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Abstract

We develop a framework for measuring biases in expectation formation. The
basic insight is that under- and overreaction to new information is identified by
the impulse response function of forecast errors. This insight leads to a simple
and widely applicable measurement procedure. The procedure yields estimates of
under- and overreaction to new information at different horizons. Our framework
encompasses all major models of expectations, sheds light on existing approaches
to measuring biases, and provides new empirical predictions. In an application to
inflation expectations, we find that forecasters underreact to aggregate shocks but
overreact to idiosyncratic shocks.
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1 Introduction

There is ample evidence that subjective expectations deviate from simple forms of ra-
tional expectations.1 However, there is little agreement on how subjective expectations
are actually formed. The lack of consensus has led to a proliferation of models, some of
them taking very different views on expectation formation. For instance, much research
in macroeconomics has focused onmodels featuring underreaction to new information.2

At the same time, many prominent models in finance exhibit overreaction.3 Even some
of the empirical evidence seems conflicting, with some findings supporting underreac-
tion and others more consistent with overreaction.4

Part of the reason for the divergent views has to do with the lack of a general mea-
surement framework. By this we mean clear definitions for what terms like under- and
overreaction mean as well as empirical measures that are tightly linked to these theo-
retical concepts. In the absence of such a framework, empirical work has resorted to
either reduced-form approaches that can be difficult to interpret, or methods relying on
restrictive assumptions.

Our goal is to provide a measurement framework that fills this gap. We start with a
natural definition of under- and overreaction in expectations:

An agent is said to underreact to a shock when forming expectations about
some variable xt if the agent perceives the impact of a shock to xt to be
smaller, in absolute terms, than it actually is. If the agent perceives the
impact to be larger than it actually is, the agent is said to overreact.

The definition can be cast in terms of impulse response functions (IRFs). Underreac-
tion to news at some horizon is equivalent to the perceived IRF being smaller than than
the actual IRF at a particular lag. We show that the definition is reasonable in the sense
that models commonly thought to exhibit under- or overreaction indeed do so according
to our definition.
1 For surveys, see Pesaran and Weale (2006, Section 5) and Manski (2018). Coibion, Gorodnichenko,
and Kamdar (2018) provide a review focused on inflation expectations.

2 Examples include sticky information (Mankiw and Reis, 2002), rational inattention (Sims, 2003;
Maćkowiak and Wiederholt, 2009), imperfect information (e.g., Lucas, 1973; Woodford, 2003), and
sparsity-based models of limited attention (Gabaix, 2014, 2017b, 2018).

3 Examples include diagnostic expectations (Gennaioli and Shleifer, 2010; Bordalo, Gennaioli, and
Shleifer, 2018b), extrapolative expectations (e.g., Cutler, Poterba, and Summers, 1990; DeLong,
Shleifer, Summers, and Waldmann, 1990; Barberis, Greenwood, Jin, and Shleifer, 2015), and over-
confidence (e.g., Daniel, Hirshleifer, and Subrahmanyam, 1998; Odean, 1998).

4 An example is given by De Bondt and Thaler (1990) (overreaction) and Abarbanell and Bernard (1992)
(underreaction) for the case of stockmarket analysts. See also Bouchaud, Krüger, Landier, and Thesmar
(2018) and Bordalo, Gennaioli, La Porta, and Shleifer (2017).
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Figure 1: An example of impulse response functions (IRFs) of forecast errors corresponding to unbiased
reaction to news as well as under- and overreaction.

The main insight of the paper is that there is a close link between under- and over-
reaction and the IRF of forecast errors. Forecast errors, by definition, are equal to the
realized value less the forecast. The IRF of forecast errors, then, is given by the true IRF
of the variable minus the IRF as it is perceived by the agent. The IRF of forecast errors
therefore directly corresponds to our definitions of under- and overreaction. We formal-
ize this notion by defining bias coefficients as the difference between the perceived and
actual IRFs. The key theoretical result is that these bias coefficients are identified from
the IRF of forecast errors.

The bias coefficients measure under- and overreaction to news at various horizons.
As a result, our framework recovers the entire term structure of biases in expectations.
This feature distinguishes our framework from previous approaches in the literature. As
we show, failing to disentangle biases at various horizons can lead to incorrect conclu-
sions about whether agents under- or overreact to new information.

To gain intuition about our approach, imagine an analyst predicting future inflation.
Suppose that because of an oil price shock, inflation in the current quarter is higher than
was expected by the analyst. If the analyst reacts to the shock in an unbiased way, the
forecast error in the current quarter should not be predictive of forecast errors in the fu-
ture. In the absence of any systematic bias, the only reason for making a forecast error
in the first place is the realization of a shock, and shocks are by definition unpredictable.
However, suppose that the analyst tends to underreact to news. Since inflation is persis-
tent, a positive forecast error today implies that the forecast error next quarter is likely
to again be positive. In contrast, if the analyst overreacts to the higher-than-expected
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inflation and makes a very high forecast, inflation in the next quarter will on average be
lower than anticipated. With overreaction, a positive forecast error in the current quarter
is associated with negative forecast errors in the future.

The IRFs of forecast errors that result from such expectations are plotted in Figure 1.
With unbiased reaction to news, the initial shock to forecast errors dies out immediately,
and the IRF is zero for all subsequent periods. With underreaction, the IRF is positive,
and the shock decays slowly. With overreaction, on the other hand, the IRF is negative.
More generally, the IRF of forecast errors may, for example, first be negative and then
turn positive, corresponding to overreaction to recent news and underreaction to distant
news.

