . , xJ ]
′ collects

these latent vectors in a J×q−dimensional matrix, and α(y|X) is a
conditional p.d.f. for y given X.
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BPS background - interpretation

For D there must exist latent factors xj potentially related to y and such that
agent Aj ’s forecast density is that of xj .

Refer to xj as latent agent states

Conditional on learning H, the D regards the latent factors as conditionally
independent with xj ∼ hj (xj ).

This does not imply that D regards the forecasts as independent, since under
her prior the hj (·) are uncertain and likely highly inter-dependent.

α(y|X) is D’s regression model relating the xj as a collective to the y.

The key element α(y|X) is how D expresses her views of dependencies.

We refer to α(y|X) as the BPS synthesis function.
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BPS: Dynamic Sequential Setting

D receives forecast densities from each agent sequentially over time.

At time t − 1, D receives current forecast densities
Ht = {ht1(xt), . . . , htJ(xt)} from the set of agents and aims to forecast yt .

The full information set used by D at time t is thus {y1:t−1, H1:t }.

As D observes more information, her views of the agent biases and
calibration characteristics, as well as of inter-dependencies among agents are
repeatedly updated.

D has a time t − 1 distribution for yt as

p(yt |Φt , y1:t−1,H1:t) ≡ p(yt |Φt ,Ht) =

∫
αt(yt |Xt ,Φt)

∏
j=1:J

htj (xtj )dxtj

(2)
where Xt = [xt1, . . . , xtJ ]

′ is a J×q−dimensional matrix of latent agent
states at time t, the conditional p.d.f. αt(yt |Xt ,Φt) is D’s synthesis p.d.f.
for yt given Xt , and involves time-varying parameters Φt for which D has
current beliefs represented in terms of her (time t − 1) posterior
p(Φt |y1:t−1,H1:t−1).
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BPS synthesis function:αt(yt |Xt ,Φt)

xtj are realizations of inherent dynamic latent factors – the latent agent
states at time t

Synthesis is achieved by relating these latent factor processes to the time
series yt via models of the time-varying synthesis function αt(yt |Xt ,Φt).

Would like flexibility for D to specify and incorporate information on:

Agent-specific biases, calibration

Relative expertise/accuracy

Agent inter-dependencies

Time-variation . . . in all the above

Our choice:

Dynamic latent factor model with seemingly-unrelated regression structure
(DFSUR model)
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Multivariate Latent Factor Dynamic Models

Consider a dynamic multivariate BPS synthesis function

αt(yt |Xt ,Φt) = N(yt |Ftθt ,Vt) (3)

with

Ft =


1 f ′t1 0 0 ′ · · · · · · 0 0 ′

0 0 ′ 1 f ′t2

...
...

. . .
...

0 0 ′ · · · · · · · · · · · · 1 f ′tq

 and θt =


θt1

θt2
...
θtq

 (4)

For each series r = 1:q, the J×1−vector ftr = (xtr1, xtr2, ..., xtrJ)
′ is a

realization of the set of J latent agents states for series r

θtr = (1, θtr1, θtr2, ..., , θtrJ)
′ contains an intercept and coefficients

representing time-varying bias/calibration weights of the J latent agent states
for series r
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Multivariate Latent Factor Dynamic Models

Modeling time evolution of the parameter processes Φt = (θt ,Vt) is needed to
complete model specification:

yt = Ftθt + νt , νt ∼ N(0,Vt), (5)

θt = θt−1 +ωt , ωt ∼ N(0,Wt) (6)

θt evolves in time according to a linear/normal random walk with
innovations variance matrix Wt at time t

Wt is defined via a standard single discount factor specification (see Prado
and West (2010))

Vt is the residual variance in predicting yt based on past information and the
set of agent forecast distributions.

Vt follows a standard inverse Wishart random walk volatility model (also
based on discounting)
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Multivariate Latent Factor Dynamic Models

We now have a class of dynamic, multivariate latent factor models in which
latent factors are realized as draws from the set of agent densities htj (·),
becoming available to D at t − 1 for forecasting yt .

Coupled with eqns. (5,6), we have the time t prior for the latent states–
conditional on H1:t , as

p(Xt |Φt ,Y1:t−1,H1:t) ≡ p(Xt |Ht) =
∏
j=1:J

htj (xtj ) (7)

with Xt ,Xs conditionally independent for all t 6= s.

