
 

DISCUSSION PAPER SERIES

 

DP12601
(v. 3)

HETEROGENEITY AND DETERMINACY:
AMPLIFICATION WITHOUT PUZZLES

Florin Ovidiu Bilbiie

MONETARY ECONOMICS AND
FLUCTUATIONS



ISSN 0265-8003

HETEROGENEITY AND DETERMINACY:
AMPLIFICATION WITHOUT PUZZLES

Florin Ovidiu Bilbiie

Discussion Paper DP12601
  First Published 15 January 2018
  This Revision 26 October 2018

Centre for Economic Policy Research
  33 Great Sutton Street, London EC1V 0DX, UK

  Tel: +44 (0)20 7183 8801
  www.cepr.org

  

This Discussion Paper is issued under the auspices of the Centre’s research programme in 
MONETARY ECONOMICS AND FLUCTUATIONS. Any opinions expressed here are those of
the author(s) and not those of the Centre for Economic Policy Research. Research disseminated
by CEPR may include views on policy, but the Centre itself takes no institutional policy positions.

  The Centre for Economic Policy Research was established in 1983 as an educational charity, to
promote independent analysis and public discussion of open economies and the relations among
them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of
medium- and long-run policy questions.

  These Discussion Papers often represent preliminary or incomplete work, circulated to
encourage discussion and comment. Citation and use of such a paper should take account of its
provisional character.

  

Copyright: Florin Ovidiu Bilbiie



HETEROGENEITY AND DETERMINACY:
AMPLIFICATION WITHOUT PUZZLES

 

Abstract

Using an analytical (heterogeneous-agent New-Keynesian) HANK model, I find the closed-form
conditions for determinacy with interest-rate rules and for curing NK puzzles. The latter requires
self-insurance against idiosyncratic uncertainty and procyclical inequality: the income of
constrained agents moving less than proportionally with aggregate income. With countercyclical
inequality, good news on aggregate demand gets compounded, making determinacy less likely
and aggravating the puzzles---a Catch-22, because countercyclical inequality is what HANK (and
TANK) models need to deliver desirable amplification. A similar dilemma applies to a distinct,
"cyclical-risk" channel: procyclicality cures the puzzles, countercyclicality aggravates them. The
Catch-22 is resolved if these two channels co-exist and go in opposite directions---subject to
sufficient conditions on their relative strength provided here. Even when both channels are
countercyclical (with amplification, but much-aggravated puzzles and stringent determinacy
requirements) a Wicksellian rule of price-level targeting ensures determinacy and cures the
puzzles---while preserving HANK amplification. 

JEL Classification: E21, E31, E40, E44, E50, E52, E58, E60, E62

Keywords: heterogenous agents, HANK, monetary policy, forward guidance puzzle, neo- Fisherian
e¤ects, Taylor and Wicksellian rules, determinacy, multipliers, liquidity traps

Florin Ovidiu Bilbiie - florin.bilbiie@gmail.com
University of Lausanne and CEPR

Acknowledgements
This paper supersedes DP 12231: "The Puzzle, the Power, and the Dark Side: Forward Guidance Redux". It was previously titled
"A Catch-22 For Hank Models: No Puzzles, No Amplification" 

Powered by TCPDF (www.tcpdf.org)



Heterogeneity and Determinacy:

Amplification without PuzzlesI

Florin O. BilbiieII

October 2018III

Abstract

Using an analytical (heterogeneous-agent New-Keynesian) HANKmodel, I find the closed-

form conditions for determinacy with interest-rate rules and for curing NK puzzles. The

latter requires self-insurance against idiosyncratic uncertainty and procyclical inequality : the

income of constrained agents moving less than proportionally with aggregate income. With

countercyclical inequality, good news on aggregate demand gets compounded, making deter-

minacy less likely and aggravating the puzzles– a Catch-22, because countercyclical inequal-

ity is what HANK (and TANK) models need to deliver desirable amplification. A similar

dilemma applies to a distinct, "cyclical-risk" channel: procyclicality cures the puzzles, coun-

tercyclicality aggravates them. The Catch-22 is resolved if these two channels co-exist and

go in opposite directions– subject to suffi cient conditions on their relative strength provided

here. Even when both channels are countercyclical (with amplification, but much-aggravated

puzzles and stringent determinacy requirements) a Wicksellian rule of price-level targeting

ensures determinacy and cures the puzzles– while preserving HANK amplification.

JEL Codes: E21, E31, E40, E44, E50, E52, E58, E60, E62

Keywords: heterogenous agents; HANK; monetary policy; forward guidance puzzle; neo-

Fisherian effects; Taylor and Wicksellian rules; determinacy; liquidity traps; multipliers.

II am grateful to Sushant Acharya, Jess Benhabib, Edouard Challe, John Cochrane, Daniel Cohen, Davide
Debortoli, Keshav Dogra, Axelle Ferrière, Xavier Gabaix, Gaetano Gaballo, Jordi Galí, Roger Guesnerie, Keith
Kuester, Eric Leeper, Olivier Loisel, Alistair Macaulay, Virgiliu Midrigan, Benjamin Moll, Emi Nakamura, Salvatore
Nistico, Ricardo Reis, Xavier Ragot, Kenneth Rogoff, Gilles Saint-Paul, Emiliano Santoro, Christopher Sims,
Jon Steinsson, Paolo Surico, Roman Sustek, Andrea Tambalotti, Gianluca Violante, Mirko Wiederholt, Michael
Woodford, and participants in several seminars and conferences for useful comments. I gratefully acknowledge
without implicating the support of Banque de France via the eponymous Chair at PSE, and of Institut Universitaire
de France, as well as the hospitality of New York University and CREI during part of writing this paper.

IIUniversity of Lausanne and CEPR; florin.bilbiie@gmail.com. http://florin.bilbiie.googlepages.com.
IIIThis paper supersedes the December 2017 "A Catch-22 for HANK Models: No Puzzles, No Amplification",

and the previous "The Puzzle, the Power, and the Dark Side: Forward Guidance Redux" that contained an earlier
version of a restricted subset of the material.



1 Introduction

The New Keynesian (NK) framework is the core of most models used for policy analysis since

now decades, yet makes a series of predictions that are largely thought to be counterfactual, or

"puzzles". These have been brought into the spotlight as the post-2008 crisis and recession coupled

with a liquidity trap (LT) raised the need for unconventional policy tools for understanding the

model’s predictions in those circumstances. A list of the puzzles that this paper will refer to

follows. The forward guidance (FG) puzzle (Del Negro, Giannoni, and Patterson, 2012; Kiley,

2016) refers to the notion that the later in the future an interest rate cut takes place, the larger

an effect it will have today; Neo-Fisherian effects (Benhabib, Schmitt-Grohe, and Uribe, 2002;

Schmitt-Grohe and Uribe, 2017; Cochrane, 2017) refer to the property of the model that under an

interest rate peg a persistent-enough increase in interest rates can be inflationary in the short run

(to be distinguished from standard, long-run Fisherian effects discussed below); Sunspot-driven

LTs (Benhabib et al, 2002; Mertens and Ravn, 2013) refer to the notion that an LT equilibrium

with a binding zero lower bound may under some conditions occur in the standard NK model

with no change in fundamentals, i.e. purely because of expectations; Asymptote-bifurcations and

unbounded recessions (and multipliers) refer to the property of fundamental LT equilibria in the

NK model (noted and discussed by Eggertsson, 2010; Woodford, 2011; Christiano, Eichenbaum,

and Rebelo, 2011; Carlstrom, Fuerst, and Paustian, 2015; Cochrane, 2016) that multipliers explode

when approaching certain parameter values; The paradox of flexibility (Eggertsson and Krugman,

2012) is the property that increased price flexibility in an LT equilibrium makes matters worse as

it leads to a larger deflation and recession.

The aftermath of the 2008 crisis brought another significant change to the NK paradigm: the

increasing use of heterogeneous-agent models for policy analysis, with concerns for inequality and

redistribution taking center stage. A burgeoning literature (that I review to some extent below)

uses heterogeneous-agent New Keynesian models (labelled HANK by one of the main references,

Kaplan, Moll and Violante 2018– hereinafter KMV) for a multitude of topics. Another seminal

paper in this literature by McKay, Nakamura, and Steinsson (2016– hereinafter MNS) used such

a model precisely to illustrate quantitatively how it can resolve one (the FG) puzzle; so did an

accompanying note to KMV using their own model, and other papers discussed below thereafter.

In this paper, I find the necessary and suffi cient analytical conditions for heterogeneity to

cure the NK framework of the puzzles listed in the first paragraph, as well as the closely-related

conditions for determinacy with interest-rate rules– and how they all relate to the conditions

under which heterogeneity implies "amplification" of demand shocks and policies. To do so, I use

an analytical version of this class of models that is novel to this paper (and overlaps partly with

the companion paper Bilbiie (2017), which deals with a different topic as differentiated below).

While vastly simplified in order to fit the purpose of a closed-form analysis of the subject at hand,

the model nevertheless contains some of the main ingredients of richer HANK models and helps
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disentangle several key mechanisms that are a fortiori convoluted in such quantitative frameworks.

I first review all the (representative-agent NK) RANK puzzles in a simplified but unified

framework. The analysis pinpoints one composite parameter that is the source of all puzzles: a

root/eigenvalue capturing the equilibrium elasticity of aggregate demand (AD) to news under an

interest-rate peg; in RANK, that elasticity is always larger than one, implying that the effect

of news is compounded with time. This happens through an aggregate-supply (AS) feedback:

future news imply future inflation, a fall in real rates (under a nominal peg), and intertemporal

substitution towards today. This is the same basic mechanism that generates indeterminacy under

a peg, the Sargent-Wallace result.

Heterogeneity can solve the puzzles if, in a nutshell, it generates enough discounting on the

AD side to compensate for this RANK compounding through the AS side.

The analytical HANK version that I use to substantiate this is a three-equation NK model

isomorphic to RANK (which it nests). The difference is captured by its AD side, further explored in

the companion paper Bilbiie (2017), where I underline the "New Keynesian Cross" that is at work

in any HANK model, insofar as some households are constrained hand-to-mouth in equilibrium

(while those who are not self-insure against the risk of becoming so using some liquid asset, whose

return is controlled by the central bank). The key channel through which heterogeneity shapes

equilibrium outcomes in my framework is that of cyclical inequality: how the distribution of income

between constrained and unconstrained households changes over the cycle, e.g. who suffers more

in recessions.

Here, I extend the model to include analytically another, distinct HANK channel: cyclical risk,

studied in isolation in a different analytical framework by Acharya and Dogra (2018), and also

at work in Ravn and Sterk (2017) and Werning (2015)– all of which I review in detail below. I

then add a standard AS side (a Phillips curve) and look at monetary policy rules consisting of

setting the nominal interest rate (the return on liquid assets). Under a further inconsequential

simplification, the whole model can be boiled down to only one first-order difference equation

whose root/eigenvalue dictates whether the model cures the puzzles or not.

This root, which has the same reduced-form interpretation as in RANK as the AD effect of

future news, convolutes four channels: i. cyclical inequality, the pivotal channel of the TANK

(two-agent NK) model such as Bilbiie (2008) with constrained hand-to-mouth households– whose

income elasticity to aggregate income is the key parameter χ; ii. self-insurance in face of idiosyn-

cratic risk of becoming constrained, a HANK channel; iii. the separate HANK channel of cyclical

risk, captured by a parameter θ that is larger than 1 when risk is countercyclical and smaller than

1 when it is procyclical; and iv. the supply channel that also operates in RANK under a peg.

As shown formally and discussed at length in the paper, AD-amplification occurs in this model

when either inequality or risk is countercyclical. An increase in demand leads, in the former

case (χ > 1), to a more-than-proportional increase in constrained agents’income, and a further

demand expansion; and in the latter case, to a fall in uninsurable risk, less demand for insurance,
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and thus more demand. By this logic, both channels generate compounding in the aggregate Euler

equation. Conversely, when either inequality or risk is instead procyclical (χ < 1 or θ < 1), there

is AD-dampening and discounting in the aggregate Euler equation.

The determinacy properties of Taylor rules reflect this dampening/amplification intuition.

When either inequality or risk (or both) are countercyclical, the central bank needs to be (possibly

much) more aggressive than the "Taylor principle" (increasing nominal interest rates more than

one-to-one with inflation) to rule out indeterminacy and potential sunspot fluctuations. Whereas

in the "discounting" case, with procyclical inequality or risk, the Taylor principle is suffi cient– but

not necessary; indeed, for a large region of the "discounting" parameter subspace, determinacy oc-

curs even under an interest rate peg, thus undoing the Sargent-Wallace result. Since indeterminacy

under a peg is intimately related to the NK puzzles, the rest of the analysis follows naturally.

The HANK model cures the NK puzzles, in the sense of implying an equilibrium elasticity to

news that is less than one, if: (i) inequality or risk are procyclical (so that there is AD-discounting

of news); and only if (ii) there is enough discounting to overturn the AS-compounding of news

inherent in RANK. This simple intuition works to cure all the NK puzzles discussed above (except

the paradox of flexibility that is merely mitigated, and only with procyclical inequality).

An apparent Catch-22 occurs once we make the following uncomfortable observation: the

conditions to rule out puzzles are the opposite of the condition needed for HANK models to

generate amplification (relative to RANK) of shocks and policies– which is what much of the

current literature uses this class of models for. I illustrate this by also deriving analytically the

conditions for the model to generate two such amplifications: a deep liquidity—trap recession

without relying on deflation (i.e. fixing what Hall (2011) called the "missing deflation" puzzle

in relationship to the 2008 recession), and large fiscal multipliers therein, without relying on

expected inflation. Focusing on the cyclical-inequality channel, the Catch-22 is that to generate

such amplification the model needs countercyclical inequality (CI for short χ > 1); but by the

same logic by which procyclical inequality (PI ) leads to resolving the puzzles, CI implies their

aggravation. Likewise for cyclical risk: procyclical risk (PR) solves the puzzles (as also noted by

others using a different formalization in the context of the FG puzzle), while countercyclical risk

CR (a necessary condition for amplification) aggravates them.

This apparent Catch-22 as well as the way out of it are summarized in Table 1 by using

a "Leeper-style" matrix (by analogy with the celebrated taxonomy of determinacy of equilibria

with active-passive monetary and fiscal policies in Leeper (1991)), where an A indicates that the

model features amplification (in a sense to be made formal in text) and NA lack thereof, while

P indicates that the equilibrium of the model is subject to the puzzles– and nP that it is not.

With procyclical inequality and risk (the upper-left corner, PIPR), the model cures the puzzles

but there is dampening with respect to RANK (nA, nP); while with countercyclical inequality and

risk (lower right corner CICR), the model features amplification of shocks and policies relative to

RANK, but also an aggravation of the puzzles (A,P). The dilemma applies most clearly if only
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one of the channels is absent, i.e: if either inequality or risk is acyclical.

Table 1: A Leeper-style matrix

Cyclical Inequality & Risk

PR θ < 1 CR θ > 1

PI χ < 1 nA, nP A, nP
CI χ > 1 A, nP A, P

The presence of the two HANK channels provides a way out of this Catch-22: if they operate in

opposing directions (the remaining diagonal in Table 1, CIPR and PICR) and only if the channel

responsible for ruling the puzzles is strong enough; the latter translates into suffi cient conditions

on the level of idiosyncratic risk and on the relative cyclicalities provided and discussed in text.

A nagging policy implication remains, however: when those conditions do not hold, for in-

stance when both inequality and risk are countercyclical CICR (a far from empirically implausible

property as discussed in the concluding section), both channels give amplification: all the puzzles

are much aggravated and determinacy requirements with a Taylor rule become very stringent.

I show that a simple policy remedy exists even under such extreme conditions. It consists of

the central bank adopting the Wicksellian interest rate rule proposed by Woodford (2003) and

Giannoni (2014), which targets the price level rather than inflation. I show that in HANK this

rule– some, no matter how small response of nominal interest rates to the price level– ensures

equilibrium determinacy and rule out the puzzles, while preserving amplification.

Related HANK Literature. Quantitative HANK models that model explicitly rich income
risk heterogeneity and the feedback effects from equilibrium distributions to aggregates are being

increasingly used to address a wide spectrum of issues in macroeconomic policy, aside from the

FG puzzle (the focus of the MNS, 2016 and KMV’s note).1

The analytical HANK model proposed here can be viewed as an extension of the TANK model

in Bilbiie (2008), which analyzed monetary policy, introducing the distinction between the two

types based on asset markets participation (abstracting from physical investment, as done in

previous two-agent studies):2 H have no assets, while S own all the assets (price bonds and shares

in firms through their Euler equation). That paper analyzed AD amplification of monetary policy

and emphasized the key role of profits and their distribution, as well as of fiscal redistribution, for

1Topics include the effects of transfer payments (Oh and Reis, 2012); deleveraging and liquidity traps (Guerrieri
and Lorenzoni, 2017); job-uncertainty-driven recessions (Ravn and Sterk, 2017; den Haan, Rendahl, and Riegler,
2018); monetary policy transmission (Gornemann, Kuester, and Nakajima, 2016; Auclert, 2016; Debortoli and Gali,
2017); precautionary liquidity and portfolio composition (Bayer et al, 2016 and Luetticke, 2018); fiscal multipliers
(Ferrière and Navarro (2016) and Hagedorn, Manovskii, and Mitman, 2018); and automatic stabilizers (McKay and
Reis, 2016).