This basic insight leads to a simple and widely applicable measurement procedure
which boils down to estimating the IRF of forecast errors. The measurement procedure
has several attractive features. First, it does not require precise knowledge of the true
data-generating process. Second, the procedure is straightforward to apply and can be
used in a variety of empirical settings. These include both experimental and observa-
tional data, individual- and consensus-level forecasts, and forecasts of various horizons.
The IRF of forecast errors can be estimated using a variety of existing methods, depend-
ing on the application. The IRF then yields a set of estimated bias coefficients. These
coefficients measure under- and overreaction to news at various horizons, thereby esti-
mating the whole term structure of biases. Since the IRF can be estimated using flexible
estimation techniques, biases can be measured without imposing strong parametric re-
strictions.

The data requirements for estimating biases depend on howmany shocks are present.
When a single shock is driving the variable being forecast, bias coefficients can be es-
timated with data on forecasts and realizations only. When multiple shocks are present,
additional information is necessary for identification, as is standard in multivariate set-
tings.

With multiple shocks present, we distinguish between two types of bias coefficients.
Composite bias coefficients provide a summary measure of how the agent reacts to the
multiple shocks that are present. Shock-specific bias coefficients measure the agent’s
reaction to a particular shock. Composite bias coefficients can be estimated with data
on forecasts and realizations only. These coefficients are informative about under- and
overreaction at various horizons. However, they may be difficult to interpret if the agent
underreacts to some shocks while overreacting to others. In addition, they are silent
on what information the agent is under- or overreacting to. For example, composite
bias coefficients alone cannot say whether the agent underreacts to oil price shocks or
monetary surprises when forming inflation expectations.
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Identifying the shock-specific bias coefficients requires additional information. For-
tunately, these additional informational requirements are fairly low. Formally, if we
can identify how the variable being forecast responds to a particular shock, we can also
identify the associated shock-specific bias coefficients. For example, suppose we can
consistently estimate the effect of a monetary policy shock on inflation. Then, we can
also identify biases in the way the agent reacts to that monetary policy shock when form-
ing inflation expectations. This insight leads to an instrumental-variables procedure that
can be used for estimating the shock-specific bias coefficients in practice.

The estimated bias coefficients can have multiple economic interpretations. Non-
zero bias coefficients provide evidence of statistical bias and need not imply irrational-
ity. For example, underreaction could arise from informational frictions, strategic be-
havior as well as psychological biases. That said, if we choose a particular model of
expectations and postulate a process for the variable being forecast, it is straightfor-
ward to derive the implied bias coefficients. Comparing the estimated bias coefficients
to their theoretical counterparts provides a natural test of the model. Bias coefficients
also provide a natural set of moments to target for calibration exercises and structural
estimation.

We illustrate the methodology using inflation forecasts from the Survey of Profes-
sional Forecasters. To estimate composite bias coefficients without imposing strong
parametric assumptions, we employ local projections (Jordá, 2005). Composite bias
coefficients indicate underreaction for both individual as well as consensus forecasts.
The qualitative pattern for both sets of bias coefficients is very similar. However, bias
coefficients estimated from the individual forecasts are attenuated towards zero, sug-
gesting that expectations exhibit some forecaster-specific noise.

Looking at the individual forecasts more closely, we find that forecasters exhibit
overreaction to idiosyncratic shocks. We identify idiosyncratic shocks by using de-
viations of individual forecasts from the consensus forecast as an instrument in our
instrumental-variables procedure. The idiosyncratic shocks may represent forecaster-
specific information, overconfidence, or capture expectations that are inherently noisy.
Using the method of external instruments (Stock, 2008; Mertens and Ravn, 2013; Stock
and Watson, 2018), we find short lived (around one quarter) but statistically significant
overreaction. The fact that the reaction to idiosyncratic shocks is short lived, combined
with the previous findings on underreaction as measured by composite bias coefficients,
implies that forecasters underreact to aggregate shocks (i.e., shocks common to all fore-
casters such as monetary policy or oil price shocks). These findings are consistent with
the recent work of Broer and Kohlhas (2018) and Bordalo, Gennaioli, Ma, and Shleifer
(2018a) and highlight the need to distinguish how forecasters react to idiosyncratic and
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aggregate shocks.
Next, we illustrate how the procedure can be used to measure biases in reaction

to specific shocks. For this purpose, we use the Romer and Romer (2004) measure
of monetary surprises in an instrumental-variables estimation. We find that forecasters
underreact to monetary policy shocks, and the pattern of underreaction is consistent with
the impact of monetary policy shocks on actual inflation. Finally, we demonstrate the
flexibility of our method by showing how to obtain time- and state-dependent estimates
of biases. Our estimates indicate that forecasters are slow to react to time and state
dependence in actual inflation, again suggesting underreaction to aggregate shocks.

The existing literature on expectations is voluminous, and we refer to the surveys
cited above (Footnote 1) for comprehensive reviews. We are certainly not the first to
study the predictability of forecast errors. A key result in the literature on forecast eval-
uation is that for optimal one-step-ahead forecasts, forecast errors are white noise (see,
e.g., Diebold and Lopez, 1996).5 Our contribution is to show that the structure of pre-
dictability in forecast errors is informative about how expectations are formed. In his
pioneering work Muth (1961, pp. 321–322) already considered a model with potential
under- and overreaction to current news that is a special case of our theoretical frame-
work. However, Muth did not study how such biases may be estimated empirically.
The paper that is most closely related to our work is Coibion and Gorodnichenko (2012).
Their main empirical specification, in fact, is nested in our framework and can be under-
stood as the reduced-form equation of our instrumental-variables procedure. We discuss
certain advantages of our approach, especially the robustness against measurement er-
ror, in Section 2.3.1 after presenting the framework.