The conditional independence of the xtj given the htj (·) must not be confused
with the D’s modeling and estimation of the dependencies among agents.

This dependence is central and integral, and is reflected through the effective
dynamic parameters Φt = (θt ,Vt).
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Posterior computations via MCMC

Three-component block Gibbs sampler for the latent agent states, dynamic
coefficient parameters, and dynamic volatility parameters.

1 Conditional on the agent states and residual volatility, draw new dynamic
coefficient parameters from p(θ1:t |X1:t ,V1:t , y1:t).

Sampled using an extension of the traditional forward filtering, backward
sampling (FFBS) algorithm (Prado and West 2010))

2 Draw new dynamic volatility matrices Vt from the full joint conditional
posterior p(V1:t |X1:t ,θ1:t , y1:t)– conditional on the agent states and dynamic
coefficient parameters.

Employs the standard FFBS algorithm for inverse Wishart discount volatility
models (Prado and West 2010))

3 Conditional on values of dynamic parameters Φ1:t = (θ1:t ,V1:t), draw new
agent states from p(X1:t |Φ1:t , y1:t ,H1:t).

The Xt are conditionally independent over time t in this conditional distribution,
with time t conditionals p(Xt |Φt , yt ,Ht) ∝ N(yt |Ftθt ,Vt)

∏
j=1:J htj(xtj).
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Computing the forecasts

At time t we forecast 1-step ahead by generating “synthetic futures” from the
BPS model, as follows.

1 Draw Vt+1 from its discount volatility evolution model, and then θt+1

conditional on θt ,Vt+1 from the evolution model eqn. (6)
⇒ Gives us a draw Φt+1 = {θt+1,Vt+1} from p(Φt+1|y1:t ,H1:t)

2 Draw Xt+1 via independent sampling of the ht+1,j (xt+1,j ), (j = 1:J).

3 Bring these samples together and draw a synthetic 1-step outcome yt+1 from
the conditional normal of eqn. (5) given these sampled parameters and agent
states.

Repeating this generates a random Monte Carlo sample from the 1-step ahead
forecast distribution for time t + 1.
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Empirical exercise

Forecast 6 macroeconomic variables for the U.S.

Variables: annual inflation rate (p), wage (w), unemployment rate (u),
consumption (c), investment (i), and short-term nominal interest rate (r)

Forecast evaluation: MSFE and LPDR

Data sample: 1986/1 to 2015/12

Training period VARs: 1986/1 to 1993/6, Training period BPS: 1993/7 to
2000/12

Evaluation period: 2001/1 to 2015/12,

Forecast horizons: h = 1, 12, 24

Consider forecast from J = 5 agents using the following TVP-VAR models:

M1- VAR(1); M2- VAR(12); M3- VAR(3); M4- VAR(1:3:9); M5- VAR(1:6:12)

Directly synthesize k − step models
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Data
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Forecasting results - 1 step ahead

MSFE1:T

1-step Infl % Wage % Unemp %
VAR(1) 0.0141 −8.22 0.1444 −35.91 0.0206 0.74
VAR(12) 0.0160 −22.93 0.1110 −4.44 0.0230 −10.73
VAR(3) 0.0147 −13.24 0.1105 −3.96 0.0219 −5.67
VAR(1:3:9) 0.0135 −3.76 0.1198 −12.77 0.0222 −7.18
VAR(1:6:12) 0.0137 −5.14 0.1449 −36.40 0.0215 −3.70
BMA 0.0146 −12.20 0.1111 −4.53 0.0218 −5.26
BPS 0.0130 − 0.1063 − 0.0207 −

MSFE1:T

1-step Cons % Invest % Interest %
VAR(1) 0.3908 −3.50 13.2183 −2.99 0.0275 −35.07
VAR(12) 0.4697 −24.41 15.3571 −19.65 0.0246 −20.92
VAR(3) 0.3982 −5.48 13.3210 −3.79 0.0211 −3.74
VAR(1:3:9) 0.4049 −7.25 13.8918 −8.24 0.0204 −0.55
VAR(1:6:12) 0.3889 −3.02 13.4301 −4.64 0.0228 −12.02
BMA 0.3971 −5.18 13.2145 −2.96 0.0215 −5.80
BPS 0.3775 − 12.8346 − 0.0203 −