2Mankiw (2000) had used a growth model with this distinction, due to pioneerig work by Campbell and Mankiw
(1989), to analyze long-run fiscal policy issues. Galí, Lopez-Salido and Valles (2007) embedded this same distinction
in a NK model and studied numerically the business-cycle effects of government spending, with a focus on obtaining
a positive multiplier on private consumption. They also analyzed numerically determinacy properties of interest
rate rules, that Bilbiie (2008) then derived analytically.
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this– in an analytical 3-equation TANK model isomorphic to RANK. In recent work, Debortoli

and Galí (2017) and Bilbiie (2017) both used this TANK model to argue that it can approximate

reasonably well the aggregate implications of some HANK models (the authors’ own, for the

former paper, and KMV’s, for the latter)– thus suggesting that the "hand-to-mouth" channel

plays an important role in HANK transmission. The first extension here pertains to introducing

self-insurance to idiosyncratic uncertainty (the risk of becoming constrained in the future despite

not being constrained today), a key mechanism in HANK models that is absent in TANK; doing so

gives the model another margin to replicate the aggregate findings of quantitative HANK models,

as shown in the companion paper Bilbiie (2017).3

Others studies also provide analytical frameworks different from this: both because they isolate

different HANK mechanisms and focus on different questions. Werning (2015) studies monetary

policy transmission, similarly emphasizing the possibility of AD amplification or dampening rela-

tive to RANK. My paper’s subject is very different: curing the NK puzzles by heterogeneity, and

deriving equilibrium determinacy properties. So is the mechanism, although some of its equilib-

rium implications pertaining to intertemporal amplification or dampening have a similar flavor.

But the key here is cyclical inequality: the distribution of income (between labor and "capital"

understood as monopoly profits) and how it depends on aggregate income, as summarized through

χ– the chief feature of my earlier work, the TANK model in Bilbiie (2008). Whereas the key fea-

ture emphasized by Werning is the cyclicality of income risk (and/or of liquidity, which my model

abstracts from): as uninsurable idiosyncratic income risk goes up in a recession, agents increase

their precautionary savings and decrease their consumption, amplifying the initial recession which

further increases idiosyncratic risk, and so on– a mechanism previously emphasized in the form

of endogenous unemployment risk by Ravn and Sterk (2017) and Challe et al (2017).

Therefore, my model’s mechanism is instead an intertemporal extension of the cornerstone am-

plification (dampening) mechanism in TANK; in this extension, any agent can become constrained

in any future period and self-insures (imperfectly) against the (acyclical) risk of doing so, putting

the cyclicality of income of constrained (and thus of inequality) at the core of transmission–

whereas Werning emphasizes the cyclicality of income risk of the unconstrained (although the two

can be convoluted in the different, more general framework therein).

This separation is also clearly illustrated by a recent paper by Acharya and Dogra (2018),

explicitly set to isolate the role of the risk channel: using CARA preferences to simplify het-

erogeneity, it shows that such an intertemporal amplification mechanism may occur purely as a

result of uninsurable idiosyncratic income volatility going up in recessions. With this different

mechanism, Acharya and Dogra also study determinacy and puzzles, making specific reference to

the analysis in the previous version of this paper.

3That paper also explains in detail the differences with earlier work using the switching between types to analyze
monetary policy issues, such as Nistico (2016) and Curdia and Woodford (2016) in a related context. I spell out
the differentiating assumptions below when presenting the model.
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To incorporate this distinction, I extend the model with a (different) formalization of this

separate cyclical-risk channel: assuming that the probability of becoming constrained is a function

of aggregate demand-output, which makes risk cyclical. With this formalization, the two channels

of cyclical inequality and risk are separate but related and coexist in shaping AD amplification.

Not only are the two channels naturally separate: my analysis implies that the two channels better

be distinct ; for in order to eliminate the Catch-22 inherent in these models (conditional upon one

of the channels), they need to go in opposite directions. Which channel prevails empirically is a

very interesting and hitherto unexplored topic that is worth pursuing.

Additionally, my analysis is conducted within the context of a loglinearized NK model that

nests as special cases not only the three-equation textbook RANK but also: TANK, a HANKmodel

with cyclical inequality and acyclical risk, and a HANK version with cyclical risk and acyclical

inequality. Indeed, I provide a decomposition that allows disentangling all these channels. Since

it is so simple and transparent and close to standard NK craft, it may be of independent interest

to some researchers.

One implication of the analysis here consists of an analytical reinterpretation of the under-

pinnings of MNS’s (2016) incomplete-markets based resolution of the FG puzzle, in particular

in relation with the same authors’analytical "discounted Euler equation" in MNS (2017). My

framework nests the latter as a special case and underscores the procyclicality of inequality as

the keystone, necessary condition for delivering Euler-equation discounting in the presence of

(albeit acyclical) idiosyncratic risk– a different, complementary interpretation to the framework

emphasizing the procyclicality of risk such as Werning and Acharya and Dogra. Procyclicality of

inequality can occur in my model through features such as labor market and fiscal redistribution

making the income of constrained agents vary less than one-to-one with the cycle χ < 1, whereas

MNS (2017) consider the limit case with exogenous income of the constrained (χ = 0). Solving the

FG puzzle requires enough discounting to overturn the compounding of news inherent in RANK

under a peg. If inequality is instead countercyclical, the prediction is overturned: the compounded

Euler equation in my model implies an aggravation (rather than a resolution) of the FG puzzle.

Furthermore, my paper addresses all the NK puzzles mentioned above in and out of a liquidity

trap, and derives determinacy properties of interest rate rules in this analytical HANK model.

Broer, Hansen, Krusell, and Oberg (2018) study a simplified HANK whose equilibrium has a

two-agent representation, underscoring the implausibility of some of the model’s implications for

monetary transmission through income effects of profit variations on labor supply– and showing

that a sticky-wage version features a more realistic transmission mechanism; Walsh (2017) provides

another analytical model with heterogeneity emphasizing the role of sticky wages (see Colciago

(2011), Ascari, Colciago, and Rossi (2017), and Furlanetto (2011) for earlier sticky-wage TANK).

Ravn and Sterk (2018) also study an analytical HANK that is different from and complemen-

tary to mine, and focus on a mostly different set of NK puzzles. Their model includes endogenous

unemployment risk (a feature of some HANKmodels) through labor search and matching. Workers
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self-insure against this risk, which depends endogenously on aggregate outcomes. The simplifying

assumptions employed by Ravn and Sterk to maintain tractability, in particular pertaining to the

asset market, are orthogonal to the ones used here.4 Their framework delivers an interesting feed-

back loop from precautionary saving to aggregate demand (see also Challe and Ragot (2016)) that

is absent here. My model does much the opposite: it gains tractability from assuming, exogenous

transition probabilities (and a different asset market structure) but emphasizes the NK-cross feed-

back loop through the endogenous income of constrained agents that is absent in Ravn and Sterk;

whereas my extension to cyclical risk can be viewed as an alternative, reduced-form formalization

of Ravn and Sterk’s channel. Furthermore, the two papers not only use complementary models,

they also address a different set of NK puzzles; my paper emphasizes restoring determinacy under

a peg and how that rules out the puzzles, points to the uncomfortable implication (Catch-22)

that this also rules out amplification more generally, and offers a solution based on adopting a

Wicksellian rule of price-level targeting.

Related NK Puzzles literature Other modifications of the NK model have been proposed
in recent years as ways to solve NK puzzles. A large class of such solutions consists of changing the

information/expectations structure. Kiley (2016) is an early example addressing the FG puzzle

with sticky information à la Mankiw and Reis (2002). Other information imperfections can fix

some puzzles, but do not generate the discounting necessary to solve the puzzles studied here (see

Wiederholt (2016) and Andrade et al (2016) for models with dispersed information and heteroge-

neous beliefs). Euler-equation discounting occurs with deviations from rational expectations such

as the reflective equilibrium considered by Garcia-Schmidt and Woodford (2015), the behavioral

model with sparsity of Gabaix (2016), imperfect common knowledge as in Angeletos and Lian

(2016), the combination of reflective equilibrium with incomplete markets in Farhi and Werning

(2017), or the model with finite planning horizons in Woodford (2018). Other solutions explored in

the literature consist of pegging the interest on reserves (Diba and Loisel (2017)), or extending the

NK model to introduce wealth in the utility function, as in Michaillat and Saez (2017). Cochrane

(2017) offers a resolution of neo-Fisherian effects relying upon the fiscal theory of the price level

with long-term debt: an increase in nominal interest changes the market value and composition

of the current portfolio of (long- and short-term) public debt and can lead to short-run deflation.5

Finally, this paper is related to some of my own current work. The companion paper referred

4In my model savers hold and price the shares whose payoff (profits) they get. In Ravn and Sterk, hand-to-
mouth workers get all the return on shares but do not price them (see also Broer et al (2018)). Ravn and Sterk’s
mechanism can create a third, "unemployment-trap" steady-state equilibrium, a breakup of the Taylor principle
that is complementary to the one occurring here, and fix the puzzling NK effects of supply shocks in a LT, which
I abstract from here.

5The price level can also be determined by the demand for nominal bonds by agents coupled with a supply rule
for nominal bonds by the government responding to the price level, as discussed by Hagedorn (2017) in a different
HANK model. This is related to (but different from, insofar as it requires passive fiscal policcy) the FTPL outlined
e.g. in Leeper (1991), Sims (1994), Woodford (1996), and Cochrane (2005); it is also related to the Wicksellian
rule proposed here as discussed in text.
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to above Bilbiie (2017) introduces the New Keynesian (NK) Cross as a graphical and analytical

apparatus for the AD side of HANK models, expressing its key objects– MPC and multipliers–

as functions of heterogeneity parameters. It studies the implications for monetary and fiscal

multipliers, the link between MPC and multipliers with the "direct-indirect" decomposition of

KMV, and the ability of this simple model to replicate the aggregate equilibrium implications for

quantitative, micro-calibrated HANK models.6

2 Puzzles in RANK: A Unified Exposition

Before showing how heterogeneity can cure NK puzzles, let us review what they are and the intu-

ition for their occurrence, using a largely off-the-shelf, textbook, loglinearized NK model (Wood-

ford (2003), Galí (2008), Walsh (2008))– that is nested in the HANK model of the next section.

2.1 The FG Puzzle and "Neo-Fisherian" Effects

The key equation pertains to aggregate-demand, or IS curve; it is the Euler equation for the

representative agent linking consumption ct to its future expected value and the ex-ante real

interest rate:

ct = Etct+1 − σ (it − Etπt+1 − ρt) , (1)

where Etπt+1 is expected inflation. Note that the nominal interest rate it is expressed in levels (to

allow dealing with the zero lower bound transparently later) and ρt an exogenous shock that is

standard in the liquidity-trap literature (Eggertsson andWoodford, 2003) and captures impatience,

or the urgency to consume in the present (its steady-state value is the normal-times discount rate

ρ = β−1 − 1): when it increases, households try to bring consumption into the present and "dis-

save", and vice versa when it decreases.

As a benchmark, the central bank sets the nominal rate it according to a Taylor rule:

it = ρt + i∗t + φπt, (2)

where the intercept of the Taylor rule i∗t is an exogenous (possibly persistent) process, and dealing

with the zero lower bound ZLB amounts to adding the constraint it ≥ 0.

The last block is a supply side, a standard Phillips curve:

πt = βfEtπt+1 + κct, (3)

re-derived in the Appendix based on Rotemberg pricing. Closed-form results are particularly

6A separate paper Bilbiie and Ragot (2016) builds a different analytical HANK model with three assets, of
which one ("money") is liquid and traded in equilibrium while the others (bonds and stock) are illiquid, and
studies Ramsey-optimal monetary policy as liquidity provision.
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useful here in order to shed light on the role of each amplification channel and analyze determinacy

conditions and NK puzzles. To obtain such analytical tractability, I first focus on the simplest

possible special case used previously in a different context in Bilbiie (2016):

πt = κct, (4)

nested in (3) above with βf = 0. This is "microfounded" in the Appendix by assuming that

monopolistic firms have to pay a Rotemberg price adjustment cost relative to yesterday’s market

average price index, rather than relative to their own individual price (the latter leading to the

forward-looking version (3)). In other words, firms ignore the impact of today’s choice of price on

tomorrow’s profits. While clearly over-simplified, this setup nevertheless captures a key mechanism

of the NK model– the trade-off between inflation and real activity– and allows us to isolate and

focus on the main topic and the essence of this paper: AD.7 The results of this paper carry through

reassuringly when considering the standard Phillips curve (3), as I show in Appendix D for the

nesting HANK model.

Combining (1), (2), and (4) the model reduces to one first-order difference equation:

ct = νEtct+1 −
σ

1 + σφκ
i∗t , (5)

where the newly defined parameter:

ν ≡ 1 + σκ

1 + σφκ
(6)

is the AD elasticity to news about future income; this is the root (eigenvalue) that governs the

model’s dynamics and is the key for its determinacy properties and understanding NK puzzles.

A first standard result is the Taylor principle (Woodford (2003)): the RANK model (5) has
a locally unique rational-expectations equilibrium if and only ν < 1, i.e. if monetary policy is

"active"(Leeper (1991)): φ > 1. This is needed in order to solve (5) "forward"; otherwise the

mere expectation of an expansion is self-fulfilling: if agents expect higher demand in the future,

future expected inflation increases (with sticky but not fixed prices), which under passive policy

φ < 1 drives down real interest rates triggering intertemporal substitution towards the present–

hence an increase in demand today. With zero saving, equilibrium income also goes up, and so

does today’s inflation– thus validating the initial sunspot increase. This result is a cornerstone

of RANK (an important caveat is put forward by Cochrane (2011), that will also apply to the

modified Taylor principle in my HANK framework below).

An interest-rate peg is a limit special case of this logic: the "Sargent-Wallace" result of
7In a Calvo setup, this amounts to assuming that each period a fraction of firms f keep their price fixed, while

the rest can re-optimize their price freely but ignoring that this price affects future demand. Essentially, such a
setup reduces to assuming βf = 0 only in the firms’problem (they do not recognize that today’s reset price prevails
with some probability in future periods).
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equilibrium indeterminacy, which follows immediately by noticing that under a peg φ = 0 and the

root/eigenvalue of the model (5) becomes:

ν0 ≡ 1 + κσ ≥ 1, (7)

making it impossible to solve (5) forward; the AD elasticity to news under a peg ν0 is in fact the

key parameter for understanding RANK puzzles.

The FG puzzle (Del Negro, Giannoni, Patterson (2012), Carlstrom, Fuerst, and Paustian
(2015), Kiley (2016), and MNS (2015)) refers to the property of the model that under a peg (e.g.,

at the zero lower bound), the consumption and inflation effect of an interest rate cut at a future

time T > t is increasing with T : the later it occurs, the larger its effect. Mathematically, iterate

(5) forward to an arbitrary time T̄ to obtain:

ct = ν0Etct+1 − σi∗t = ν T̄0Etct+T̄ − σEt
∑T̄−1

j=0 ν
j
0i
∗
t+j;

for any T ∈
(
t, T̄
)
, the time-t response to a one-time interest rate cut at t+ T is:

∂ct

∂
(
−i∗t+T

) = σνT0

and its derivative with respect to T is positive: σ∂νT0 /∂T = σνT0 ln ν0 > 0 since ν0 > 1. Notice that

this is not the full solution of the model– for indeed ν T̄0Etct+T̄ is itself an endogenous quantity–

but a useful example for illustrating this property; below, I provide a full treatment of the FG

puzzle, solving for the entire equilibrium. The insight is nevertheless that what is needed to solve

the FG puzzle is for the equilibrium effect of news to be "contracting" under a peg:

ν0 < 1.

Neo-Fisherian Effects (Benhabib, Schmitt-Grohe, and Uribe (2001, 2002), Schmitt-Grohe
and Uribe (2017)) can be illustrated using the one-equation representation (5) under a peg ν = ν0.

The Neo-Fisherian view holds that an increase in nominal interest rates can lead to inflation and,

with a Phillips curve, also to a real expansion. Cochrane (2017) summarizes and reviews the

subject clearly and exhaustively. There are two such effects: first, in the long run, a permanent

increase in i∗ leads to an increase in consumption and inflation: c̄ = κ−1i∗. Notice that the

long-run real effect disappears under flexible prices, but there is still an effect on inflation. Such

long-run (old-)Fisherian effects are uncontroversial.

The other, more controversial neo-Fisherian effect is that the increase in interest rates also

leads (or, strictly speaking, may lead) to an expansion and inflation in the short run. When ν is

larger than 1, for instance under a peg ν0, equation (5) cannot be solved forward ; we would like to
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solve it backward to agree with the root, but have no initial condition to iterate from– the classic

problem of indeterminacy. We can still pick (arbitrarily) one equilibrium by imposing restrictions

on the structure of sunspots and on how fundamental uncertainty determines expectation errors.

I describe this in detail in Appendix C.1 and select one such "reasonable" equilibrium using the

minimum-state variable MSV advocated by McCallum; in particular, assuming persistence µ for

the interest rate shock and picking the solution with the same endogenous persistence (the MSV

solution implies we rule out the additional endogenous persistence that indeterminacy customarily

induces) Etct+1 = µct we have:

ct = − 1

1− ν0µ
σi∗t .

An increase in interest rates would thus lead to an expansion and inflation (neo-Fisherian effects)

whenever:

ν0 > µ−1. (8)

What rules out such neo-Fisherian equilibria under a peg? Naturally, the very same condition

needed for determinacy with a peg, ν0 < 1 and also to solve the FG puzzle!8

2.2 ZLB Puzzles: Sunspots, Bifurcations, Deep Recessions, and Flexibility
Paradoxes

The analysis of liquidity traps LT reveals a battery of different, albeit intimately related, NK puz-

zles. To study LTs, there are two complementary possibilities: one regards as the source of liquidity

traps non-fundamental, "sunspot" shocks, while the other relies on changes in fundamentals.