To our knowledge, the current paper is the first to provide an explicit framework
for measuring under- and overreaction in expectations. However, applied work has em-
ployed various reduced-form approaches to measure similar phenomena. Our frame-
work is helpful for understanding whether these approaches provide valid measures of
under- and overreaction, as we show in Section 2.3.2. Procedures commonly used in
practice—such as methods based on Mincer-Zarnowitz regressions, autocorrelations of
forecast errors, or forecast revisions as proxies for news—turn out to recover under- and
overreaction only under restrictive conditions. When these assumptions are violated,
different methods may yield different conclusions about the dominant form of bias, an
important concern in practice. A key problem with the existing approaches is that they
do not estimate the entire term structure of biases. As a result, underreaction at some
horizon can be conflated with overreaction at another. In some cases, reduced-form
5 Here, optimality is taken to mean minimization of mean squared error. The result does not generalize
to asymmetric loss functions; see Patton and Timmermann (2007) and references therein.
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results that are commonly interpreted as indicating underreaction are in fact consistent
with overreaction (and vice versa). For example, forecast errors may be positively auto-
correlated even when the agent exhibits overreaction, provided that the agent overreacts
to information at multiple lags.

Related issues have also been extensively studied outside economics, most promi-
nently in psychology. Findings in psychology exhibit a similar tension between under-
and overreaction. Early experimental studies of Bayesian updating found that subjects
often do not update enough (Edwards, 1968). Studies on belief persistence show that
people often hold on to incorrect beliefs (see, e.g., Nickerson, 1998, pp. 187–188). Con-
servatism bias and belief persistence are both forms of underreaction to new information.
However, other well-known findings in psychology are more consistent with overreac-
tion. For example, Kahneman and Tversky (1973) find that subjects fail to incorporate
base rates and the reliability of the available information when making predictions. The
famous hot-hand fallacy study of Gilovich, Vallone, and Tversky (1985) suggests that
people overreact to noise.6

The methodology is developed in Section 2. In Section 3 we show how existing
models can be mapped into our framework. In Section 4 we apply the method to data
on inflation forecasts from the Survey of Professional Forecasters. Section 5 concludes.

2 Methodology

2.1 Framework

We want to measure biases in how an agent forms expectations about some variable
xt. To build intuition, we first study the situation in which xt is driven by a single
shock. Then, we generalize to the case with multiple shocks. Throughout, we assume
that any deterministic component from xt is already removed, and xt is demeaned. In
the Appendix (Appendix C), we show how the framework can be extended to account
for multiple-step-ahead forecasts, heterogeneity in expectations, and state- and time-
dependent biases. There, we also discuss the impact of measurement error on our pro-
cedure as well as how individual forecasts can be used to measure the reaction of ex-
6 But see also Miller and Sanjurjo (2018). Other classic findings in psychology suggestive of overreac-
tion include illusion of choice (Langer, 1975) and illusory correlation (for a review, see Chapman and
Chapman, 1982); Andreassen (1987, p. 490) provides additional references highlighting the tension
between under- and overreaction in sequential settings. Griffin and Tversky (1992) argue that the con-
flicting results can be reconciled if people focus too much on how diagnostic a piece of information is
about a given hypothesis but place too little emphasis on the credence of that information. See Nisbett
and Ross (1980, especially Chapters 5, 7, and 8) for further discussion. Benjamin (2018) provides a
recent survey on related issues.

7



pectations to idiosyncratic shocks.

2.1.1 Single Shock

Suppose that xt follows a linear stationary process

xt =
+∞∑
ℓ=0

αℓεt−ℓ (1)

for some coefficients αℓ with α0 = 1 and a martingale difference sequence of shocks εt.
The class of processes nested in Eq. (1) is already fairly general and nests all stationary
ARMA processes with shocks that may exhibit conditional heteroskedasticity. How-
ever, the framework can be generalized naturally to handle non-stationary xt as well as
some forms of non-linearity and time-varying parameters.

We observe an agent making one-step ahead forecasts denoted by Ft[xt+1]. We as-
sume that the forecasts are generated as

Ft[xt+1] = b0 +
+∞∑
ℓ=0

aℓ+1εt−ℓ. (2)

Here, b0 is a time-invariant bias term, while the coefficients aℓ capture how subjective
expectations react to past shocks. If aℓ ̸= αℓ, the subjective reaction to past shocks is dif-
ferent from the reaction of the true process. The formulation of expectations generalizes
an early approach of Muth (1961).7

We say that the expectation formation process is unbiased if Ft[xt+1] = Et[xt+1]

with probability one, i.e., the forecast coincides with the true conditional expectation
almost surely. We define under- and overreaction by comparing the true reaction of xt
to a shock with how the agent perceives xt to react to that shock. Formally, we say that
the agent underreacts to a shock that arrived ℓ periods ago (i.e., εt−ℓ) if the perceived
response aℓ+1 is smaller than the true response αℓ+1 in absolute value. The agent is
said to overreact if the perceived response is greater than the actual response in absolute
value. For example, the agent overreacts to current news, εt, if |a1| > |α1|.