1-step LPDR1:T

VAR(1) −77.25
VAR(12) −103.82
VAR(3) −31.00
VAR(1:3:9) −34.22
VAR(1:6:12) −52.69
BMA −32.48
BPS −
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Forecasting results - 12 step ahead

MSFE1:T

12-step Infl % Wage % Unemp %
VAR(1) 0.5317 −143.15 0.4453 19.50 1.2028 −10.66
VAR(12) 0.4272 −95.35 0.7750 −40.12 1.6918 −55.65
VAR(3) 0.5789 −164.74 0.5215 5.72 1.1788 −8.45
VAR(1:3:9) 0.4541 −107.69 1.1207 −102.62 1.6353 −50.46
VAR(1:6:12) 0.5342 −144.30 0.8934 −61.52 1.3585 −24.99
BPS(12) 0.2187 − 0.5531 − 1.0869 −

MSFE1:T

12-step Cons % Invest % Interest %
VAR(1) 7.2471 −23.21 7067.67 −65.55 5.5916 −68.74
VAR(12) 18.4145 −213.07 8824.02 −106.68 6.1707 −86.22
VAR(3) 7.3142 −24.35 6378.42 −49.40 4.8222 −45.52
VAR(1:3:9) 10.3823 −76.51 9111.99 −113.43 4.6622 −40.69
VAR(1:6:12) 10.1116 −71.91 10013.45 −134.54 7.4612 −125.16
BPS(12) 5.8818 − 4269.33 − 3.3137 −

12-step LPDR1:T

VAR(1) −119.05
VAR(12) −535.09
VAR(3) −366.85
VAR(1:3:9) −463.46
VAR(1:6:12) −361.20
BPS(12) −
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Forecasting results - 24 step ahead

MSFE1:T

24-step Infl % Wage % Unemp %
VAR(1) 3.9536 −331.10 2.4117 7.71 16.46 −55.68
VAR(12) 2.7373 −198.47 4.5054 −72.41 18.32 −73.28
VAR(3) 3.8504 −319.85 3.1877 −21.98 13.78 −30.35
VAR(1:3:9) 4.8627 −430.23 8.8723 −239.52 21.06 −99.17
VAR(1:6:12) 4.4141 −381.32 8.4162 −222.06 16.99 −60.65
BPS(24) 0.9171 − 2.6132 − 10.58 −

MSFE1:T

24-step Cons % Invest % Interest %
VAR(1) 56.27 −104.54 51937 −776.23 31.68 −480.56
VAR(12) 118.09 −329.23 38151 −543.65 25.89 −374.58
VAR(3) 46.80 −70.09 39671 −569.30 21.84 −300.31
VAR(1:3:9) 78.73 −186.15 80278 −1254.37 25.41 −365.71
VAR(1:6:12) 72.54 −163.67 86671 −1362.23 62.16 −1039.32
BPS(24) 27.51 − 5927 − 5.46 −

24-step LPDR1:T

VAR(1) −445.81
VAR(12) −489.98
VAR(3) −462.48
VAR(1:3:9) −808.31
VAR(1:6:12) −804.49
BPS(24) −
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MSFE - 12 step ahead, inflation
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MSFE - 12 step ahead, investment
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Log Predictive Density Ratios - 12 step ahead
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On-line posterior means of BPS(1) model, inflation
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On-line posterior means of BPS(12) model, inflation
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On-line posterior means of BPS(1) model, investment
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On-line posterior means of BPS(12) model, investment
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On-line posterior correlation of BPS model coefficients at
2003/10
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On-line posterior correlation of BPS model coefficients at
2009/03
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On-line posterior correlation of BPS model coefficients at
2014/06
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Conclusion

Our extensions and development of multivariate BPS define a theoretically
and conceptually sound framework to compare and synthesize multivariate
density forecasts in a dynamic context.

The approach enables decision makers to dynamically calibrate, learn, and
update predictions based on ranges of forecasts from sets of models, as well
as from more subjective sources such as individual forecasters or agencies.

In an application using various TVP-VARs for forecasting six monthly US
macroeconomic time series for 1-, 12-, and 24-month ahead we show that our
multivariate BPS:

Can adapt to time-varying biases and miscalibration of multiple models or
forecasters

Adapt and account for patterns of time-varying relationships and dependencies
among sets of models or forecasters,

Improve forecast accuracy– in some cases, most substantially– for each of
several multiple macroeconomic series together, at multiple horizons.
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