The former, expectation-driven sunspot-LT is related to our discussion of neo-Fisherian effects
and is due to the insights of Benhabib, Schmitt-Grohe and Uribe (2002), extended by Mertens and

Ravn (2013) on which my exposition draws. Assume for simplicity that the monetary authority–

instead of following the Taylor rule (2)– follows the simpler rule it = max (ρt, 0), i.e. it tracks the

natural interest rate ρt whenever feasible (matters are only slightly more complicated with a Taylor

rule without affecting the substance). Under this simplest MP rule, the model has two steady

states: the "intended", normal-times equilibrium (i, π, c)I = (ρ, 0, 0); and the unintended, LT

equilibrium with zero interest and deflation at the rate of time preference (i, π, c)U = (0,−ρ,−κρ).

The economy may end up in a self-fulfilling sunspot-LT as follows. Suppose agents believe,

for no fundamental reason (meaning, ρt = ρ), that the "bad" U equilibrium prevailed and expect

that it will persist according to an absorbing Markov chain: the probability of observing (i, π, c)U

tomorrow conditional on observing it today is zs, and of switching back to the "normal-times"

state (i, π, c)I it is 1−zs. The intended state is absorbing, meaning that once (i, π, c)I materializes

the probability that it will persist is 1 (and hence the probability of switching back to U is zero).

8Without a peg (with ν instead of ν0), the obvious answer for ruling our neo-Fisherian equilibria is to embrace
a policy that makes it possible to solve the equation (17) forward: e.g. the Taylor Principle inducing ν < 1, which
makes it impossible to satisfy ν > µ−1.
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Under this simple structure (mirroring that introduced by Eggertsson and Woodford, 2003 for

fundamental shocks and used below), the equilibrium is time-invariant and equal to:

cL =
σ

1− zsν0

ρ < 0 iff zs > ν−1
0 , (9)

with πL = κcL. The mere expectation of future recessions and deflation creates a recession today if

prices are flexible enough and if there is enough intertemporal substitution– both of which imply

low threshold ν−1
0 .

Bad (enough) news about the future can generate a self-fulfilling contraction today because

news are compounding, ν0 > 1: the same condition driving indeterminacy under a peg, the FG

puzzle, and neo-Fisherian effects. In fact, in such an LT equilibrium neo-Fisherian effects prevail,

as the effect of an increase in interest rates i∗ (with the same persistence as the sunspot zs) is:

∂cL
∂i∗

=
σ

zsν0 − 1

which is positive (expansionary) as long as zs > ν−1
0 ; notice that this is the same condition as

above (8), although the notions of "persistence" are different. This hypothesis certainly has merits,

notably to explain long-lasting episodes such as Japan; see also Uribe (2017) for some evidence for

short-run neo-Fisherian effects. Nevertheless, having a model that is capable of ruling out such

equilibria also seems desirable, in particular when one notices the connection that whatever makes

such equilibria possible also drives the FG puzzle.

A fundamental LT is the other, more standard variety of ZLB equilibrium in RANK, trig-

gered by a shock that makes the constraint bind. Following the seminal paper of Eggertsson

and Woodford (2003), I assume that the fundamental shock ρt follows a Markov chain with two

states. The first is the good, "intended" steady state denoted by I, with ρt = ρ, and is absorbing:

once in it, there is a probability of 1 of staying. The other state is transitory and denoted by L:

ρt = ρL < 0 with persistence probability z (conditional upon starting in state L, the probability

that ρt = ρL is z, while the probability that ρt = ρ is 1 − z). At time t, there is a negative real-
ization of ρt = ρL < 0 (which could be justified in a model with credit frictions by an increase in

spreads as in Curdia and Woodford (2009)). Maintaining the simpler policy rule it = max (ρt, 0),

it follows that the ZLB will bind when ρt = ρL < 0, while the flexible-price effi cient equilibrium

will be achieved whenever ρt = ρ.

Since the shock is unexpected, we can solve the model in the LT state, denoting by L the

time-invariant equilibrium for consumption and inflation (with ν0 still given by (7)):

cL =
σ

1− zν0

ρL; πL = κcL. (10)

Why an increase in the desire to save generates a recession with a binding zero lower bound in
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the standard NK model is much-researched territory since more than a decade: it causes excess

saving and, with zero saving in equilibrium, income has to adjust downwards to give the income

effect consistent with that equilibrium outcome. And if prices are not entirely fixed, there is also

deflation, which– because it causes an increase in real rates when the zero bound is binding– leads

to a further contraction, and so on. The condition for this to be a LT-recession cL < 0 is z < ν−1
0

(the complement of the one before, pertaining to sunspots (in (9)); this is intimately related to

the next puzzling property.

Asymptote-bifurcations and "unbounded" recessions are properties of the model re-
lated to crossing to the sunspot region: when zν0 tends to one, recessions become in principle

unbounded limzν0→1 cL = ∞ as evident from (10) (thereby, multipliers also become very large–

see e.g. Eggertsson (2010), Woodford (2011), and Christiano et al (2011)).9

The paradox of flexibility Eggertsson and Krugman (2012) coined this term for (and provide
a very clear discussion of) the property of RANK that in a liquidity trap, an increase in price

flexibility can make things worse, i.e. be destabilizing. This is illustrated here by calculating

(differentiating (10)) the effect of an increase in price flexibility κ, which makes the ZLB recession

worse:
∂2cL
∂ρL∂κ

=
zσ2

(1− zν0)2 > 0.

A related problematic prediction of the baseline model has been labelled by Hall (2011) the

missing deflation puzzle– a deep recession like the one experienced post-2008 needs (according to

the stripped-down RANK model) to be accompanied by a large deflation. I return to this issue

below when discussion HANK models’implication for this issue.

Summarizing: most of the (RA)NK model’s problematic predictions can be understood as

stemming from one key composite parameter: the effects of news on AD under a peg. This is the

root/eigenvalue in the simplified RANK model presented here, and is a fortiori on the "wrong"

side of the unit circle, ν0 > 1: the Sargent-Wallace result of indeterminacy under a peg. Solving

the RANK puzzles therefore boils down to introducing model features that bring this root inside

the unit circle, so that news do not get compounded and there is determinacy under a peg; this

is indeed how introducing heterogeneity solves all the puzzles – but there is also a catch, that we

will come back to after.
9But in fact, that limit is never reached: the economic restriction of non-starvation Ct > 0 imposes a natural

bound on the size of the recession cL; namely, normalizing the steady-state consumption level to 1 we need (see
Bilbiie et al (2018) for an elaboration in the context of fiscal policy in an LT):

zν0 < 1 + σρL < 1.
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3 An Analytical HANK Model

To study analytically whether and when heterogeneity cures the NK puzzles just described, I use

a framework that fits the purpose: an analytical HANK model that captures several key channels

of complicated HANK models. While related to several studies reviewed in the Introduction, the

exact model is to the best of my knowledge novel to this and the companion paper Bilbiie (2017)–

which focuses on the model’s AD amplification of policies through a "New Keynesian Cross" and

on using it as an approximation to richer HANK models.

Four key assumptions pertaining to the asset market structure render the equilibrium par-

ticularly simple and afford an analytical solution; I spell out the formal analysis in Appendix

A.1. First, there are two states of the world– constrained hand-to-mouth H and unconstrained

"savers" S– between which agents switch exogenously (idiosyncratic uncertainty). Second, there

is full insurance within type (after idiosyncratic uncertainty is revealed), but limited insurance

across types. Third, different assets have different liquidity: bonds are liquid (can be used to

self-insure, before idiosyncratic uncertainty is revealed), while stocks are illiquid (cannot be used

to self-insure). Fourth, I assume that in equilibrium there is no bond trading (and hence no equi-

librium liquidity)– same as used before in other contexts by i.a. Krusell, Mukoyama and Smith

(2011), Ravn and Sterk (2017), Werning (2015), McKay and Reis (2017), and Broer et al (2018).

That the unconstrained S may become constrained H can be interpreted as "risk", against

which only one of the two assets– bonds– can be used to insure against (is liquid). The exogenous

change of state follows a Markov chain: the probability to stay type S is s, and to stay type H is

h (with transition probabilities 1− s and 1− h respectively).
I focus on stationary equilibria whereby the mass of H is:

λ =
1− s

2− s− h,

by standard results (as the steady state of λt+1 = hλt+(1− s) (1− λt)). The requirement s ≥ 1−h
insures stationarity and has a straightforward interpretation: the probability to stay S is larger

than the probability to become S (the conditional probability is larger than the unconditional).10

In the limit s = 1−h = 1−λ, idiosyncratic shocks are iid: being S or H tomorrow is independent

on whether one is S or H today. At the other extreme stands TANK: idiosyncratic shocks are

permanent (s = h = 1) and λ stays at its initial value (a free parameter).

To characterize the equilibrium in asset markets (detailed in Appendix A.1), start from H: in

every period, those who happen to be H would like to borrow, but we assume that they cannot

(for instance they face a borrowing limit of 0). Since the stock is illiquid, they cannot access that

portfolio (owned entirely by S, whoever they happen to be in that period). We thus focus on an

10A general version of this condition appears e.g. in Huggett (1993); see also Challe et al (2016) for an interpre-
tation in terms of job finding and separation rates, and Bilbiie and Ragot (2016).

14



equilibrium where they are constrained hand-to-mouth, consuming all their (endogenous) income:

like in TANK, CH
t = Y H

t ; because transition probabilities are independent of history and with

perfect insurance within type, all agents who are H in a given period have the same income and

consumption.

S are also perfectly insured among themselves in every period by assumption, and would like

to save in order to self-insure against the risk of becoming H. Because shares are illiquid, they

can only use (liquid) bonds to do that. But since H cannot borrow and there is no government-

provided liquidity, bonds are in zero supply (the no-trade equilibrium of Krusell, Mukoyama, and

Smith). An Euler equation prices these bonds even though they are not traded, just like in RANK

and TANK, the aggregate Euler equation prices the possibly non-traded bond. But unlike in

RANK and TANK (where there is no transition and no self-insurance), now the bond-pricing

Euler equation takes into account the possible transition to the constrained H state. Notice that

in line with some HANK models such as KMV, my model distinguishes, albeit in a crude way,

between liquid (bonds) and illiquid (stock) assets: in equilibrium, there is infrequent (limited)

participation in the stock market.

Given our four assumptions, the Euler equation governing the bond-holding decision of S

self-insuring against the risk of becoming H is:

(
CS
t

)− 1
σ = βEt

{
1 + it

1 + πt+1

[
s
(
CS
t+1

)− 1
σ + (1− s)

(
CH
t+1

)− 1
σ

]}
, (11)

recalling that we focus on equilibria where the corresponding Euler condition forH holds with strict

inequality (the constraint binds), while the Euler condition for stock holdings by S is standard:(
CS
t

)− 1
σ = βEt

[(
1 + rSt+1

) (
CS
t+1

)− 1
σ

]
, merely defining the return on shares rSt .

The rest of the model is exactly like the TANK version in Bilbiie (2008, 2017), nested here

when there is no idiosyncratic uncertainty. In every period λ households are "hand-to-mouth" H

and excluded from asset markets (have no Euler equation)– but do participate in labor markets

and make an optimal labor supply decision (their income is therefore endogenous). The rest of

the agents 1 − λ also work and trade a full set of state-contingent securities, including shares in
monopolistically competitive firms (thus receiving their profits from the assets that they price).

The budget constraint of H is CH
t = WtN

H
t + TransferHt , where C is consumption, w the real

wage, NH hours worked and TransferHt net fiscal transfers to be spelled out.

All agents maximize present discounted utility, defined as previously, subject to the budget con-

straints. Utility maximization over hours worked delivers the standard intratemporal optimality

condition for each j: U j
C

(
Cj
t

)
= WtU

j
N

(
N j
t

)
. With σ−1 defined as before, ϕ ≡ U j

NNN
j/U j

N de-

noting the inverse labor supply elasticity, and small letters log-deviations from steady-state (to be

discussed below), we have the labor supply for each j: ϕnjt = wt−σ−1cjt . Assuming for tractability

that elasticities are identical across agents, the same holds on aggregate ϕnt = wt − σ−1ct.

Firms The supply side is standard. All households consume an aggregate basket of individual
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goods k ∈ [0, 1], with constant elasticity of substitution ε > 1: Ct =
(∫ 1

0
Ct (k)(ε−1)/ε dk

)ε/(ε−1)

.

Demand for each good is Ct (k) = (Pt (k) /Pt)
−εCt, where Pt (k) /Pt is good k′s price relative to

the aggregate price index P 1−ε
t =

∫ 1

0
Pt (k)1−ε dk. Each good is produced by a monopolistic firm

with linear technology: Yt(k) = Nt(k), with real marginal cost Wt.

The profit function is: Dt (k) =
(
1 + τS

)
[Pt(k)/Pt]Yt(k) − WtNt(k) − T Ft and I assume as

a benchmark that the government implements the standard NK optimal subsidy inducing mar-

ginal cost pricing: with optimal pricing, the desired markup is defined by P ∗t (k)/P ∗t = 1 =

εW ∗
t /
[(

1 + τS
)

(ε− 1)
]
and the optimal subsidy is τS = (ε− 1)−1. Financing its total cost by

taxing firms (T Ft = τSYt) gives total profits Dt = Yt−WtNt. This policy is redistributive because

it taxes the holders of firm shares: steady-state profits are zero D = 0, giving the "full-insurance"

steady-state used here CH = CS = C. Loglinearizing around it (with dt ≡ ln (Dt/Y )), profits

vary inversely with the real wage: dt = −wt (an extreme form of the general property of NK

models). This series of assumptions– optimal subsidy, steady-state consumption insurance, zero

steady-state profits– is not necessary for the results and could be easily relaxed, but adopting

them makes the algebra simpler and more transparent. Under nominal rigidities, optimal pric-

ing by firms delivers an "aggregate supply", Phillips curve derived in the Appendix and used in

loglinearized form above in (3).

The government conducts fiscal and monetary policy. Other than the optimal subsidy dis-
cussed above, the former consists of a simple endogenous redistribution scheme: taxing profits at

rate τD and rebating the proceedings lump-sum to H: TransferHt = τD

λ
Dt; this is key here for

the transmission of monetary policy, understood as changes in the nominal interest rate it.

Market clearing implies for equilibrium in the goods and labor market respectively Ct ≡
λCH

t + (1− λ)CS
t =

(
1− ψ

2
π2
t

)
Yt and λNH

t + (1− λ)NS
t = Nt. With uniform steady-state hours

(N j = N) by normalization and the fiscal policy assumed above (inducing Cj = C) loglinearization

around a zero-inflation steady state delivers yt = ct = λcHt +(1− λ) cSt and nt = λnHt +(1− λ)nSt .

3.1 Cyclical Inequality and Aggregate Demand in HANK

We derive an aggregate Euler equation, or IS curve for this economy starting from the indi-

vidual Euler equation that prices the asset whose return is the central bank’s instrument, the

self-insurance equation for bonds (11) loglinearized around the symmetric steady state CH = CS:

cSt = sEtc
S
t+1 + (1− s)EtcHt+1 − σ (it − Etπt+1 − ρt) .

To express this in terms of aggregates, we need individual cjt as a function of aggregate ct.

Take first the hand-to-mouth, who consume all their income (loglinearize the budget constraint)

cHt = yHt = wt + nHt + τD

λ
dt. Substituting wt = (ϕ+ σ−1) ct (the wage schedule derived using the

economy resource constraint, production function, and aggregate labor supply), dt = −wt and
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their labor supply, we obtain H ′s consumption function:

cHt = yHt = χyt, (12)

χ ≡ 1 + ϕ

(
1− τD

λ

)
≶ 1,

H’s consumption comoves one-to-one with their income, but not necessarily with aggregate income,

and this is the model’s keystone: the parameter χ– the elasticity ofH’s consumption (and income)

to aggregate income yt– which depends on fiscal redistribution and labor market characteristics.

Cyclical distributional effects make χ different from 1: the other agents (S, with income

ySt = wt + nSt + 1−τD
1−λ dt) face an additional (relative to RANK) income effect of the real wage,

which reduces their profits dt = −wt. Using this and S’s labor supply, we obtain:

cSt =
1− λχ
1− λ yt, (13)

so whenever χ < 1 S’s income elasticity to aggregate income is larger than one, and vice versa.

This directly delivers the following definition, to be used further.

Definition 1 Cyclical Inequality. Income inequality γt defined as:

γt ≡ ySt − yHt = (1− χ)
yt

1− λ

is procyclical (∂γ/∂y > 0) iff χ < 1 and countercyclical (∂γ/∂y < 0) iff χ > 1.

In RANK, there are by definition no such distributional considerations: one agent works and

receives all the profits. When aggregate income goes up, labor demand goes up (sticky prices) and

the real wage increases. This drives down profits (wage=marginal cost), but because the same

agent incurs both the labor gain and the "capital" (monopolistic rents) loss, the distribution of

income between the two is neutral.

Income distribution matters under heterogeneity, and to understand how start with no fiscal

redistribution, τD = 0 and χ > 1. If demand goes up and (with upward-sloping labor supply

ϕ > 0) the real wage goes up, H’s income increases. Their demand increases proportionally, as

they do not get hit by profits falling. Thus aggregate demand increases by more than initially,

shifting labor demand and increasing the wage even further, and so on. In the new equilibrium, the

extra demand is produced by S, whose decision to work more is optimal given the income loss from

falling profits. Since the income of H goes up and down more than proportionally with aggregate

income, inequality is countercyclical (CI): it goes down in expansions and up in recessions.

Redistribution τD > 0 dampens this channel, delivering a lower χ. As they receive a transfer,

H start internalizing the negative income effect of profits and do not increase demand by as

much. The case considered by Campbell and Mankiw’s (1989) seminal paper is χ = 1, which I
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call the Campbell-Mankiw benchmark (see Bilbiie (2017) for an elaboration). This occurs when

the distribution of profits is uniform, so the income effect disappears τD = λ; or when labor is

infinitely elastic ϕ = 0 (so that all households’consumption comoves perfectly with the wage);

income inequality is then acyclical.