We can express the difference between the true conditional expectation and the ob-
served forecast as

Et−1[xt]− Ft−1[xt] = −b0 −
+∞∑
ℓ=1

sgn(αℓ)bℓεt−ℓ, (3)

7 Muth studied a specification of expectations (his equation 3.18) that is a special case of our Eq. (2). In
the notation of the present work, Muth allowed the subjective reaction to current news (a1) to differ
from the true reaction of the process (α1).
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where bℓ ≡ sgn(αℓ)(aℓ − αℓ), ℓ ≥ 1 denote bias coefficients.8 For the expectation for-
mation process to be unbiased, all bias coefficients must evidently be zero. A negative
bias coefficient bℓ indicates underreaction to news that arrived ℓ periods before the re-
alization of xt, while positive bias coefficients indicate overreaction.9 Bias coefficients
measure the deviation of the subjective model entertained by the agent from the true
model generating xt. Since the true model is typically unknown, even a fully Bayesian
agent may exhibit non-zero bias coefficients.10

Outside experimental settings we are unlikely to know how exactly xt is generated.
As a result, we typically do not observe either the true conditional expectation or the
shocks. The main insight of this paper is that the bias coefficients can be inferred from
the behavior of observed forecast errors. Let et ≡ xt − Ft−1[xt] denote the forecast
error. Since xt = Et−1[xt] + εt by Eq. (1) and Et−1[εt] = 0, Eq. (3) implies

xt − Ft−1[xt]︸ ︷︷ ︸
forecast error, et

= −b0 −
+∞∑
ℓ=1

sgn(αℓ)bℓεt−ℓ + εt. (4)

But Eq. (4) is just the impulse response function (IRF) of forecast errors. As a result,
the bias coefficients are identified—up to the sign—by the IRF of forecast errors. Some
knowledge of the true process is needed to conclude whether the agent under- or overre-
acts, namely the sign of αℓ.11 In many economic settings, even if the precise value of αℓ

is not known, we have some prior knowledge about its sign. For simply testing whether
expectations are unbiased, the sign of αℓ is not needed.

Figure 2 illustrates the main idea behind the measurement framework. The dashed
blue line shows the IRF of the true process for xt. The solid red line plots an example
IRF of how the process may be perceived by the agent. As seen in the picture, the bias
coefficients bℓ are equal to the difference between the two IRFs. Since forecast errors are
just the difference between realized values and forecasts, the bias coefficients are in turn
equal to the IRF of forecast errors. Our specification of expectations is flexible enough
to allow for both under- and overreaction at different lags. In the case of positively
autocorrelated xt (shown in the left panel) we have overreaction for ℓ ∈ {1, 2} and
underreaction for ℓ ≥ 3.

The right panel of Figure 2 shows why we multiply the bias coefficients by sgn(αℓ).
8 The sign function, sgn(αℓ), is equal to −1 if αℓ < 0 and 1 otherwise.
9 For the special case of αℓ = 0, any non-zero bias coefficient indicates overreaction.
10 To directly test whether observed beliefs are consistent with Bayesian updating, other methods may be
better suited. See, for example, Augenblick and Rabin (2018) and Augenblick and Lazarus (2018).

11 Intuitively, suppose the IRF of forecast errors is positive at some lag. That could be either because (i)
the agent underreacts to a shock while xt responds positively to it; or (ii) the agent overreacts but xt

responds negatively. Both options imply the same response of forecast errors.
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Figure 2: Measurement framework illustrated. The dashed blue line shows the true impulse response
function (IRF) of the variable of interest. The solid red line plots the IRF of the process as it may be per-
ceived by the agent (an example). Left panel: Positively autocorrelated process. Right panel: Negatively
autocorrelated process.

We say that the agent overreacts whenever the perceived impulse response is larger than
the true impulse response in absolute value. Multiplying by sgn(αℓ) ensures that a pos-
itive bias coefficient indicates overreaction when the true impulse response is negative.
For ℓ = 3, for example, the perceived impulse response is smaller than the true impulse
response, but larger in absolute value, and we classify this bias as overreaction.12

2.1.2 Multiple Shocks

We now consider the general case in which xt is driven byM ≥ 1 shocks

xt =
M∑
i=1

+∞∑
ℓ=0

αiℓεi,t−ℓ, (5)

where εt ≡ (ε1t, ε2t, · · · , εMt)
⊤ is a martingale difference sequence with E[εtε⊤t ] = Σ.

Without loss of generality, we assume that Σ is diagonal. We generalize the previous
12 A wrinkle arises when the perceived and actual impulse responses differ in sign. For example, suppose
thatα1 = 0.25 but a1 = −0.50. According to our definition, the agent exhibits overreaction yet the bias
coefficient is b1 = −0.75 < 0. In such cases, one can multiply b1 by (−1) to ensure that b1 < 0 indeed
indicates underreaction. The fundamental issue, though, is that it is challenging to define under- and
overreaction when the perceived and actual signs of the impulse responses differ. Care in interpreting
the bias coefficients is necessary in these circumstances.
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specification of expectations in Eq. (2) to

Ft[xt+1] = b0 +
M∑
i=1

+∞∑
ℓ=0

ai,ℓ+1εi,t−ℓ.

As before, b0 is a time-invariant bias term, while aiℓ’s capture the agent’s subjective
reaction to past shocks. Formally, we say that an agent overreacts to shock εi,t−ℓ if
|ai,ℓ+1| > |αi,ℓ+1| and underreacts if |ai,ℓ+1| < |αi,ℓ+1|.

Performing the same manipulations as in Section 2.1.1, we arrive at

xt − Ft−1[xt] = −b0 −
M∑
i=1

+∞∑
ℓ=1

sgn(αiℓ)biℓεi,t−ℓ +
M∑
i=1

αi0εit, (6)

where biℓ = sgn(αiℓ)(aiℓ − αiℓ) denote shock-specific bias coefficients. As before, the
expectation formation process is unbiased if and only if all shock-specific bias coeffi-
cients are zero. The bias coefficients are again identified—up to the sign—from the IRF
of forecast errors.

With a single shock present, only data on forecasts and realizations of xt are neces-
sary to estimate the bias coefficients. That is no longer true with multiple shocks. The
reason is that the underlying shocks are not observed. Hence, to estimate the shock-
specific bias coefficients, additional information is required. We emphasize that this
data requirement is generic and not specific to our method. Estimating IRFs in multi-
variate settings requires additional information because of standard identification prob-
lems (see, e.g., Hamilton, 1994, Chapter 11).13

For this reason we consider two cases. First, we study the case when only data on
forecasts and realizations of xt are available. In this situation, it is not feasible to es-
timate the shock-specific bias coefficients. However, estimating the univariate IRF of
forecast errors is nevertheless informative. Such estimation yields a set of composite
bias coefficients, a summary measure of biases in how the agent reacts to the various
shocks that are present.14 Next, we consider the case in which additional information is
available. We show that if the econometrician can identify how the variable of interest
responds to a particular shock, it is also possible to identify the associated shock-specific
bias coefficients. Theoretically, the takeaway is that the informational requirements for
13 This remains the case if we observe forecasts and realizations of other variables in addition to xt. That
said, if forecasts of multiple variables are available, standard SVAR identification schemes may be
used to estimate the shock-specific bias coefficients. In contract to the IV procedure that we pursue
below, standard SVARs require shocks to be invertible to be consistent; see Stock and Watson (2018)
and Plagborg-Møller and Wolf (2018a).

14 In a previous version of the paper, we used “aggregate” and “individual” instead of “composite” and
“shock-specific” bias coefficients.
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measuring biases are the same as estimating the IRF of the variable of interest. Prac-
tically, the result provides a way to estimate shock-specific bias coefficients using the
method of external instruments.

Case #1: Estimating composite bias coefficients. Provided that the forecast errors
are stationary, by the Wold’s Theorem we can write

xt − Ft−1[xt] = −b0 −
+∞∑
ℓ=0

θℓνt−ℓ, (7)

for some square-summable coefficients θℓ and a white noise series νt. TheWold shocks,
νt, are innovations from a projection of forecast errors on all their past values and hence
distinct from the structural shocks, εt. For Eq. (7) to be valid, it is only necessary to have
stationary forecast errors, a much weaker requirement than xt itself being stationary. We
can similarly represent xt as

xt =
+∞∑
ℓ=0

αℓξt−ℓ,

with a slight abuse of notation (i.e., αℓ’s are not equal to the αiℓ’s in Eq. (5)).
With this notation, we define composite bias coefficients as bℓ = sgn(αℓ)θℓ. We say

that (for αℓ ̸= 0) the agent exhibits overall overreaction if bℓ > 0 and exhibits overall
underreaction if bℓ < 0. (If αℓ = 0 and θℓ ̸= 0, the agent is said to exhibit overall
overreaction.)

The proposition below summarizes the key properties of composite bias coefficients.

Proposition 1. For the expectation formation process to be unbiased, it is necessary (but
not sufficient) for all composite bias coefficients to be zero. Composite bias coefficients,
bℓ = sgn(αℓ)θℓ, are related to the shock-specific bias coefficients, biℓ, by

+∞∑
ℓ=0

θℓθℓ+k =
γk
γ0

+∞∑
ℓ=0

θ2ℓ for k = 1, 2, . . . , (8)

where γk = γk({biℓ}) is the autocovariance function of forecast errors (explicit expres-
sion given in Eq. (A.1) in the Appendix).

Proof. In the Appendix.

In general, the relationship between the shock-specific and composite bias coeffi-
cients is non-linear, as given in Eq. (8); the explicit expression for the autocovariance
function of forecast errors is provided in Eq. (A.1). If the autocovariances vanish at
some finite lag, then the process for the forecast errors has a finite Wold representation,
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Figure 3: Numerical example of shock-specific and composite bias coefficients. The true process is given
by xt =

∑+∞
ℓ=0 ρ

ℓ(ε1,t−ℓ + ε2,t−ℓ) with Var[ε1t] = Var[ε1t] = 1.0 and ρ = 0.75. The process for the
forecast errors is given by et =

∑5
ℓ=0(λρ)

ℓε1,t−ℓ + (ε2t − θε2,t−1) with λ = 0.50 and θ = 0.25.
The composite bias coefficients are found by solving Eq. (8) numerically. The expectations formation
process is a combination of diagnostic expectations (Bordalo, Gennaioli, and Shleifer, 2018b) and the
sticky information model of Mankiw and Reis (2002); see Section 3.

and Eq. (8) boils down to a system of nonlinear equations with a unique solution (see,
e.g., Ansley, Spivey, and Wrobleski, 1977).

Figure 3 illustrates the relationship between the shock-specific and composite bias
coefficients. In this numerical example, there are two shocks with equal variances. The
agent overreacts to the first shock but underreacts to the second. The expectations for-
mation process is a combination of diagnostic expectations (Bordalo, Gennaioli, and
Shleifer, 2018b) and the sticky information model of Mankiw and Reis (2002); see Sec-
tion 3 for a description of these models. The agent has diagnostic expectations with
respect to the first shock but sticky information with respect to the second shock. The
figure shows the two sets of shock-specific bias coefficients as well as the implied com-
posite bias coefficients obtained by solving Eq. (8).