Finally, χ < 1 occurs when H receive a disproportionate share of the profits τD > λ. The

AD expansion is now smaller than the initial impulse, as H recognize that this will lead to a fall

in their income; while S, given the positive income effect from increased profits, optimally decide

to work less.11 As the income of H now moves less than proportionally with aggregate income,

inequality is procyclical (PI).

Replacing the consumption functions of H (12) and S (13) in the self-insurance equation, we

obtain the aggregate Euler-IS :

ct = δEtct+1 − σ
1− λ

1− λχ (it − Etπt+1 − ρt) , (14)

where δ ≡ 1 + (χ− 1)
1− s

1− λχ.

and the contemporaneous AD elasticity to interest rates is the TANK one, σ 1−λ
1−λχ . This reflects

the New Keynesian Cross logic described above: in particular and as analyzed in detail in Bilbiie

(2017), even though the "direct effect" of a change in interest rates is scaled down by (1− λ) (λ

agents do not respond directly), the indirect effect, which amounts to the aggregate-MPC or slope

of the planned-expenditure curve in the NK cross representation, is increasing with λ. The rate

at which it does so depends on χ, and with CI the latter effect dominates the former, delivering

amplification relative to RANK– while for PI the opposite is true, giving dampening.

The key property (and novelty relative to TANK) for our purpose is summarized in the following

Proposition, restricting attention to the case λ < χ−1 (I discuss briefly the other case after).

Proposition 1 The Aggregate Euler-IS equation of the HANK model (with idiosyncratic uncer-

tainty s < 1) is characterized by:

discounting (δ < 1) iff inequality is procyclical (χ < 1) and

compounding (δ > 1) iff inequality is countercyclical (χ > 1).

To understand this, start with RANK, where good news about future income imply a one-to-

one increase in aggregate demand today as the household wants to substitute consumption towards

the present and (with no assets) income adjusts to deliver this. The same also holds in the TANK

limit: with permanent idiosyncratic shocks (s = h = 1), there is no discounting δ = 1; λ is then

11An alternative route to obtaining χ < 1 is to assume sticky wages, as Colciago (2011) and Ascari, Colciago,
and Rossi (2017) in TANK, and Broer et al (2018) or Walsh (2018) is simple-HANK; χ then becomes a decreasing
function of wage stickiness: as wages become less cyclical so does the income of H.
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an arbitrary free parameter.

Consider then the case of PI which gives "discounting", generalizing MNS (nested for χ = 0,

implying δ = s, and iid idiosyncratic shocks s = 1 − h = 1 − λ). When good news about future
aggregate income/consumption arrive, households recognize that in some states of the world they

will be constrained and (because χ < 1) not benefit fully from it. They self-insure against this

and increase their consumption less than they would if they were alone in the economy (or if

there were no uncertainty). Like in RANK and TANK, this (now: self-insurance) increase in

saving demand cannot be accommodated (there is no asset), so the household consumes less

today and income adjusts accordingly to deliver this allocation. The interaction of idiosyncratic

(1− s) and aggregate uncertainty (news about yt, and how they translate into individual income
through χ− 1) thus determines the self-insurance channel. This channel is strengthened and the

discounting is faster: the higher the risk (1−s), the lower the χ, and the longer the expected hand-
to-mouth spell (higher λ at given s implies higher h); these intuitive results follow immediately by

calculating the respective derivatives of δ and noticing they are all proportional to (χ− 1). In the

iid, idiosyncratic-uncertainty special case s = 1− h (considered e.g. by Krusell Mukoyama Smith
and MNS) we have λ = h and the fastest discounting δiid = (1− λ) / (1− λχ).

The opposite logic holds with CI, implying compounding instead of discounting. The (there,

contemporaneous) Keynesian-cross endogenous amplification that is the staple of TANK now

extends intertemporally: good news about future aggregate income boost today’s demand because

they imply less need for self-insurance. Since future consumption in states where the constraint

binds over-reacts to good aggregate news, households internalize this by demanding less "saving".

But savings still need to be zero in equilibrium, so households consume more that one-to-one–

while income increases more than it would without risk. By the same token as before (δ derivatives’

being proportional to (χ− 1)), this effect is magnified with higher risk (1− s), χ, and λ; the highest
compounding is obtained in the iid case, because it corresponds to the strongest self-insurance

motive, with δiid = (1− λ) / (1− λχ).

Furthermore, the self-insurance channel is complementary with the (TANK) hand-to-mouth

channel: compounding (discounting) is increasing with idiosyncratic risk at a higher rate when

there are more λ (∂2δ/ (∂λ∂ (1− s)) ∼ χ − 1): an increase in (1 − s) has a larger effect on

self-insurance with a longer expected hand-to-mouth spell (1− h)−1.

Inverted AD Logic and a Paradox of Thrift

In the case λ > χ−1 ruled out above (and for the remainder of this paper except this paragraph),

the IS curve swivels ( ∂ct
∂(−rt) < 0): this is an "inverted Aggregate Demand" region explored in detail

in TANK by Bilbiie (2008) and empirically by Bilbiie and Straub (2012, 2013)– e.g. for explaining

the Great Inflation without relying on indeterminacy. This is a paradox of thrift (described i.a. in

Keynes (1936)): S want to consume more ("save" less) as r goes down, but we end up with lower
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aggregate consumption (aggregate saving goes up). The intuition is that when real interest rates

fall, by the Euler equation, S’s consumption goes up, proportionally (regardless of how many H

there are). The income effect of S needs to agree with this intertemporal substitution effect, so

something else needs to adjust for equilibrium. Evidently, consumption of H must go down, which

means that the real wage must go down. We need to be moving downwards along the labor supply

curve, so labor demand shifts down (which with non-horizontal AS will also give deflation)– by

as much as necessary to precisely strike the balance between the implied movement in real wage

(marginal cost) and hours (and hence sales, output, and ultimately profits), and thus the income

effect on savers, on the one hand. And the intertemporal substitution effect that we started off

with, on the other hand. This is strictly speaking a "paradox of thrift", for individual incentives

to consume more (by savers) lead to equilibrium outcomes with lower aggregate consumption.12

Note that such equilibria can be ruled out, if inequality is procyclical χ < 1 (changes in demand

do not trigger over-compensating income effects on S no mater how large the share of H).

3.2 Cyclical Risk and Aggregate Demand

The foregoing focuses on cyclical inequality and embeds a notion of idiosyncratic risk that is

intimately related to whether liquidity constraints bind or not but is by construction acyclical.13

In quantitative HANK models (and in the data) this is not necessarily the case. Other analytical

HANK frameworks model idiosyncratic risk in a way that is both cyclical and differently related

(Challe et al, 2017; Ravn and Sterk, 2017; Werning, 2015) or unrelated (Acharya and Dogra,

2018) to constrains’being binding and thus to hand-to-mouth behavior. In this section, I propose

an extension– inspired by Acharya and Dogra, although formally very different– that models

cyclical risk separately and allows disentangling its role from cyclical inequality– thus clarifying

the differences with the papers cited above.

Consider in particular that the probability of becoming constrained next period depends on the

cycle, 1−s (Yt), e.g. on today’s aggregate consumption (in a model with endogenous unemployment

risk like Ravn and Sterk’s or Challe et al’s, this happens in equilibrium through search and

matching). If the first derivative of 1 − s (.) is positive −s′ (Yt) > 0, the probability to become

constrained is higher in expansions: insofar as being constrained leads on average to lower income,

income "risk" is then procyclical (it goes up in expansions). Conversely, when −s′ (Yt) < 0 income

risk is countercyclical.

12This is different from the paradox of thrift occurring in a liquidity trap, see e.g. Eggertsson and Krugman
(2012): there, AD is upward-sloping because the nominal interest rate is fixed. Here, it is upward sloping because
of aggregation through the mechanism emphasized above, regardless of the zero lower bound.
13This can be formally illustrated by calculating the (conditional) variance of idiosyncratic income for an agent

S who contemplates self-insurance, that is vart
(
Y St+1

)
= s (1− s)

(
Y St − Y Ht

)2
. The derivative of this with respect

to aggregate income Yt, evaluated at the steady state, is proportional to stead-state inequality Y S − Y H ; thus,
locally around a symmetric steady-state Y S = Y H idiosyncratic risk as measured by the variance of idiosyncratic
income is acyclical.
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With this small extension that captures a mechanism emphasized by the literature cited above,

the Aggregate Euler-IS curve in loglinearized form, derived in detail in Appendix B, becomes:

ct = θδEtct+1 − θσ
1− λ

1− λχ (it − Etπt+1 − ρt) (15)

with θ ≡
[
1 + η

(
1− Γ−1/σ

)
(1− s̃)σ 1− λ

1− λχ

]−1

,

where I denote by 1 − s̃ = (1−s)Γ1/σ
s+(1−s)Γ1/σ > 1 − s the inequality-weighted transition probability, the

relevant inequality-adjusted measure of risk given steady-state inequality coming from financial

income Γ ≡ Y S/Y H ≥ 1. Notice that the discounting/compounding parameter due to cyclical

inequality has a slightly different expression now δ ≡ 1 + (χ−1)(1−s̃)
1−λχ , generalized to the case with

steady-state inequality.

In this representation, the novel composite parameter θ captures the aggregate implications

of cyclical risk, the key determinant of which is the elasticity of idiosyncratic risk to the cycle,

η = −sY Y/ (1− s). This captures in a simple way the different channel emphasized by Werning
(2015) and studied in isolation in a different simplified-HANK setup (with CARA preferences)

by Acharya and Dogra (2018). As in those frameworks, dampening/amplification of both current

and future shocks occurs depending on whether risk is pro- or counter-cyclical, i.e. on the sign

of η– even in the Campbell-Mankiw acyclical-inequality benchmark χ = 1. Procyclical risk (PR)

implies dampening and Euler discounting θ < 1: a cut in interest rates or good news generate an

expansion today– to start with. But this increases the probability of moving to the bad state,

which triggers "precautionary" saving, thus containing the expansion. Conversely, countercyclical

risk (CR, η < 0) generates amplification and compounding θ > 1: an aggregate expansion reduces

the probability of moving to the bad state and mitigates the need for insurance– thus amplify-

ing the initial expansion.14 This formalization of cyclical risk has thus similar reduced-form AD

implications to the cyclical-inequality channel that my work emphasizes, even though the under-

lying economic mechanism is very different. Notice that the risk channel only operates if there is

long-run inequality Γ > 1, i.e. literally income risk of moving to a lower income level ; whereas

the cyclical-inequality channel (purposefully derived first for the case of no long-run inequality)

relies on the idiosyncratic cyclicality of income χ (the cyclicality of inequality being 1− χ).
It is worth emphasizing that there can be discounting even with countercyclical inequality

(χ > 1 and δ > 1)– if risk is procyclical enough (η > χ−1
σ(1−λ)

Γ1/σ

Γ1/σ−1
), as there can be multipliers

even with procyclical inequality. This has important implications for the Catch-22 alluded to in

14Contemporaneous amplification (multipliers) is a consequence of risk depending on current aggregate demand;
in the Appendix, I also consider a different setup whereby the probability (to be constrained next period) depends
on Yt+1, with equilibrium implications even closer to Acharya and Dogra (2018): multipliers disappear as the
within-period AD elasticity to r of is then unaffected. Notice that I assume throughout that the probability h also
depends on Y in a compensating way, such that λ does not depend on the cycle.
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the Introduction, that we shall explore in due course.

The following decomposition of aggregate demand (15) is useful to further illustrate the differ-

ence between the two channels:

ct = Etct+1 − σrt︸ ︷︷ ︸
RANK

− σ
λ (χ− 1)

1− λχ rt︸ ︷︷ ︸
cyclical-inequality TANK

+ (δ − 1)Etct+1︸ ︷︷ ︸
cyclical-inequality HANK

+(θ − 1)

(
δEtct+1 − σ

1− λ
1− λχrt

)
︸ ︷︷ ︸

cyclical-risk HANK

(16)

This captures the AD-side differences with RANK as coming from three channels: (i) the TANK

channel of cyclical inequality without risk operating in e.g. Bilbiie (2008, 2017) and Debortoli

and Galí (2018); (ii) the HANK-specific, cyclical-inequality component due to self-insurance–

essentially adding acyclical idiosyncratic uncertainty to cyclical inequality, introduced in Bilbiie

(2017) and in the previous section; and (iii) a second separate HANK-specific cyclical-risk channel

that interacts with the previous two but operates even in the limit cases with little to no risk

s→ 1 or acyclical inequality (χ = 1)– this channel is studied in isolation by Acharya and Dogra

(2018) in a pseudo-RANK abstracting from heterogeneity and inequality to focus on cyclical risk

(the exact opposite of TANK). My extension here is inspired by that analysis but provides a

different formalization of cyclical risk that is intimately related to binding constraints and thus

to inequality.15 This decomposition is finally related to that introduced in a HANK model by

Debortoli and Galí as heterogeneity "between" (constrained and unconstrained: the TANK term

above) and "within" (unconstrained who self-insure: the two last "HANK" terms). The remainder

of the paper studies the analytical-HANK version embedding all channels.16

3.3 HANK, Taylor, and Sargent-Wallace

The model is completed by adding the simple aggregate-supply, Phillips-curve specification used

above (all the results carry through with the more familiar forward-looking NKPC (3) as I show

in Appendix D) and a monetary policy rule. With this simplified, RANK-isomorphic HANK we

can similarly derive the classic determinacy results: a (HANK-)Taylor principle and the Sargent-

Wallace issue of determinacy under a peg; further below, I study a Wicksellian rule of price-level

targeting.

Under the assumed structure, the model is disarmingly simple: replacing the static Phillips

curve (4) and Taylor rule (2) in the aggregate Euler equation, the whole analytical-HANK model

15Acharya and Dogra also extend their pseudo-RANK, combining it with TANK by adding hand-to-mouth agents
in a way that is entirely orthogonal to uninsurable risk. Something observationally equivalent can be recovered in
my framework with a low level of idiosyncratic risk (1− s close to 1 so that δ → 1 even though χ > 1, the TANK
limit) but arbitrary cyclicality η.
16All the results below were derived in the previous 2017 version of this paper ("A Catch-22 ...") for the case

with acyclical risk θ = 1 (by assuming for instance η = 0 or Γ = 1).
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boils down to one (!) equation (using the notation σ̄ ≡ θσ
(

1−λχ
1−λ + θφκσ

)−1
):

ct = νEtct+1 − σ̄i∗t , (17)

where ν ≡
θδ + θκσ 1−λ

1−λχ

1 + θφκσ 1−λ
1−λχ

captures the effect of good news on AD, and the elasticity to interest rate shocks.

There are three channels shaping this key summary statistic. First, the "pure AD" effect

through θδ discussed above (operating even when prices are fixed or if the central bank fixes the

ex-ante real rate it = Etπt+1), coming from either cyclical inequality or risk.

The second term comes from a supply feedback cum intertemporal substitution: the inflation-

ary effect (κ) of good news on income triggers, ceteris paribus (given nominal rates) a fall in the

real rate and intertemporal substitution towards today– the magnitude of which depends on the

within-the-period amplification/dampening resulting from cyclical inequality ( 1−λ
1−λχ) or risk (θ).

Finally, through the monetary policy rule all this current demand amplification generates

inflation and triggers movements in the real rate. When φ > 1 ("active" policy in Leeper’s (1991)

terminology), inflation leads to an increase in the real rate, which has a contractionary effect

today– the strength of which also depends on the "TANK" cyclical-inequality channel through
1−λ

1−λχ and on the cyclical-risk channel through θ. These considerations drive the main result

concerning equilibrium determinacy and ruling out sunspot equilibria (a version of the Proposition

for the standard case with forward-looking NKPC (3) is in Appendix D.1).

Proposition 2 The HANK Taylor Principle: The HANK model under a Taylor rule (17)

has a determinate, (locally) unique rational expectations equilibrium if and only if (as long as

λ < χ−1):

ν < 1⇔ φ > φHANK ≡ 1 +
θδ − 1

θκσ 1−λ
1−λχ

.

The Taylor principle φ > 1 is suffi cient for determinacy if and only if there is Euler-IS dis-

counting:

θδ ≤ 1.

The proposition follows by recalling that the requirement for a (locally) unique rational ex-

pectations equilibrium is that the root ν be inside the unit circle; in the discounting case θδ < 1,

the threshold φ is evidently weaker than the Taylor principle, while in the compounding case it is

stronger.

The intuition is the same as for other "demand shocks": in the compounding case, there is a

more powerful demand amplification to sunspot shocks, which raises the need for a more aggressive

response to rule out self-fulfilling sunspot equilibria. The higher the risk (1−s) and the higher the
elasticity of H income to aggregate χ the higher this endogenous amplification, and the higher the
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threshold. The opposite is true in the discounting case: since the transmission of sunspot shocks

on demand is dampened, the Taylor principle is suffi cient for determinacy.

Recall that this demand amplification is increasing with the degree of price stickiness (which

governs the labor demand expansion that sets off the Keynesian spiral, as opposed to the direct

inflationary response): thus, the threshold is also increasing with price stickiness (decreasing with

κ). The Taylor threshold φ > 1 is recovered for either of χ = 1 or s→ 1 combined with θ = 1; or for

κ→∞ (flexible prices). But the determinacy region for φ squeezes very rapidly with idiosyncratic

risk when prices are sticky, because of the complementarity between idiosyncratic and aggregate

risk, as clear from the expression: φHANK = 1 + (χ−1)(1−s̃)+1−θ−1
κσ(1−λ)

. Furthermore, cyclical inequality

and cyclical risk can each deliver suffi ciency of the Taylor principle if low enough.