The composite bias coefficients lie between the two shock-specific bias coefficients.
Although the agent exhibits overreaction to the first shock, all composite bias coeffi-
cients are negative. Intuitively, at the chosen parameter values, underreaction to the
second shock turns out to quantitatively dominate overreaction to the first shock. The
figure also highlights a potential pitfall when only data on forecasts and realizations is
available. If the agent underreacts to one shock and simultaneously overreacts to an-
other shock in a way that makes the biases “cancel out,” composite bias coefficients
may be close to zero even when shock-specific bias coefficients are not. As formally
shown in Proposition 1, composite bias coefficients being zero is a necessary, but not
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sufficient, condition for the expectation formation process to be unbiased.
Case #2: Estimating shock-specific bias coefficients. Suppose that in addition to

data on forecasts and realizations, we have an instrumental variable (IV) denoted by zt.
We assume that the instrument zt allows us to identify the IRF of xt to a shock in ε1t,
following the ideas in Stock and Watson (2018). Let

wt =
M∑
i=1

+∞∑
ℓ=0

γiℓεi,t−ℓ.

be another observed variable that will be instrumented by zt. As a concrete example, we
may wish to learn how the agent reacts to a monetary policy shock (ε1t) when forming
expectations about inflation (xt). In this case, the instrument zt may be a monetary
surprise as measured by Romer and Romer (2004) or a shock estimated using an SVAR.
The additional variable wt could be the Federal Funds Rate. We only assume that the
instrument allows us to consistently estimate the effects of a monetary policy shock
on realized inflation. No further assumptions are made (e.g., on how the instrument is
related to the agent’s inflation expectations).

Formally, the external instrument is assumed to satisfy the following conditions.

Assumption 1. External instrument zt satisfies the following conditions:

• Relevance: E[ztε1t] = ϕ ̸= 0;
• Contemporaneous exogeneity: E[ztεjt] = 0 for j ̸= 1;
• Lead-lag exogeneity: E[ztεj,t+s] = 0 for all j and s ̸= 0;
• Normalization: γ10 = 1.

The first three assumptions are familiar from standard IV estimation. The last as-
sumption is necessary since, given that the shocks are unobservable, the scale of ε1t is
indeterminate. In the example above, the normalization corresponds to a choice of units
under which the monetary policy shock is equal to the change in the Federal Funds Rate.
In cases in which the normalization is not appropriate, the external instrument identifies
the IRF up to the scale parameter (1/γ10). Finally, to simplify notation, we assume that
zt has been demeaned so that E[zt] = 0.

Stock and Watson (2018) show that under Assumption 1 the instrument zt identifies
the IRF of xit to a shock in ε1t. Our key result is that the same instrument can also
be used to identify the shock-specific bias coefficients. The proof is a straightforward
modification of the arguments used by Stock and Watson.

Proposition 2. Suppose that an instrument zt satisfies Assumption 1. Then, the shock-
specific bias coefficients can be consistently estimated by b̂1ℓ = − sgn(α1ℓ)β̂

(ℓ)
IV , where
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β̂
(ℓ)
IV is the instrumental-variables estimate of β(ℓ) in the regression et+ℓ = β(ℓ)wt +

ut+ℓ, ℓ ≥ 1, with wt instrumented by zt.

Proof. In the Appendix.

A practical implication is that shock-specific bias coefficients can be consistently
estimated using the method of external instruments (Stock, 2008; Mertens and Ravn,
2013; Stock and Watson, 2018). In this regression, forecast errors, et+ℓ, are regressed
on wt, instrumenting wt with the external instrument. In the previous example, the
procedure amounts to regressing forecast errors for inflation on the lagged Federal Funds
Rate, instrumenting the Federal Funds Rate with an appropriate instrument.

Several extensions to Proposition 2 are immediate. For example, if several instru-
ments are available, they can be combined using a standard two-stage least squares esti-
mator. In addition, control variables can be included in the regression in Proposition 2.
Additional control variables may be helpful in obtaining more precise estimates. More-
over, an instrument may only be valid after conditioning on some other variables. For
more on these points, see the discussion in Stock and Watson (2018).

An attractive feature of the IV procedure is its robustness to various types of mea-
surement error, a feature originally emphasized by Mertens and Ravn (2013). Measure-
ment error is likely to be especially important in the case of expectations. First, the
instrument need not be perfectly correlated with the underlying shock ε1t. The corre-
lation only needs to be high enough for zt to be a strong instrument. Less obviously,
the IV approach is robust to measurement error in expectations. Suppose that instead
of observing the true expectations Ft[xi,t+1], we only observe F∗

t [xt+1] = Ft[xi,t+1] + vt

where vt is measurement error. Then, the IV estimator remains consistent as long as
the measurement error is uncorrelated with the instrument at all leads and lags (even if
measurement error itself is serially correlated). This assumption is fairly weak since in
applications, the instrument will typically be based on a different dataset than the one
from which data on expectations are drawn.

2.2 Estimation

Measuring the bias coefficients boils down to estimating the IRF of forecast errors. The
best way to estimate the IRF depends on the application at hand, and many existing
approaches may be employed. While our paper has nothing new to say about the esti-
mation of IRFs, we briefly outline how bias coefficients can be estimated in the most
empirically relevant scenarios.

Case #1: Estimating bias coefficients with known shocks. If the true shocks
are observed, bias coefficients can be estimated by directly regressing forecast errors,
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et = xt − Ft−1[xt], on past shocks. This approach is likely to be especially relevant for
experimental work.15 For instance, in the case of a single shock, one may estimate

et = µ+ β0εt + β1εt−1 + · · ·+ βKεt−K + ut. (9)

The estimated bias coefficients for ℓ ≥ 1 are then b̂ℓ = − sgn(αℓ)β̂ℓ.
Case #2: composite bias coefficients. To estimate composite bias coefficients (or

shock-specific bias coefficients if only one shock is present) only data on forecasts and
realizations is required. In this case, one may use local projections (Jordá, 2005) to
estimate the IRF flexibly. With local projections, for each ℓ = 1, 2, ..., L, the following
regression is estimated by least squares:

et+ℓ = β
(ℓ)
0 + β

(ℓ)
1︸︷︷︸

coef. of interest

et + β
(ℓ)
2 et−1 + · · ·+ β

(ℓ)
K et−K+1 + ut+ℓ. (10)

Here, K is the number of lagged forecast errors included in the local projection. The
estimated bias coefficients for ℓ ≥ 1 are then b̂ℓ = − sgn(αℓ)β̂

(ℓ)
1 , where αℓ’s are the

coefficients of the univariate IRF of xt, as in Section 2.1.2. The time-invariant bias b0
is estimated by the sample average of et.

While we prefer local projections in our empirical application below, there are many
ways to estimate an IRF. For example, wemay fit a more parsimonious time series model
(e.g., an AR(4) for quarterly forecast errors). This alternative may be especially useful
when sample size is limited.16 Alternatively, the IRF may be estimated by fitting a high-
order moving average model using maximum likelihood. That said, there are important
practical benefits to using local projections. First, it is immediate to extend Eq. (10) to
cases in which we have multiple forecasters or want to pool multiple forecasts. Second,
it is straightforward to adjust standard errors for clustering that occurs when individual
forecasts are used (Keane and Runkle, 1990). Finally, it is easy to adapt Eq. (10) to
handle time and state dependence.

Case #3: Estimating shock-specific bias coefficients. The final major case of
interest is when we have an instrument, zt, that allows us to estimate the effect of some
shock on the variable of interest, xt. As shown in Proposition 2, in this case shock-
specific bias coefficients can be estimated by a simple IV regression. In our empirical
15 There is a large experimental literature on expectation formation, going back to at least Schmalensee
(1976). For a recent overview, see Assenza, Bao, Hommes, and Massaro (2014). A recent large-scale
experimental study is provided by Ma, Landier, and Thesmar (2017).

16 As shown by Plagborg-Møller and Wolf (2018b) local projections and (V)ARs estimate the same IRFs.
However, the two methods implicitly make different choices on how to trade off bias and variance in
finite samples. Hence, the choice between the two options necessarily depends on the application.
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application, we also control for lagged values of forecast errors and the variable being
instrumented (denoted by wt) for additional precision. Thus, for ℓ = 1, 2, . . . , L we
estimate

et+ℓ = β
(ℓ)
0 +

K1∑
s=1

β(ℓ)
s wt+1−s +

K2∑
s=1

γ(ℓ)s et+1−s + ut+ℓ, (11)

instrumenting wt with zt. Here, αℓ denote the response of xt to the particular shock in
question, as in Section 2.1.2. The estimated bias coefficients are then b̂ℓ = − sgn(αℓ)β̂

(ℓ)
1

for ℓ ≥ 1. A special case is when wt = Ft[xt+1] and zt is some proxy for a shock to
expectations. This special case corresponds to an IV version of the classic Mincer and
Zarnowitz (1969) regression.

Again, there is nothing special about using the method of external instruments. One
can also employ a somewhat more parametric method such as the proxy-SVAR tech-
nique of Mertens and Ravn (2013) or use conventional SVARs.

2.3 Related Work

2.3.1 Coibion and Gorodnichenko (2012)

The paper that is most closely related to the present work is Coibion and Gorodnichenko
(2012). Similarly to us, Coibion and Gorodnichenko study how forecast errors respond
to shocks. The authors derive the response of forecast errors to shocks in a number of
models and then estimate these IRFs empirically. These IRFs are interpreted as primarily
capturing information rigidities. Our framework shows that the IRF of forecast errors
identifies biases in expectation formation much more generally, including models that
do not feature information rigidities.

The empirical procedure of Coibion and Gorodnichenko is nested in our frame-
work. Their main regression specification (their Eq. (34)) regresses forecast errors on
past shocks, as in our Eq. (9).17 In practice, however, Coibion and Gorodnichenko do
not observe these shocks directly but estimate them from observational data. As ar-
gued by Mertens and Ravn (2013) and Stock and Watson (2018), these estimates are
best interpreted as imperfect measures of the true structural disturbances, i.e., as instru-
ments. From this perspective, the main specification of Coibion and Gorodnichenko
corresponds to the reduced-form equation of our instrumental-variables regression in
Eq. (11). Indeed, if deeper lags of x1t are not included in the IV regression (i.e.,K1 = 1),
17 Coibion and Gorodnichenko include lagged values of forecast errors on the right-hand side and use
simulation to obtain the IRFs, following the approach of Romer and Romer (2004).
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the reduced form associated with Eq. (11) is

et+ℓ = δ
(ℓ)
0 + δ

(ℓ)
1 zt +

K2∑
s=1

ϑ(ℓ)
s et+1−s + ut+ℓ for ℓ = 1, 2, . . . , L.

Hence, the reduced form associated with Eq. (11) is exactly the specification employed
by Coibion and Gorodnichenko (2012).18 A key advantage of our IVmethod is that it re-
mains consistent in the presence of measurement error, as discussed in Section 2.1.2. In
contrast, if forecast errors are regressed on mismeasured shocks, the resulting estimates
of bias coefficients are inconsistent.

2.3.2 Reduced-Form Approaches

A large literature tests forecast optimality by looking at whether forecast errors are pre-
dictable, as surveyed by Pesaran and Weale (2006, Section 5). Our main regressions,
Eqs. (10) and (11), are special cases of such tests. A key advantage of the traditional
predictability tests is that they are relatively assumption free. However, the traditional
tests can reject the null hypothesis without being particularly informative about the al-
ternative. In contrast, results of our regressions have a natural economic interpretation
in terms of under- or overreaction to news at various lags.