Figure 1 illustrates these effects, focusing on cyclical inequality, by plotting the Taylor coeffi -

cient threshold as a function of the hand-to-mouth share λ (the domain of which is λ < χ−1) for

different idiosyncratic risk (1 − s), distinguishing between PI χ = 0.5 in the left panel, and CI

χ = 2 in the right panel. The illustrative parametrization assumes κ = 0.02, σ = 1, ϕ = 1, and

θ = 1.

Start with the right panel with CI (δ > 1 and χ > 1) whereby the Taylor principle is not

suffi cient for determinacy. The threshold increases with λ and (by complementarity) at a faster

rate with higher idiosyncratic uncertainty 1 − s: the dotted line corresponds to highest possible
level of idiosyncratic risk, the iid case 1− s = λ, the solid line to 1− s = 0.04 and the red dashed

line to the TANK limit 1 − s = 0 (the same threshold as for RANK χ = 1, the standard Taylor

principle). The required response can be large: e.g. for the calibration used in Bilbiie (2017) to

replicate the aggregate outcomes of KMV’s quantitative HANK (χ = 1.48, λ = 0.37, 1−s = 0.04)

the threshold is φHANK = 2.5, while for the calibration replicating the aggregate implications of

Debortoli and Gali’s HANK model (χ = 2.38, λ = 0.21, 1 − s = 0.04) it is φHANK = 4.5. The

figures are plotted for acyclical risk, but it is clear from the analytical results above that, ceteris

paribus, pro- (counter-)cyclical risk reduces (increases) the threshold.
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Fig. 1: Taylor threshold φHANK in TANK 1− s = 0 (dash); 0.04 (solid); λ (dots).

The left panel pertains to the PI, "discounting" region (χ < 1), whereby the Taylor principle

is suffi cient– but not necessary– for determinacy: in fact, for a large subset of the region, there

is determinacy even under a peg, an illustration of the following Proposition.

Proposition 3 Sargent-Wallace in HANK: An interest rate peg φ = 0 leads to a locally

unique equilibrium (determinacy) if and only if

ν0 ≡ θδ + θκσ
1− λ

1− λχ < 1.

With enough endogenous dampening, be it directly through Euler-equation discounting (the

first term) or through mitigating the "expected inflation" channel (the second term), a pure

expectation shock has no effects, even with a peg: the sunspot is ruled out inherently by the

economy’s endogenous forces (unlike in RANK where ν0 = 1 + κσ ≥ 1), as illustrated in the left

panel. These considerations are intimately related to the NK puzzles, to which we now turn.

4 When HA cures NK puzzles

Using our analytical framework, we are now in a position to provide closed-form conditions under

which the HANK model solves NK puzzles, thus substantiating the mechanism at work in the

quantitative papers that have noticed this previously– with reference to the FG puzzle only (MNS

(2016), KMV’s (2017) note, as well as the more recent Hagedorn, Manovskii, and Mitman (2018)).
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4.1 FG Puzzle and neo-Fisherian effects

In a nutshell, HANK models solve the puzzles if and only if the HANK-AD channels emphasized

above yield enough AD discounting to overturn the compounding through the AS side that is

inherent in RANK and causes the trouble– as formalized in Proposition 4 (which pertains to the

static Phillips Curve (4), but extends to the more familiar case with NKPC, the slightly more

involved condition and the proof for which are outlined in Appendix D.2).

Proposition 4 The analytical HANK model under a peg:

1. solves the FG puzzle ( ∂2ct
∂(−i∗t+T )∂T

< 0) and

2. rules out neo-Fisherian effects (∂ct
∂i∗t

< 0 and uniquely determined)

if and only if: ν0 < 1.

Before proving the Proposition, it is worth discussing the necessary and suffi cient condition

ν0 < 1, which provides the main intuition. In light of our previous discussion in RANK, this

requires that:

1− θδ > κσ
1− λ

1− λχθ,

i.e. that the novel, HANK-AD discounting (whatever the channel) on the left side dominate the

AS-compounding of news (right side) that we identified as the source of trouble in RANK. In

particular, Euler-equation discounting (θδ < 1) is a necessary, but not suffi cient (unless prices are

fixed) condition to solve the puzzle. Notice that the condition can hold through either the cyclical-

inequality or -risk channels. If risk is acyclical (θ = 1), the necessary and suffi cient conditions

are, jointly (i) some idiosyncratic uncertainty 1 − s > 0, and (ii) procyclical enough inequality

χ < 1− σκ1−λ
1−s < 1, a clear manifestation of the complementarity between these two channels. If

inequality is acyclical (or absent, as in Acharya and Dogra), the necessary and suffi cient condition

is θ < (1 + κσ)−1. Generally, the condition requires that there be enough of a "net" discounting

effect of the two channels jointly, even though one of them may by itself be compounding. We

shall return to this issue below.

The Proposition’s proof is immediate. As in RANK, iterating forward the one equation that

describes the entire HANK model (17) under a peg we obtain:

ct = ν0Etct+1 − σ
1− λ

1− λχθi
∗
t = ν T̄0Etct+T̄ − σ

1− λ
1− λχθEt

∑T̄−1
j=0 ν

j
0i
∗
t+j

For any T ∈
(
t, T̄
)
in response at time t to a one-time cut in interest rates at t+ T is

∂ct

∂
(
−i∗t+T

) = σ
1− λ

1− λχθν
T
0
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which can now be decreasing in T if and only if ν0 < 1 (the derivative being σ 1−λ
1−λχθν

T
0 ln ν0).

Furthermore, since with ν0 < 1 the term ν T̄0Etct+T̄ vanishes when taking the limit as T̄ →∞, we
can solve the equation forward for arbitrary i∗t process and find a unique solution; taking the same

AR(1) as before, this (now unique) solution is

ct = −σθ 1− λ
1− λχ

1

1− ν0µ
i∗t

interest rate increases are short-run contractionary and deflationary (no neo-Fisherian effects).

One side implication of my results is an alternative interpretation of MNS’s (2016) resolution of

the FG puzzle, relative to that provided byWerning (2015)– that the power of FG is mitigated with

incomplete markets through procyclical income risk. The independent channel that I emphasize

dampens FG power through procyclical inequality, even when income risk is acyclical θ = 1.

Take for example acyclical income of H (χ = 0), which gives δ = s and the effect of news is

ν0 = s+ (1− λ)σκ; this is not necessarily smaller than 1: case in point, TANK, where it is larger

than one since s = 1. To solve the FG puzzle, there needs to be enough idiosyncratic risk, namely

1 − s > (1− λ)σκ. It is worth noticing that MNS (2017) inherently satisfies these conditions

because it assumes iid idiosyncratic risk (s = 1− λ) and exogenous income of H (χ = 0). Notice

that with fixed prices κ = 0 the requirement becomes δ < 1: Euler-equation discounting and thus

χ < 1 is then suffi cient to solve the FG puzzle, as already shown in Bilbiie (2017).

Figure 2 provides a quantitative illustration of the findings, plotting the threshold level of

redistribution that is suffi cient to deliver determinacy under a peg and thus rule out the NK

puzzles, for different values of idiosyncratic uncertainty and as a function of λ, with acyclical risk

θ = 1. Close to the TANK limit (small 1− s) there is no level of redistribution that delivers this;
as idiosyncratic risk 1 − s increases, the region expands and is largest in the iid case. (The thin
dotted line plots the threshold above which the IS slope is positive λχ < 1).
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Fig. 2: Redistribution threshold τDmin in TANK 1− s→ 0 (dash); 0.04 (solid); λ (dots).
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4.2 ZLB Puzzles in HANK

Liquidity traps are, as in RANK, still of two possible types (for simplicity, we go back to assuming

the simplest LT-generating policy rule used in RANK it = max (0, ρt)). Take first sunspot-driven
LTs triggered by the mere expectation by agents that the economy will enter a ZLB-recession.

Equilibrium consumption is now:

cL =
1

1− zsν0

σθ
1− λ

1− λχρ, (18)

which leads indeed to a recession iff zs > ν−1
0 . The possibility of sunspot LTs is thus ruled out if

ν0 < 1, no matter how pessimistic agents are (how high the sunspot persistence).17

How about fundamental LTs? The nagging RANK predictions discussed above are also

"fixed", as follows. Consumption during the trap is:

cL =
1

1− zν0

σθ
1− λ

1− λχρL, (19)

where now z < ν−1
0 is needed as a restriction to rule out bifurcations, as explained in RANK

above. Here, however, as long as ν0 < 1, the restriction is a fortiori satisfied, since z is a probability

z < 1 < ν−1
0 . Recessions are therefore bounded: even if the shock is permanent, the recession is

at most 1
1−ν0σθ

1−λ
1−λχρL.

The mechanism by which LT-recessions occur is similar to the one discussed for the RANK

model; but in the simple HANK model, their magnitude (and whether they are larger or smaller

than in RANK) depends on the key parameters λ, χ, 1 − s, and θ through both the within-

period demand elasticity to interest rates (σθ 1−λ
1−λχ) and through the AD effect of news under a

peg parameter ν0. I discuss in detail each channel of the mechanism in Section 5.1 below.

Take next the paradox of flexibility discussed above, that an increase in price flexibility
summarized by an increase in the Phillips curve slope κ makes the ZLB recession worse; in the

HANK model, this is captured by:

∂

(
∂cL
∂ρL

)
/∂κ = z

(
1

1− zν0

σθ
1− λ

1− λχ

)2

> 0. (20)

The paradox is not ruled out altogether but is mitigated (in the sense that the derivative in

(20) decreases) by adding hand-to-mouth if and only their income elasticity to aggregate income is

lower than one, i.e. once again χ < 1 (the proof follows immediately by noticing that both σ 1−λ
1−λχ

17Notice, nevertheless, that a sunspot equilibrium may always be constructed, e.g. insofar as prices are flexible
enough (or whatever makes ν0 > 1). In fact, they can always be constructed as long as the ZLB equilibrium is a
steady state.

28



and δ, and hence also ν0, are decreasing with λ iff χ < 1). Conversely, the paradox of flexibility

is instead aggravated by adding hand-to-mouth agents if and only if χ > 1.

4.3 FG Puzzle and Power in a Liquidity Trap

Forward guidance has been discussed in particular in the context of LTs, as a policy tool that

remains available when the standard ones are not, and as a characteristic of optimal policy; see

Eggertsson and Woodford (2003) for the original analysis, and Bilbiie (2016) for a more recent

treatment and an up-to-date discussion of the literature.

To discuss the FG puzzle in the context of LTs, I follow the latter paper and model FG

stochastically through a Markov chain, as a state of the world with a probability distribution, as

follows. Recall that the (stochastic) expected duration of the LT is TL = (1− z)−1 , the stopping

time of the Markov chain. After this time TL, the central bank commits to keep the interest

rate at 0 while ρt = ρ > 0, with probability q. Denote this state by F, and let TF = (1− q)−1

denote the expected duration of FG. The Markov chain implied by this structure has three states:

liquidity trap L (it = 0 and ρt = ρL), forward guidance F (it = 0 and ρt = ρ) and steady state S

(it = ρt = ρ), of which the last one is absorbing. The probability to transition from L to L is, as

before, z, and from L to F it is (1− z) q. The persistence of state F is q, and the probability to

move back to steady state from F is hence 1− q.
Under this stochastic structure, expectations are determined by:

Etct+1 = zcL + (1− z) qcF (21)

and similarly for inflation. Evaluating the aggregate Euler-IS (14) and Phillips (πt = κct) curves

during state F and L and solving for the time-invariant equilibria delivers equilibrium consumption

(and inflation) during the forward guidance state F and the liquidity trap state L respectively as:

cF =
1

1− qν0

σθ
1− λ

1− λχρ; (22)

cL =
1− z

1− zν0

qν0

1− qν0

σθ
1− λ

1− λχρ+
1

1− zν0

σθ
1− λ

1− λχρL,

and πF = κcF , πL = κcL; ν0 is again the response of consumption in a liquidity trap to news about

future income/consumption (the solution with NKPC (3) is slightly more involved and included

in Appendix D.3).

It is immediately apparent that the future expansion cF is increasing in the degree of FG q

regardless of the model. In the CI case (χ > 1), the future expansion is also increasing with the

H share λ, and with risk 1− s; whereas with PI the opposite holds.
Figure 3 illustrates these findings: Distinguishing between χ < 1 (left) and χ > 1 (right),

it plots in both panels consumption in the liquidity trap (thick) and in the FG state (thin), as
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a function of the FG probability q. Other than the parameter values used for Figure 1, it uses

z = 0.8 and a spread shock of 4 percent per annum (ρL = −0.01). This delivers a recession of 5

percent and annualized inflation of 1 percent in RANK without FG (q = 0). The domain is such

that q < ν−1
0 . The RANK model is with green solid lines, the TANK limit (s = h = 1) with red

dashed lines, and the other extreme, iid limit of the HANK model (1− s = h = λ) with blue dots.

The pictures illustrate dampening and amplification (respectively) in a LT: at given q, low

future rates have a lower effect (on both cF and cL) in TANK, and an even lower one in HANK,

with PI. The last point illustrates the complementarity: the dampening is magnified when moving

towards higher risk 1 − s, with the fastest discounting in the limit when 1 − s = h = λ (blue

dots). Whereas with CI (right panel), the opposite is true: low rates have a higher effect in the

TANK model, and through complementarity an even higher one under self-insurance: the pictured

iid case represents the highest compounding. Indeed, even though χ = 2 is a rather conservative

number and the share of H is very small (λ = 0.1)– which makes amplification in the TANK

version rather limited– amplification in the HANK model is substantial: the recession is three

larger than in the RANK model. This number goes up steeply when we use the forward-looking

Phillips curve, or when we increase either λ or χ if only slightly– indeed, with β = 0.99 in (3),

the recession is 10 (ten) times larger.
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Fig. 3: cL (thick) and cF (thin) in RANK (green solid), TANK (red dashed) and iid-HANK (blue dots)

We can now define FG power, denoted by PFG, formally as the derivative of consumption
during the trap cL with respect to q, dcL/dq:

PFG ≡
dcL
dq

=

(
1

1− qν0

)2
(1− z) ν0

1− zν0

σθ
1− λ

1− λχρ.
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As we can already see in Figure 3, this is much larger in HANK with countercyclical inequality.

The properties of amplification and dampening of FG power follow the same logic as those applying

to any demand shock. Since PFG is increasing with ν (and hence with both δ and σ 1−λ
1−λχ), in the

CI case it increases with idiosyncratic risk 1− s and with the share of hand-to-mouth λ (while it
decreases with PI). Furthermore, the complementarity between self-insurance and hand-to-mouth

also applies to FG power.

The FG puzzle is then in this context that PFG increases with the persistence (and thus

expected duration) of the trap z:
dPFG
dz

≥ 0.

When does the model resolve the FG puzzle in a LT?

Proposition 5 The analytical HANK model solves the FG puzzle in a LT equilibrium (dPFG
dz

< 0)

if and only if:

ν0 < 1,

same condition as in Proposition 4.

The result follows directly calculating the derivative dPFG/dz = (ν0−1)ν0
[(1−qν0)(1−zν0)]2

σθ 1−λ
1−λχρ and

then replacing the expression for ν0.

To further illustrate how the FG puzzle operates and how the complementarity between cyclical

inequality and idiosyncratic (albeit acyclical) risk helps eliminate it, consider Figure 4; it plots

PFG as a function of z, for the same calibration as before (fixing in addition q = 0.5) in the two

cases χ < 1 and χ > 1 for the three models RANK, TANK, and HANK– with θ = 1. This shows

most clearly that it is the interaction of procyclical inequality (dampening through χ < 1) and

idiosyncratic risk (which, as shown above, magnifies that dampening through discounting) that

leads to resolving the FG puzzle: the power of FG becomes decreasing in the duration of the

trap. The PI channel by itself (TANK model with χ < 1, red dashed line on the left panel) is

not enough– although it alleviates the puzzle relative to the RANK model, it does not make the

power decrease with the horizon z. While idiosyncratic risk (the self-insurance channel by itself)

added to the CI, "amplification" case magnifies power even further, thus aggravating the puzzle

(blue dots in the right panel for the iid HANK model).
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Fig. 4: FG power in RANK (green solid), TANK (red dashed) and iid-HANK (blue dots)

Evidently, the puzzle is aggravated at higher values of ν0 (dPFGdz
is increasing in ν0). It follows

from the monotonicity of ν0 that the puzzle is alleviated with higher idiosyncratic risk 1− s and
with λ in the PI case; but worsens with idiosyncratic risk 1− s and with λ in the CI case.

5 Amplification Without Puzzles: A Catch-22?

To summarize the previous findings in one sentence: HANK models can cure NK puzzles, and

they do so only when inequality is procyclical, or when risk is. Unfortunately, this is the exact

opposite of the condition needed for this model to provide amplification ("multipliers") relative to

RANK: as we will see momentarily, conditional on one channel, that requires countercyclicality.

But in that region, NK puzzles are in fact aggravated: multipliers multiply not only the good, but

also the bad.

5.1 Deflationless Recessions and Inflationless Fiscal Multipliers?

The majority of quantitative HANK studies reviewed in the Introduction use these models to

deliver "amplification" of various shocks and policies with respect to the RANK benchmark. For

example KMV use their HANK model to argue that it yields higher total effect of monetary policy

changes (than RANK), and this is driven by "indirect", general-equilibrium forces; similar insights

apply to Auclert (2016) and Gornemann et al (2015). Bilbiie (2017) compares the aggregate

implications of the analytical HANK outlined here (and of TANK, also the focus of Debortoli and

Galí, 2017) with that of KMV, and calibrates the simple model to match the aggregate predictions

of the quantitative model. Particular values aside (see our discussion of Figure 1), a feature of the

quantitative model necessary to yield that amplification is (some version of) χ > 1.

Here, I use the analytical framework to illustrate the conditions for two other forms of am-

plification that have bene studied in this literature. The first is related to what Hall called the

"missing deflation puzzle", or the model’s ability to deliver deep recessions without deflation (as
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observed in the data). This is precisely the topic of an early HANK paper, Guerrieri and Loren-

zoni (2017), using an incomplete-markets model to obtain a deep recession driven by deleveraging

(while an essential part of their specific story, the source of the shock is immaterial for the point

I want to make here: amplification). The second pertains to fiscal multipliers, understood as the

positive effect on private consumption of an increase in public spending.

To illustrate these points in the context of the liquidity trap, consider augmenting the model by

assuming that the government buys an amount of goods Gt with zero steady-state value (G = 0)

and taxes all agents uniformly in order to finance this;18 straightforward derivation leads to the

modified aggregate Euler-IS curve (noticing that risk depends on aggregate private and public

demand):

ct = δθEtct+1 − θσ
1− λ

1− λχ (it − Etπt+1 − ρt) + θ
λζ

1− λχ (χ− 1) (gt − Etgt+1) (23)

+θζ (δ − 1)Etgt+1 + (θ − 1) gt,

where the new parameter ζ ≡ (1 + ϕ−1σ−1)
−1 governs the strength of the income effect relative

to substitution: it is 0 when labor supply is infinitely elastic and 1 (largest) when it is inelastic,

or when the income effect σ−1 is nil (as such, it is also the elasticity of H consumption to a

transfer). The static Phillips curve becomes πt = κct + ζκgt, which together with (23) and using

again the Eggertsson-Woodford structure for the process for both ρt and gt– absorbing Markov

chain with common persistence z of state (ρL, gL)– delivers the time-invariant equilibrium value

of consumption during the liquidity trap

cL =
1

1− ν0z
σθ

1− λ
1− λχρL +McgL, (24)

where Mc is the LT-consumption multiplier whose expression is (25) below.

Focus first on the magnitude of the LT-recession, the first term in (24). In RANK, a "deep

recession" in response to a financial disruption ρL is necessarily accompanied by a large deflation:

cL = σρL/ (1− z (1 + σκ)) can only be large in absolute value for large enough κ. Not in HANK:

through the amplification mechanisms emphasized above, there can be a deep recession even for

fixed prices κ = 0. Amplification– an LT recession deeper than in RANK– obtains if and only
if:

λ

1− λχ (χ− 1) + z (δ − 1) + 1− θ−1 > 0.

18The implicit redistribution of the taxation scheme used to finance the spending is of the essence for the effect
of the spending increase– see Bilbiie (2017) in the context of the analytical HANK: I abstract from that here by
assuming uniform taxation to isolate the pure multiplier effect. See Bilbiie, Monacelli, and Perotti (2013) for a
detailed analysis of the effects of redistribution/transfers in a TANK model, Oh and Reis (2012) for one of the
earliest HANK models focusing on transfers, Ferrière and Navarro (2018) for a HANK model with tax progressivity
and Hagedorn et al (2017) for fiscal multipliers in a HANK model.
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Notice that with acyclical risk θ = 1 the necessary and suffi cient condition for amplification is

countercyclical inequality χ > 1 and vice-versa.

Generally, as a direct consequence of our analysis above, amplification occurs through three

forces. First, the within-the-period amplification that amplifies changes in interest rates through

a New Keynesian Cross mechanism either through ( 1−λ
1−λχ) or directly through θ.

19 Second, the

intertemporal extension of that: the self-insurance channel, through which there is compounding

in the aggregate Euler equation (θδ > 1) which amplifies the effect of "news". Insofar as the

liquidity trap is expected to persist, bad news about future aggregate income reduce today’s

demand because they imply more need for self-insurance saving. Since future consumption in

states where the constraint binds over-reacts to bad "aggregate news" (countercyclical inequality),

or the risk of ending up in a "bad" state increases in a recession (countercyclical risk), households

internalize this by attempting to self-insuremore. And since saving needs to be zero in equilibrium,

households consume less and income falls to deliver this, thus magnifying the recession even

further. Third, the expected deflation channel : a shock that is expected to persist with z triggers

self-insurance because of expected deflation (κσθ 1−λ
1−λχ), which at the ZLB means an increase in

interest rate– so more saving and, since equilibrium saving is zero, less consumption and less

income. This last effect operates in the standard representative-agent model too, but here it is

amplified proportionally to θ 1−λ
1−λχ . Evidently, these conditions require the opposite of the no-

puzzles condition; in other words, in the region where the puzzles are resolved all these channels

imply, instead of amplification, dampening.20

Consider now the LT fiscal multiplier in HANK:

Mc ≡
1

1− ν0z

ζθ (χ− 1)
(1− z)λ+ z (1− s̃)

1− λχ + (θ − 1)︸ ︷︷ ︸
TANK + HANK AD

+ κζθσ
1− λ

1− λχz︸ ︷︷ ︸
RANK AS, E(π)

 . (25)

The last term is the by now well-understood expected-inflation channel that delivers high multi-

pliers in RANK, as emphasized by Eggertsson (2010), Christiano, Eichenbaum, and Evans (2011),

and Woodford (2011); if spending persists (z > 0) this creates expected inflation, which in a

liquidity trap reduces the real rate generating intertemporal substitution towards the present and

an expansion today. Insofar as the interest-elasticity can be amplified or dampened in HANK and

19This mechanism is also at play in Eggertsson and Krugman’s deleveraging-based model of a liquidity trap,
where it compounds with a debt-deflation channel. The borrowers whose constraint is binding at all times are,
effectively, hand-to-mouth (even though their income then comprises nominal financial income that I abstract from
and is at the core of Eggertsson and Krugman’s analysis).
20Turning the above logic over its head, in the dampening case (χ < 1) the LT-recession is decreasing with λ

and 1 − s: the more H agents and the more risk, the lower the elasticity to interest rates within the period, and
the lower the discount factor of the Euler equation δ– both of which lead to dampening (and increasingly so when
taken together, through the complementarity).
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TANK, this AS-channel is correspondingly amplified or dampened through both θ 1−λ
1−λχ and ν0.

But this is not the most important modification brought about by HANK and TANK; indeed,

positive multipliers can occur even with no AS-inflation channel (fixed prices κ = 0). The necessary

condition is, once more, with acyclical risk, countercyclical inequality– and vice-versa.

When inequality is countercyclical χ > 1, an increase in G, even with zero persistence, has a

demand effect that translates into an increase in labor demand, wages, the income of H, and so on:

the "new Keynesian cross" channel.21 If the fiscal stimulus is expected to persist (z > 0), there is

a multiplier due to self-insurance– as agents expect higher demand and higher aggregate income,

with χ > 1 they expect even higher income in the H state and thus less need to self-insure today.

Finally, if risk is countercyclical θ > 1, there is an independent multiplier through precautionary

saving: the increase in G decreases risk and, as agents reduce demand for self-insurance, boosts

private demand.

To summarize, all these forms of amplification that HANK models have been used for require
necessarily (considering the case of zero persistence of aggregate shocks and ζ = 1 for simplicity):

λ (χ− 1)

1− λχ + 1− θ−1 > 0; (26)

in other words, they require either countercyclical inequality (χ > 1), or countercyclical risk

θ > 1. But, as we have shown above, these features pose determinacy challenges and aggravate

the puzzles– hence the "Catch-22".

5.2 Cyclical Inequality and Risk, and the Catch-22

The Catch-22 is that, taking each of the two channels in isolation, the conditions needed to rule out

the puzzles are the opposite of the conditions needed to obtain (broadly speaking) amplification.

Does the addition of the two channels provide a way out of the Catch-22– ruling out the puzzles

while still delivering amplification of shocks and policies? Yes and no; Proposition 6 provides

the formal characterization underpinning the Leeper-style matrix presented in Table 1 in the

Introduction (that the reader may want to refer to), using the abbreviations introduced above

to refer to pro- or counter-cyclical inequality or risk (e.g. PICR stands for procyclical inequality

χ < 1 and countercyclical risk θ > 1, and so on).

Proposition 6 The equilibrium of the analytical HANK model under a peg features:

1. amplification and no puzzles (determinacy) if either 1.a CIPR and 1− s̃ < λ or 1.b.
PICR and 1− s̃ > λ, with χ ∈

(
χa, χnp

)
.

21This channel is at work in GLV’s (2007) earliest quantitative model on this topic (where it was nevertheless
convoluted with other channels), as well as in Bilbiie and Straub (2004), and Bilbiie, Meier and Mueller (2008)– all
in TANK; it is also at play in Eggertsson and Krugman’s (2012) borrower-saver model.
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2. puzzles (indeterminacy) and no amplification if 4.a CIPR and 1− s̃ > λ or 4.b. PICR
and 1− s̃ < λ, with χ ∈

(
χnp, χa

)
.

3. no puzzles (determinacy), but no amplification if either 2.a PIPR; or 2.b: (CIPR or
PICR) and χ < min

(
χa, χnp

)
;

4. amplification, but aggravated puzzles (indeterminacy) if either 3.a CICR; or 3.b
(CIPR or PICR) and χ > max

(
χa, χnp

)
The proof follows immediately by combining the amplification condition (26):

χ > χa ≡ 1 +
1− λ
λ

(1− θ) ,

with the no-puzzle condition (written for the case with fixed prices) δ < θ−1,22 or replacing the

expression for δ:

χ < χnp ≡ 1 +
(1− λ) (1− θ)

θ (1− s̃) + λ (1− θ)
and noting that the latter threshold is larger than the former, χnp > χa either, with procyclical

risk PR (θ < 1), if the level of risk is low enough 1− s̃ < λ; or with countercyclical risk CR (θ > 1),

if the level of risk is high enough 1− s̃ > λ. The four cases in the Proposition follow directly.

Figure 5 provides a quantitative illustration of Proposition 6 and thus a refinement of Table

1. It focuses on the more empirically realistic case whereby the inequality-adjusted risk is smaller

than the share of hand-to-mouth: the conditional, inequality-adjusted probability to become con-

strained 1− s̃ is smaller than the unconditional λ. Indeed, the former parameter is calibrated to
0.05 and the latter to 0.4. The Figure plots the two threshold functions for obtaining amplification

χa (θ) (solid) and ruling out puzzles χnp (θ) (dashed). They determine four regions corresponding

to the four cases in the Proposition, according to whether there is amplification (A) or not (nA),

and whether the puzzles are an equilibrium feature (P) or not (nP).

22The condition is necessary; suffi ciency with arbitrary stickiness requires δ < θ−1 − κσ 1−λ
1−λχ .
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Fig. 5: Cyclical Inequality and Risk: Amplification and Puzzles

The Catch-22 is resolved when the two conditions hold simultaneously: for combinations of

inequality and risk cyclicality χ and θ belonging to the (A,nP) region above the solid line and

under the dashed curve, that is with countercyclical inequality and procyclical risk CIPR, case 1.a

in the Proposition. Loosely speaking, the two channels must operate in opposite directions, and

the relative strength of the channel responsible for ruling out the puzzles must be high enough.

Specifically, in the CIPR case, the level of idiosyncratic risk needs to be low enough so that the

compounding implied by countercyclical inequality (which delivers the amplification) not dominate

the discounting effect of the procyclical-risk channel.23 Whereas in the PICR case there needs

to be a high enough level of idiosyncratic risk, making the discounting channel through cyclical

inequality strong enough to dominate the compounding implied by the countercyclical-risk channel

that delivers amplification.

In the (nA,P) region, the two channels do work in opposite directions (CIPR or PICR), but

the conditions on the level of risk fail and χnp < χa; with χ ∈
(
χnp, χa

)
, the economy thus ends

up in the region with puzzles but no amplification, Case 2 in the Proposition. Even if inequality

is countercyclical but not "enough" because risk itself is procyclical, the economy can end up in

the (nA,nP) region where puzzles are ruled out but there is no amplification either– case 3 in the

Proposition.

Problematically, furthermore, the economy ends up in the (A,P) region for a large parameter

region: even for procyclical inequality (risk), as long as risk (inequality) is countercyclical enough,

or when both channels are countercyclical (Case 4). Thereby, there is amplification of everything–

including of the puzzles– and determinacy with a Taylor rule becomes very hard to obtain.

23In the less likely case 1− s̃ > λ (not pictured) the figure becomes inverted: the dashed line is convex and the
no-Catch-22 (A,nP) area above the solid line and below the dashed curve is now in the lower right part of the
Figure, with countercyclical risk and procyclical inequality (Case 1.b in the Proposition).
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5.3 The Virtues of a Wicksellian Rule in HANK

Can a HANK model calibrated to deliver "amplification" (such as KMV, Gornemann et al, Guer-

rieri and Lorenzoni, Debortoli and Galí, and many others) do so without also amplifying the

NK puzzles, if the conditions of Proposition 6 fail– for instance, when both inequality and risk

are countercyclical? And what can the central bank do in such an economy to ensure equilib-

rium determinacy, given that the Taylor rule is usually a very bad prescription, according to our

HANK-Taylor Principle in Proposition 2 (see the right panel of Figure 1)– when for a standard

calibration, a central bank following the Taylor rule would need to change nominal rates by, say,

5 percent if inflation changed by one percent?

These questions are interrelated and one answer to both is the "Wicksellian" policy rule pro-

posed by Woodford (2003) and Giannoni (2014), of price level targeting:

it = ρt + φppt + i∗t (27)

with φp > 0, (28)

which the above authors originally demonstrated yields determinacy in RANK. This rule is espe-

cially powerful in HANK, as emphasized in the following Proposition.

Proposition 7 Wicksellian rule in HANK: In the HANK model with amplification and puz-
zles ν0 > 1, the Wicksellian rule (27) satisfying (28):

1. leads to a locally unique rational-expectations equilibrium (determinacy);

2. eliminates the FG puzzle, and

3. rules out neo-Fisherian effects.

Corollary 1 Wicksellian rule in RANK: The same Wicksellian rule ((27) satisfying (28))
eliminates the FG puzzle and rules out neo-Fisherian effects in the RANK model.

The proof is simple but instructive under static PC (4) (determinacy with NKPC (3) is proved

in Appendix D.4). Under the Wicksellian rule (27) the HANK model reduces, instead of one

difference equation such as (17), to a system of two equations. The first is obtained by replacing

in the aggregate Euler-IS (15) the static PC (4) and the policy rule (27):

ct = ν0Etct+1 − θσ
1− λ

1− λχ
(
φppt + i∗t

)
; (29)

and the second is the static PC rewritten in terms of the price level:

pt − pt−1 = κct. (30)
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That is, the model now boils down to a second-order difference equation obtained by combining

(29) and (30):

Etpt+1 −
[
1 + ν−1

0

(
1 + θσ

1− λ
1− λχφpκ

)]
pt + ν−1

0 pt−1 = θσ
1− λ

1− λχκν
−1
0 i∗t . (31)

Notice that the RANK model is nested here for λ = 0 (or χ = 1, the Campbell-Mankiw bench-

mark), which would yield a simplified version of Woodford and Giannoni’s analyses.

Recall that we are interested in the case whereby ν0 ≥ 1 (as we just saw, for ν0 < 1 there

there is determinacy under a peg in HANK and thus no puzzles). The model has a locally unique

equilibrium (is determinate) when equation (31) has one root inside and one outside the unit

circle. The characteristic polynomial is J (x) = x2 −
[
1 + ν−1

0

(
1 + θσ 1−λ

1−λχφpκ
)]
x + ν−1

0 where

by standard results, the roots’sum is 1 + ν−1
0

(
1 + θσ 1−λ

1−λχφpκ
)
and the product is ν−1

0 < 1. So

at least one root is inside the unit circle, and we need to rule out that both are; Since we have

J (1) = −ν−1
0 θσ 1−λ

1−λχφpκ and J (−1) = 2 + 2ν−1
0 + ν−1

0 θσ 1−λ
1−λχφpκ, the necessary and suffi cient

condition for the second root to be outside the unit circle is precisely (28)– coming from J (1) < 0

and J (−1) > 0.

To find the solution, denote the roots of the polynomial by x+ > 1 > x− > 0; the difference

equation is solved by standard factorization (see Appendix C.2 for details, including the exact

expressions for x±) obtaining, for consumption:

ct = −A (t)Et

∞∑
j=0

(
x−1

+

)j+1
i∗t+j + Ψt−1 (32)

where Ψt−1 is a weighted sum of past realizations of the shock and A (t) > 0 is a function only

of calendar date; both Ψt−1 and A (t) are spelled out in Appendix C.2 and are irrelevant for our

purpose because they are invariant to current and future shocks.

The effect of a one-time interest rate cut at t+ T is now:

∂ct

∂
(
−i∗t+T

) = A (t)
(
x−1

+

)T+1

which, since A (.) > 0 and x+ > 1, is a decreasing function of T: the FG puzzle disappears.

Likewise for neo-Fisherian effects: take an AR(1) process for i∗t with persistence µ as before;

the solution is now both 1. uniquely determined (by virtue of determinacy proved above) and

2. in line with standard logic– an increase in interest rates leads to a fall in consumption and

deflation in the short run:
∂ct
∂i∗t

= −A (t)
1

x+ − µ
,

which is negative as A (.) > 0 and x+ > 1 > µ. Notice that in the long-run, i.e. if there is a perma-
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nent change in interest rates, the economy moves to a new steady-state and the uncontroversial.

long-run Fisher effect applies as usual.

Notice that, as emphasized in the Corollary, the Wicksellian rule also cures the NK puzzles in

the (nested) RANK model (this follows immediately by replacing λ = 0 or χ = 1 above).

The intuition for these results is that, as we discussed above, the source of these puzzles is in-

determinacy under a peg; and a Wicksellian rule provides determinacy under a "quasi-peg". What

is needed is "some" (no matter how small) response to the price level– which nevertheless anchors

long-run expectations because agents know that under such a rule, bygones are not bygones and

some inflation will a fortiori imply deflation in the future. This finding is particularly important

HANK, for even under conditions whereby heterogeneity (HA) aggravates (instead of curing) NK

puzzles, adopting this rule still works and restores standard logic, thus resolving the "Catch-22".

Yet another option to obtain determinacy (and potentially solve the puzzles) is to resort to

fiscalist equilibria– the same way one does in the standard model, by introducing nominal gov-

ernment debt and a fiscal rule that is "active" in the sense of Leeper (1991), i.e. it does not ensure

that debt is eventually repaid for any possible price level (i.e., that the government debt equation

is a constraint)– see also Woodford (1996), and Cochrane (2017) for further implications.24

6 Conclusions

This paper bears some good news for the NK framework, then some bad news, and then some

good news again.

The first good news is that HANK models can cure the NK framework from a series of coun-

terfactual predictions,or "puzzles": the FG puzzle, neo-Fisherian effects, sunspot-driven LTs, as-

ymptotes and bifurcations in fundamental LT equilibria, and the paradox of flexibility. I find

the necessary and suffi cient conditions for this in an analytical framework that captures some key

mechanisms of richer HANK models, disentangling the two separate channels of cyclical inequality

and cyclical risk; while the analysis of the former is novel to this paper, the latter has been formal-

ized (albeit differently) by others including in the context of solving the FG puzzle, as reviewed

in detail in text. The conditions to cure the puzzles are that there should be some self-insurance

against idiosyncratic risk (a defining HANK feature) and either procyclical inequality (the income

of constrained hand-to-mouth households vary with aggregate income less than one-to-one) or

procyclical risk. Under these conditions, there is discounting in the aggregate Euler equation; if

this is enough to overturn the compounding of news that generates the NK puzzles in the first

place (through the interplay of aggregate supply and intertemporal substitution), it rules out the

24In an incomplete-markets economy, a further option to determine the price level exists, discussed by Hagedorn
(2017): the self-insurance equation defines a demand for nominal debt. If the government supplied that nominal
debt according to a rule that responds to the price level, the latter is determined without resorting to an interest-
rate rule. That is similar to the Wicksellian rule I propose, which specifies i = f (p) directly; it instead combines
demand for bonds Bd (i) with a supply rule Bs (p).
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NK puzzles by generating equilibrium discounting of news shocks.

The bad news is that, taking each of the two channels separately, the condition needed to solve

the puzzle (procyclicality) is precisely the opposite of the condition (countercyclicality) needed

for HANK models to deliver "amplification", or multipliers– which is what the majority of quan-

titative studies have used them for, exploiting a New Keynesian cross that is inherent in these

models. The news seems even worse: with countercyclicality (of either inequality, or risk) the NK

puzzles are in fact aggravated, and the Taylor Principle is vastly insuffi cient for determinacy (the

response necessary to ensure determinacy can become very large indeed).

This is an apparent Catch-22: how can there be amplification without puzzles in the NK

model? I provide two resolutions. First, keeping policy fixed an remaining in the realm of an

interest-rate peg, I derive the conditions under which the two channels going in opposite directions

(countercyclical inequality with procyclical risk, or vice-versa) are enough to rule out the puzzles

but preserve amplification of shocks and policies: we can eat our cake and have it too. The

conditions have an intuitive interpretation in terms of the relative strength of the two channels:

for instance, if countercyclical inequality is what delivers amplification and procyclical risk what

delivers enough discounting to rule out the puzzles, the level of risk should be small enough so that

the former channel does not imply too much AD compounding to undo the effect of the latter.

At this next level, however, there is a further uncomfortable observation: when both inequality

and risk are countercyclical, there is much AD amplification including of the puzzles; at the same

time, the requirement for a central bank to ensure determinacy with a Taylor rule is significantly

more stringent than merely being "active". In the final Proposition, I show that if the central bank

adopts a Wicksellian rule of price-level targeting (shown by Woodford (2003) and Giannoni (2014)

to deliver determinacy in RANK), this tension disappears: The HANK model is determinate and

suffers from no puzzles, even in the "amplification" region with countercyclical inequality and risk.

Other possible solutions to this Cornelian dilemma consist of extending the model by adding

either a "discounting" feature that independently solves the puzzles to an "amplifying" HANK,

or a feature that independently delivers amplification to a "discounting" HANK. In the former

category, puzzle solutions that rely on changing the information-expectation structure reviewed

in the Introduction seem like natural candidates.25 In the latter category, household preferences

with complementarity between consumption and hours, as in Bilbiie (2011, 2018) create a different

feedback loop between income and output; any demand shock that leads to an increase in income

also leads to an increase in hours worked and output if the cross-derivative between consumption

and hours is positive, thus delivering multipliers without affecting the logic that rules out the

puzzles emphasized here.

Lastly, my theoretical results can guide empirical work as to what are the key parameters that

empirical evidence should shed light on in the realm of models with heterogeneity. In particular,

25Other puzzle resolutions that do not relax rational expectations or perfect information, such as Cochrane (2017)
or Diba and Loisel (2017) may also deliver multipliers– but those studies do not focus on this question.
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given that existing evidence suggests that idiosyncratic risk is likely countercyclical (Storesletten,

Telmer, and Yaron, (2004); Guvenen, Ozkan, and Song (2014)), the paramount parameter pertains

to the cyclicality of inequality χ. The limited existing empirical evidence (Heathcote, Storesletten,

and Violante (2010)) seems to suggest that inequality in the US is likely countercyclical, too.

This points on the one hand, for the quantitative macroeconomist, to the urgency of estimating a

model where all these channels can be identified and disentangled, of which this paper’s is a simple

example. And on the other hand, for the policymaker, to the relative merits of a Wicksellian policy

of price-level targeting which would anchor expectations even if all the heterogeneity channels

worked to give amplification and make the economy very unstable.
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A Model Details

This Appendix presents in detail the equilibrium conditions of the model.

A.1 Aggregate Demand: Asset Markets Details

There is a mass 1 of households, indexed by j ∈ [0, 1], who discount the future at rate β and

derive utility from consumption Cj
t and disutility from labor supply N j

t . Households have access

to two assets: a government-issued riskless bond (with nominal return it > 0), and shares in

monopolistically competitive firms.

Households participate infrequently in financial markets. When they do, they can freely adjust

their portfolio and receive dividends from firms. When they do not, they can use only bonds to

smooth consumption. Denote by s the probability to keep participating in period t+1, conditional

upon participating at t (hence, the probability to switch to not participating is 1− s). Likewise,
call h the probability to keep non-participating in period t+ 1, conditional upon not participating

at t (hence, the probability to become a participant is 1 − h). The fraction of non-participating
households is λ = (1− s) / (2− s− h), and the fraction 1− λ participates.
Furthermore, households belong to a family whose head maximizes the intertemporal welfare

of family members using a utilitarian welfare criterion (all households are equally weighted), but

faces some limits to the amount of risk sharing that it can do. Households can be thought of as

being in two states or "islands"26. All households who are participating in financial markets are

on the same island, called S. All households who are not participating in financial markets are

on the same island, called H. The family head can transfer all resources across households within

the island, but cannot transfer some resources between islands.

Timing: At the beginning of the period, the family head pools resources within the island. The

aggregate shocks are revealed and the family head determines the consumption/saving choice for

each household in each island. Then households learn their next-period participation status and

have to move to the corresponding island accordingly, taking only bonds with them. There are no

transfers to households after the idiosyncratic shock is revealed, and this taken as a constraint for

the consumption/saving choice.

The flows across islands are as follows. The total measure of households leaving the H island

each period is the number of households who participate next period: λ (1− h). The measure of

households staying on the island is thus λh. In addition, a measure (1− s) (1− λ) leaves the S

island for the H island at the end of each period.

Total welfare maximization implies that the family head pools resources at the beginning of the

period in a given island and implements symmetric consumption/saving choices for all households

in that island. Denote as BS
t+1 the per-capita beginning-of-period-t + 1 bonds of S: after the

26This follows e.g. Challe et al (2017) and Bilbiie and Ragot (2016).
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consumption-saving choice, and also after changing state and pooling. The end-of-period-t per

capita real values (after the consumption/saving choice but before agents move across islands)

are ZS
t+1b̃

S
t+1. Denote as b

H
t the per capita beginning-of-period bonds in the H island (where the

only asset is bonds). The end-of-period values (before agents move across islands) are b̃Ht+1. We

have the following relations, after simplification (as stocks do not leave the S island, we can ignore

them):

(1− λ)BS
t+1 = (1− λ) sZS

t+1 + (1− λ) (1− s)ZH
t+1 (33)

λBH
t+1 = λ (1− h)ZS

t+1 + λhZH
t+1.

or rescaling by the relative population masses:

BS
t+1 = sZS

t+1 + (1− s)ZH
t+1 (34)

BH
t+1 = (1− h)ZS

t+1 + hZH
t+1.

The program of the family head is (with πt denoting the net inflation rate):

W
(
BS
t , B

H
t , ωt

)
= max

{CSt ,ZSt+1ZHt+1,CHt ,ωt+1}
(1− λ)U

(
CS
t

)
+ λU

(
CH
t

)
+βEtW

(
BS
t+1, B

H
t+1, ωt+1

)
subject to:

CS
t + ZS

t+1 + vtωt+1 = Y S
t +

1 + it−1

1 + πt
BS
t + ωt (vt +Dt) ,

CH
t + ZH

t+1 = Y H
t +

1 + it−1

1 + πt
BH
t (35)

ZS
t+1, Z

H
t+1 ≥ 0 (36)

and the laws of motion for bond flows relating the Zs to the Bs, (34). S-households (who own all

the firms) receive dividends Dt, and the real return on bond holdings. With these resources they

consume and save in bonds and shares. Equation (35) is the budget constraint of H. Finally (36)
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are positive constraints on bond holdings. Using the first-order and envelope conditions, we have:

U ′
(
CS
t

)
≥ βEt

{
vt+1 +Dt+1

vt
U ′
(
CS
t+1

)}
and ωt+1 = ωt = (1− λ)−1 ; (37)

U ′
(
CS
t

)
≥ βEt

{
1 + it

1 + πt+1

[
sU ′

(
CS
t+1

)
+ (1− s)U ′

(
CH
t+1

)]}
(38)

and 0 = ZS
t+1

[
U ′
(
CS
t

)
− βEt

{
1 + it

1 + πt+1

[
sU ′

(
CS
t+1

)
+ (1− s)U ′

(
CH
t+1

)]}]
U ′
(
CH
t

)
≥ βEt

{
1 + it

1 + πt+1

[
(1− h)U ′

(
CS
t+1

)
+ hU ′

(
CH
t+1

)]}
(39)

and 0 = ZH
t+1

[
U ′
(
CH
t

)
− βEt

{
1 + it

1 + πt+1

[
(1− h)U ′

(
CS
t+1

)
+ hU ′

(
CH
t+1

)]}]
The first Euler equation corresponds to the choice of stock: there is no self-insurance motive,

for they cannot be carried to the H state: the equation is the same as with a representative

agent.27

The bond choice of S-island agents is governed by (38), which takes into account that bonds

can be used when moving to the H island. The third equation (39) determines the bond choice

of agents in the H island; both bond Euler conditions are written as complementary slackness

conditions.

With this market structure, the Euler equations (38) and (39) of the same form as in fully-

fledged incomplete-markets model of the Bewely-Huggett-Aiyagari type. In particular, the prob-

ability 1 − s measures the uninsurable risk to switch to a bad state next period, risk for which
only bonds can be used to self-insure– thus generating a demand for bonds for "precautionary"

purposes.

Two more assumptions deliver our simple equilibrium representation. First, we focus on equi-

libria where (whatever the reason) the constraint of H agents always binds and their Euler "equa-

tion" is in fact a strict inequality (for instance, because the shock is a "liquidity" or impatience

shock making them want to consume more today, or because their average income in that state

is lower enough than in the S state– as would be the case if average profits were high enough; or

simply because of a technological constraint preventing them from accessing any asset markets).

Second, we assume that even though the demand for bonds from S is well-defined (the con-

straint is not binding), the supply of bonds is zero– so there are no bonds traded in equilibrium.

Introducing public debt has a series of interesting implications best studied separately.

Under these assumptions the only equilibrium condition from this part of the model is the

Euler equation for bonds of agent S. The Euler equation of shares simply determines the share

27As households pool resources when participating (which would be optimal with t=0 symmetric agents and
t=0 trading), they perceive a return conditional on participating next period. This exactly compensates for the
probability of not participating next period, thus generating the same Euler equation as with a representative
agent.
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price vt, and the fact that H’s constrain binds implies that they are hand-to-mouth CH
t = Y H

t .

A.2 Aggregate Supply: New Keynesian Phillips Curve

The intermediate goods producers solve:

max
Pt(k)

E0

∞∑
t=0

QS
0,t

[(
1 + τS

)
Pt(k)Yt(k)−WtNt(k)− ψ

2

(
Pt(k)

P ∗∗t−1

− 1

)2

PtYt

]
,

where I consider two possibilities for the reference price level P ∗∗t−1, with respect to which it is

costly for firms to deviate. In the first scenario, this is the aggregate price index Pt−1 which small

atomistic firms take as given– this delivers the static Phillips curve. In the second, P ∗∗t−1 is firm k’s

own individual price as in standard formulations. QS
0,t ≡ βt

(
P0C

S
0 /PtC

S
t

)σ−1
is the marginal rate

of intertemporal substitution of participants between times 0 and t, and τS the sales subsidy. Firms

face demand for their products from two sources: consumers and firms themselves (in order to pay

for the adjustment cost); the demand function for the output of firms z is Yt(z) = (Pt(z)/Pt)
−ε Yt.

Substituting this into the profit function, the first-order condition is, after simplifying, for each

case:

Static PC case P ∗∗t−1 = Pt−1

0 = Q0,t

(
Pt(k)

Pt

)−ε
Yt

[(
1 + τS

)
(1− ε) + ε

Wt

Pt

(
Pt(k)

Pt

)−1
]
−Q0,tψPtYt

(
Pt(k)

Pt−1

− 1

)
1

Pt−1

In a symmetric equilibrium all producers make identical choices (including Pt(k) = Pt); defining

net inflation πt ≡ (Pt/Pt−1)− 1, this becomes:

πt (1 + πt) =
ε− 1

ψ

[
ε

ε− 1
wt −

(
1 + τS

)]
,

loglinearization of which delivers the static PC in text (4).

Dynamic PC case P ∗∗t−1 = Pt−1; the first-order condition is

0 = Q0,t

(
Pt(k)

Pt

)−ε
Yt

[(
1 + τS

)
(1− ε) + ε

Wt

Pt

(
Pt(k)

Pt

)−1
]

−Q0,tψPtYt

(
Pt(k)

Pt−1(k)
− 1

)
1

Pt−1(k)
+

+ Et

{
Q0,t+1

[
ψPt+1Yt+1

(
Pt+1(k)

Pt(k)
− 1

)
Pt+1(k)

Pt(k)2

]}
In a symmetric equilibrium, using again the definition of net inflation πt, and noticing thatQ0,t+1 =
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Q0,tβ
(
CS
t /C

S
t+1

)σ−1
(1 + πt+1)−1 , this becomes:

πt (1 + πt) = βEt

[(
CS
t

CS
t+1

)σ−1
Yt+1

Yt
πt+1 (1 + πt+1)

]
+

+
ε− 1

ψ

[
ε

ε− 1
wt −

(
1 + τS

)]
,

the loglinearization of which delivers the NKPC in text (3). Notice that this nests the static PC

when the discount factor of firms β = 0.

B Cyclical Idiosyncratic Risk

The self-insurance equation when the probability depends on aggregate demand (today) is

(
CS
t

)− 1
σ = βEt

{
1 + it

1 + πt+1

[
s (Ct)

(
CS
t+1

)− 1
σ + (1− s (Ct))

(
CH
t+1

)− 1
σ

]}
. (40)

We loglinearize this around a steady-state with inequality; in the context of our model, that

requires assuming that stead-state fiscal redistribution is imperfect and that a sales subsidy does

not completely undo market power (generating zero profits). In particular, we focus on a steady

state with no subsidy, so that the profit share is D/C = 1/ε and the labor share WN/C =

(ε− 1) /ε. Under the same arbitrary redistribution scheme, the consumption shares of each type

are respectively

CH

C
=

WN + τD

λ
D

C
= 1− 1

ε

(
1− τD

λ

)
CS

C
=

WN + 1−τD
1−λ D

C
= 1 +

1

ε

λ

1− λ

(
1− τD

λ

)
>
CH

C
iff τD < λ.

Denoting steady-state inequality CS

CH
≡ Γ we loglinearize around a steady state:

1 = β (1 + r)
[
s (C) + (1− s (C)) Γ

1
σ

]
, (41)

where I restrict attention to cases with positive real interest-rate r (the topic of "secular stagnation"

in this framework is interesting in its own right– it can occur for high enough risk and high enough

inequality). Loglinearization delivers, denoting by rt the ex-ante real interest rate for brevity, and

the steady-state value of the probability by s (C) = s and its elasticity relative to the cycle

(consumption) by η = − s′(C)C
1−s(C)

:

cSt = −σrt + β (1 + r) sEtcSt+1 + β (1 + r) (1− s) Γ
1
σEtcHt+1 + σβ (1 + r) η (1− s)

(
1− Γ

1
σ

)
ct
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Replacing β (1 + r)

cSt = −σrt +
s

s+ (1− s) Γ
1
σ

EtcSt+1 +
(1− s) Γ

1
σ

s+ (1− s) Γ
1
σ

EtcHt+1 + η
σ (1− s)

(
1− Γ

1
σ

)
s+ (1− s) Γ

1
σ

ct

Replace the consumption functions of H and S and using the notation for θ we obtain the

equation in text 15.

B.1 Future aggregate demand

For the case where the probability depends on future aggregate demand, the aggregate Euler-IS is

cSt = −σrt +
s

s+ (1− s) Γ1/σ
EtcSt+1 +

(1− s) Γ1/σ

s+ (1− s) Γ1/σ
EtcHt+1 + η

σ (1− s)
(
1− Γ1/σ

)
s+ (1− s) Γ1/σ

Etct+1

which replacing individual consumption levels as function of aggregate becomes

cSt = −σ 1− λ
1− λχrt +

(
1 +

(1− s)
1− λχ

Γ1/σ (χ− 1)− ησ (1− λ)
(
Γ1/σ − 1

)
s+ (1− s) Γ1/σ

)
Etct+1

Like in the model where risk depends on current demand, there can be discounting as long as risk

is procyclical enough η > Γ1/σ(χ−1)

σ(1−λ)(Γ1/σ−1)
. But unlike the previous model, the contemporary AD

elasticity to interest rates is unaffected by the cyclicality of risk (this is thus similar to Acharya

and Dogra (2018)).

C Derivations for the Loglinearized Analytical HANK Model

This section outlines the derivations for Neo-Fisherian effects under indeterminacy, and for solving

the model under a Wicksellian rule.

C.1 Neo-Fisherian Effects

We want to solve the equation (17) with ν > 1 (example: peg in the RANK model).

ct = νEtct+1 − σ
1− λ

1− λχθi
∗
t , (42)

We cannot solve it forward, and to solve it backward me miss an initial condition (c is not a state

variable); I follow Lubik and Schorfheide (2004) and define the new expectation variable /Et ≡
Etct+1 and the expectation (forecast) error as: ηt ≡ ct− /Et−1 indicating how far off the prediction

using yesterday’s information set is from the actual, realized value. Using these definitions, we
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can rewrite our equation as:

/Et = ν−1 /Et−1 + ν−1ηt + ν−1σ
1− λ

1− λχθi
∗
t (43)

We can try to solve equation (43) backwards (use repeated substitution or lag operators L, or

whatever else) to get:

/Et =
ν−1

1− ν−1L

(
ηt + σ

1− λ
1− λχθi

∗
t

)
=

∞∑
j=0

ν−j−1

(
ηt−j + σ

1− λ
1− λχθi

∗
t−j

)
. (44)

But, of course, we have not really solved for anything: expectations /Et are a function of past and

present expectation errors ηt−j. The problem is that when ν > 1 and ct is not a predetermined

variable, we have no restrictions on either expectations or expectation errors that we can use

so solve our equation: the classic problem of equilibrium indeterminacy (the ’solution’(44)

expresses an endogenous variable, /Et as a function of another endogenous variable ηt). There

is an infinity of equilibria, indexed by the expectation errors. Since expectation errors are not

determined, sunspots (shocks that are completely extrinsic to the model) can have real effects.

Since there is nothing to pin down expectation errors ηt, we can assume that it takes the

arbitrary (but linear, since the model is linear) form:

ηt = mi∗t + st (45)

i.e. that expectation errors are an arbitrary combination of fundamental uncertainty (i∗t ) and

purely non-fundamental uncertainty: sunspots st. Notably, m is an arbitrary constant. Picking

one particular equilibrium path among the infinite possibilities boils down to: (i) specifying the

stochastic properties of st and (ii) picking a value form. The latter emphasizes that indeterminacy

affects the propagation of fundamental shocks in an arbitrary way dictated by the value of m even

when sunspot shocks are absent, st = 0.

One equilibrium advocated by McCallum (1998) is obtained by the minimum-state variable

MSV criterion; in this simple example, this amounts to setting st = 0 and ruling out endogenous

persistence (this is what Lubik and Schorfheide call the "continuity" solution: impulse response

functions to fundamental shocks are continuous when crossing between the determinacy and inde-

terminacy regions). Under this restriction we have that if the fundamental shock persistence is µ∗,

so is the endogenous persistence, Etct+1 = µ∗ct; to see what this requires in our context, rewrite

the equation using the definition of η:

ct+1 = ν−1ct + ηt+1 + ν−1σ
1− λ

1− λχθi
∗
t (46)

It is immediately apparent that the restriction m = σ 1−λ
1−λχθ gives the same impulse response as
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under determinacy. Under these assumptions, we recover the particular solution given in text for

a peg with persistence µ.

C.2 Ruling out puzzles with Wicksellian rule

Etpt+1 −
[
1 + ν−1

0

(
1 + θσ

1− λ
1− λχφpκ

)]
pt + ν−1

0 pt−1 = θσ
1− λ

1− λχκν
−1
0 i∗t . (47)

Notice that the RANK model is nested here for λ = 0 (or χ = 1, the Campbell-Mankiw bench-

mark), which would yield a simplified version of Woodford and Giannoni’s analyses.

Recall that we are interested in the case whereby ν0 ≥ 1 (as we just saw, for ν0 < 1 there

there is determinacy under a peg in HANK and thus no puzzles). The model has a locally unique

equilibrium (is determinate) when equation (31) has one root inside and one outside the unit

circle. The characteristic polynomial is J (x) = x2 −
[
1 + (ν0)−1

(
1 + θσ 1−λ

1−λχφpκ
)]
x+ ν−1

0

This completes the proof of Proposition 7. The roots of the characteristic polynomial are

x± =
1 + ν−1

0

(
1 + θσ 1−λ

1−λχφpκ
)
±
√[

1 + ν−1
0

(
1 + θσ 1−λ

1−λχφpκ
)]2

− 4ν−1
0

2
x+ > 1 > x− > 0

Factorizing the difference equation (31):

(
L−1 − x−

) (
L−1 − x+

)
pt−1 = θσ

1− λ
1− λχκν

−1
0 i∗t

we obtain:

pt = x−pt−1 − θσ
1− λ

1− λχκν
−1
0 x−1

+

1

1− (x+L)−1 i
∗
t

= x−pt−1 − θσ
1− λ

1− λχκν
−1
0 x−1

+

∞∑
j=0

x−j+ i∗t+j

Let ∆t+j ≡ −θσ 1−λ
1−λχκν

−1
0 x−1

+ i∗t+j denote the rescaled interest rate cut :

pt = xt+1
− p−1+

[ ∞∑
j=0

(x+)−j ∆t+j + x−

∞∑
j=0

(x+)−j ∆t−1+j + ...+ xt−1
−

∞∑
j=0

(x+)−j ∆1+j + xt−

∞∑
j=0

(x+)−j ∆j

]

Normalizing initial value to zero (since x− < 1 it vanishes when t goes to infinity), the solution is

made of a forward and a backward component:

pt =
1−

(
x−x

−1
+

)t+1

1− x−x−1
+

∞∑
j=0

(
x−1

+

)j
∆t+j +

t−1∑
k=0

x1+k
−

1−
(
x−x

−1
+

)t−k
1− x−x−1

+

∆t−1−k
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Lagging it once and taking the first difference we obtain the solution for inflation:

πt =
1−

(
x−x

−1
+

)t+1

1− x−x−1
+

∞∑
j=0

(
x−1

+

)j
∆t+j −

1−
(
x−x

−1
+

)t
1− x−x−1

+

∞∑
j=0

(
x−1

+

)j
∆t−1+j

+

t−1∑
k=0

x1+k
−

1−
(
x−x

−1
+

)t−k
1− x−x−1

+

∆t−1−k −
t−2∑
k=0

x1+k
−

1−
(
x−x

−1
+

)t−1−k

1− x−x−1
+

∆t−2−k

= A (t)
∞∑
j=0

(
x−1

+

)j
∆t+j + Ψt−1.

where A (t) ≡ 1−(x−1+ )+(x−)t(x−1+ )
t+1−(x−x−1+ )

t+1

1−x−x−1+
(if we put ourselves at time 0 this simply becomes

A (0) = θσ 1−λ
1−λχν

−1
0 ), while in Ψt−1 we grouped all terms that consist of lags of ∆t (∆t−1 and

earlier) which are predetermined at time t and will not be used in any of the derivations of interest

here– where we consider shocks occurring at t or thereafter. This delivers equation (32) in text.

D The analytical-HANK 3-equation model with NKPC

This section derives the same results as in text but with the forward-looking NKPC (3).

D.1 The HANK Taylor Principle: Equilibrium Determinacy with Interest Rate
Rules

Determinacy can be studied by standard techniques, extending the result in text (there will
now be two eigenvalues). Necessary and suffi cient conditions are provided i.a. in Woodford

(2003) Proposition C.1. With the Taylor rule (2), the system becomes
(
Etπt+1 Etct+1

)′
=

A
(
πt ct

)′
with transition matrix:

A =

[
β−1 −β−1κ

δ−1σ 1−λ
1−λχ

(
φπ − β−1

)
δ−1

(
θ−1 + σ 1−λ

1−λχβ
−1κ
) ]

with determinant detA = β−1δ−1
(
θ−1 + κσ 1−λ

1−λχφπ

)
and trace trA = β−1+δ−1

(
θ−1 + σ 1−λ

1−λχβ
−1κ
)
.

Determinacy can obtain in either of two cases. Case 2. (detA−trA < −1 and detA+trA < −1)

can be ruled based on sign restrictions. Case 1. requires three conditions to be satisfied jointly:

detA > 1; detA− trA > −1; detA+ trA > −1

The third condition is always satisfied under the sign restrictions, so the necessary and suffi cient
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conditions are:

φπ > 1 +
(δθ − 1) (1− β)

θκσ 1−λ
1−λχ

φπ > max

(
βδθ − 1

θκσ 1−λ
1−λχ

, 1 +
(1− β) (δθ − 1)

θκσ 1−λ
1−λχ

)
(48)

The second term is larger than the first iff δ <
κσ 1−λ

1−λχ+θ−1β

2β−1
. Condition (48) thus generalize the

HANK Taylor principle to the case of forward-looking Phillips curve.

D.2 Ruling out FG Puzzle and neo-Fisherian Effects

The analogous of Proposition 4 for the case with NKPC (3) is:

Proposition 8 The analytical HANK model (with (3)) under a peg:

1. is locally determinate

2. solves the FG puzzle ( ∂2ct
∂(−i∗t+T )∂T

< 0) and

3. rules out neo-Fisherian effects (∂ct
∂i∗t

< 0 and uniquely determined)

if and only if: θδ + θσ
1− λ

1− λχ
κ

1− β < 1,

Notice that the condition nests the one of Proposition 4 when β → 0. Indeed, it has exactly

the same interpretation with θδ + θσ 1−λ
1−λχ

κ
1−β being the "long-run" effect of news, and

κ
1−β being

the slope of the long-run NKPC.

Point 1. (determinacy under a peg with NKPC) follows directly from (48): a peg is suffi cient

if both θδ < β−1 and 1 + (1−β)(θδ−1)

κθσ 1−λ
1−λχ

< 0, the latter implying θδ < 1 − κ
1−βθσ

1−λ
1−λχ < β−1, which

delivers the threshold in the Proposition.

Point 2 requires solving the model; focusing therefore on the case where the condition holds,

and the model is determinate under a peg, we rewrite the model in forward (matrix) form as:(
πt

ct

)
= A−1

(
Etπt+1

Etct+1

)
− θσ 1− λ

1− λχ

(
κ

1

)
i∗t (49)

where

A−1 =

(
β + κθσ 1−λ

1−λχ κθδ

θσ 1−λ
1−λχ θδ

)

is the inverse of matrix A defined above under a peg φ = 0. To find the elasticity of
(
πt ct

)′
to an interest rate cut at T , −i∗t+T we iterate forward (49) to obtain θσ 1−λ

1−λχ (A−1)
T

(
κ

1

)
. But
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notice that we know by point 1 that the eigenvalues of A are both outside the unit circle; it follows

by standard linear algebra results that the eigenvalues of A−1 are both inside the unit circle and

therefore (A−1)
T is decreasing with T . (the eigenvalues to the power of T appear in the Jordan

decomposition used to compute the power of A−1). This proves that the FG puzzle is eliminated.

Point 3 requires computing the equilibrium given an AR1 interest rate with persistence µ as

before Eti∗t+1 = µi∗t ; since we are in the determinate case, the equilibrium is unique and there is

no endogenous persistence, so the persistence of endogenous variables is equal to the persistence

of the exogenous process. Replacing Etct+1 = µct and Etπt+1 = µπt in (49) we therefore have:(
πt

ct

)
= −θσ 1− λ

1− λχ
(
I − µA−1

)−1

(
κ

1

)
i∗t .

Computing the inverse we obtain

(
I − µA−1

)−1
=

1

det

[
1− θδµ κθδµ

θσ 1−λ
1−λχµ 1−

(
β + θσ 1−λ

1−λχκ
)
µ

]
,

where det ≡ µ2βθδ − µ
(
θδ + θσ 1−λ

1−λχκ+ β
)
µ+ 1. Replacing in the previous equation, differenti-

ating, and simplifying, the effects are:(
∂πt
∂i∗t
∂ct
∂i∗t

)
= −θσ 1− λ

1− λχ
1

det

(
κ

1− µβ

)
Therefore, neo-Fisherian effects are ruled out iff det > 0, i.e.:

θδ <
1− βµ− θσ 1−λ

1−λχκµ

µ (1− βµ)
.

But this is always satisfied under the condition in the proposition (for determinacy under a peg)

θδ < 1 − θσ 1−λ
1−λχκ

1−β ≤ 1−βµ−θσ 1−λ
1−λχκµ

µ(1−βµ)
where the second inequality can be easily verified (it implies

[(1− βµ) (1− β) + βθσκµ] (1− µ) ≥ 0).

D.3 Liquidity trap and FG

Under the Markov chain structure used in text, we can use the same solution method to obtain

the LT equilibrium under forward guidance (which evidently nests the LT equilibrium without

FG) . Using the notations:

κz ≡
κ

1− βz ;κq ≡
κ

1− βq ;κzq ≡
κ

(1− βq) (1− βz)
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ν0z ≡ θδ + θσ
1− λ

1− λχκz; ν0q ≡ θδ + θσ
1− λ

1− λχκq

ν0zq ≡ θδ + θσ
1− λ

1− λχκzq

the equilibrium is:

cF =
1

1− qν0q

θσ
1− λ

1− λχρ; (50)

cL =
(1− p) qν0zq

(1− qν0q) (1− zν0z)
θσ

1− λ
1− λχρ+

1

1− zν0z

θσ
1− λ

1− λχρL,

and πF = κqcF , πL = β (1− z) qκzqcF + κzcL.

D.4 Determinacy with Wicksellian rule and NKPC

Rewrite the system made of (14), (3) and the definition of inflation as (ignoring shocks):

ct = θδEtct+1 − θσ
1− λ

1− λχφppt + θσ
1− λ

1− λχEtπt+1

πt = βEtπt+1 + κct

pt = πt + pt−1

Substituting and writing in canonical matrix form
(
Etct+1 Etπt+1 pt

)′
= A

(
ct πt pt−1

)′
with transition matrix A given by

A =


δ−1

(
θ−1 + β−1σ 1−λ

1−λχκ
)

δ−1σ 1−λ
1−λχ

(
φp − β−1

)
δ−1σ 1−λ

1−λχφp

−β−1κ β−1 0

0 1 1

 .

We can apply Proposition C.2 in Woodford (2003, Appendix C): determinacy requires two roots

outside the unit circle and one inside. The characteristic equation of matrix A is:

J (x) = x3 + A2x
2 + A1x+ A0 = 0

with coeffi cients:

A2 = − 1

β
− 1

δ

(
σκ

β

1− λ
1− λχ + θ−1

)
− 1 < 0

A1 =
1

β
+

1

δ

[
σκ

β

1− λ
1− λχ

(
1 + φp

)
+ θ−1

(
1 +

1

β

)]
> 0

A0 = − 1

βθδ
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To check the determinacy conditions, we first calculate:

J (1) = 1 + A2 + A1 + A0 =
1

δ

σκ

β

1− λ
1− λχφp > 0

J (−1) = −1 + A2 − A1 + A0

= −2− 2

β
− 1

δ

[
2
σ 1−λ

1−λχκ

β
+
σ 1−λ

1−λχκ

β
φp + θ−1

(
2 +

2

β

)]
< 0

Since J (1) > 0 and J (−1) < 0 we are either in case Case II or Case III in Woodford Proposition

C.2;

Case III in Woodford implies that φp > 0 is suffi cient for determinacy if the additional condition

is satisfied:

A2 < −3→ δ <
σ 1−λ

1−λχκ+ θ−1β

2β − 1
. (51)

This is a fortiori satisfied in RANK (and delivers determinacy there), but not here with θδ > 1.

Therefore, we also need to check Case II in Woodford and to that end we need to check the

additional requirement (C.15) therein:

A2
0 − A0A2 + A1 − 1 > 0,

which replacing the expressions for the Ais delivers:

φp >
(1− β) (θδ − 1) + θσ 1−λ

1−λχκ

σ 1−λ
1−λχθκθδβ

(1− θδβ)

Since the ratio is positive, this requirement is only stronger than the already assumed φp > 0

when

θδ < β−1; (52)

It can be easily checked that the δ threshold 52 is always smaller than the threshold 51; therefore,

whenever θδ < β−1, Case III applies and φp > 0 is suffi cient for determinacy. While when 51 fails

(for large enough δ or θ), Case II applies and φp > 0 is still suffi cient for determinacy.
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