In practice, applied work has used several predictability tests to obtain proxies for
under- and overreaction. Our framework is helpful for understanding whether such esti-
mates are valid measures of under- and overreaction. We show that this is the case only
under restrictive assumptions. When these assumptions are violated, different methods
may lead to different conclusions about the dominant form of bias. That is an important
concern in practice. For instance, Capistrán and Timmerman (2009, Figure 5) docu-
ment that most individual forecasters in the Survey of Professional Forecasters exhibit
positively autocorrelated forecast errors. Positive autocorrelation, as we discuss below,
is often interpreted as indicating underreaction. On the other hand, looking at the same
dataset, Broer and Kohlhas (2018); Bordalo, Gennaioli, Ma, and Shleifer (2018a) find
that for individual forecasters, forecast errors are negatively predicted by past revisions,
suggesting overreaction.

To simplify exposition, we assume that there is a single shock present, as in Eqs. (1)
and (2). In the main text, we discuss two main approaches based on (i) autocorrelations
of forecast errors; and (ii) forecast revisions. In the Appendix (Appendix B), we discuss
18 Coibion and Gorodnichenko (2012) include multiple lags of zt in their specification (εt in their no-
tation). For that, it is enough to include lagged values of zt in the IV regression. Also, Coibion and
Gorodnichenko estimate a single equation and then iterate to obtain the IRF while the specification
above employs local projections.
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methods based on the Mincer and Zarnowitz (1969) regression that are also often used.
Autocorrelation of forecast errors. A common approach in applied work estimates

the autocorrelation of forecast errors. Positively autocorrelated forecast errors are then
interpreted as indicating underreaction (e.g., Abarbanell and Bernard, 1992; Ma, Sraer,
and Thesmar, 2018). We can use our framework to see whether such an interpretation
is warranted. We calculate that

Cov(et, et−1) ≥ 0 ⇔ − sgn(α1)b1 +
+∞∑
ℓ=2

sgn(αℓ) sgn(αℓ−1)bℓbℓ−1 ≥ 0.

Hence, positively autocorrelated forecast errors need not indicate overreaction. For ex-
ample, if αℓ ≥ 0 for all ℓ, and the agent exhibits overreaction at all lags, the first-order
autocorrelation coefficient is positive whenever b1 is small enough. The first-order au-
tocorrelation measures the agent’s reaction to current news only under the restrictive
assumption that bℓ = 0 for all ℓ ≥ 2.

Intuitively, what matters for the first-order autocorrelation is whether adjacent bias
coefficients have the same sign, not what the sign of each bias coefficient is per se.
Hence, if the agent overreacts to information at multiple lags, the first-order autocorre-
lation can well be positive. The result holds for autocorrelations of higher order, too.
The key issue is that the approach does not measure the whole term structure of biases,
leading to potentially incorrect inferences.

Forecast revisions as proxies for news. Another method for estimating under- and
overreaction uses forecast revisions as a proxy for news. In this approach, one-step-
ahead forecast errors are regressed on lagged forecast revisions. A positive slope coef-
ficient is interpreted as evidence of underreaction, while a negative coefficient is taken
to indicate overreaction (see, e.g., Broer and Kohlhas, 2018; Bordalo, Gennaioli, Ma,
and Shleifer, 2018a). The approach of using forecast revisions to measure information
rigidities was originally proposed by Coibion and Gorodnichenko (2015). Coibion and
Gorodnichenko show that the regression discussed above recovers structural parame-
ters of expectation formation in several models with information frictions. However,
subsequent empirical work has at times interpreted the results of such regressions as
directly indicating under- and overreaction, even outside the settings originally studied
by Coibion and Gorodnichenko.

We now consider whether this approach estimates under- and overreaction generally.
Generalizing Eq. (2), suppose that h-step-ahead forecasts are given by Ft[xt+h] = b

(h)
0 +
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∑+∞
ℓ=0 a

(h)
ℓ+hεt−ℓ. Denote forecast revisions by rt ≡ Ft[xt+1]− Ft−1[xt+1].We find

Cov(et, rt−1) ≥ 0 ⇔ −a(1)1 sgn(α1)b
(1)
1 −

+∞∑
ℓ=2

b
(1)
ℓ [b

(1)
ℓ − b

(2)
ℓ ] ≥ 0.

Hence, the method measures the reaction to current news only under the restrictive as-
sumption that b(1)ℓ = b

(2)
ℓ for all ℓ. This assumption is typically violated in existing mod-

els (outside simple forms of rational expectations). When the assumption is violated,
the covariance between forecast errors and past revisions combines biases at various
horizons. In addition, one may find a positive correlation between forecast errors and
past forecast revisions even when the agent exhibits only overreaction. For example,
that is the case whenever b11 is sufficiently close to zero and b

(2)
ℓ is larger than b(1)ℓ . Intu-

itively, the approach does not distinguish between biases in how the agent forms short-
and longer-run expectations. In addition, the method is sensitive to measurement error
in expectations. If expectations are measured with classical measurement error, mea-
surement error leads to a mechanical negative correlation between forecast errors and
past revisions. The reason is that Ft−1[xt] is part of both the forecast error and the fore-
cast revision, with opposite signs. The challenges above notwithstanding, if forecast
revisions are valid instruments for some shocks, the key ideas in Coibion and Gorod-
nichenko (2015) can be readily accommodated in our framework following the methods
in Section 2.1.2.19

3 Mapping Existing Models

We now show how existing models of expectations can be mapped into our framework.
The exercise leads to three key takeaways. First, our definitions of under- and over-

reaction are reasonable in the sense that models commonly thought to generate under- or
overreaction in fact do so according to our definition. Second, the framework is flexible
enough to accommodate all major models of expectations. Finally, the implied bias co-
efficients provide a useful lens for looking at models of expectations and deriving new
empirical predictions.

To obtain closed-form expressions, we assume that xt follows a stationary AR(1):

xt = ρxt−1 + εt, ρ ∈ (−1, 1), (12)

where, as in Section 2, εt is a martingale difference sequence. The simple AR(1) process
19 For example, Cascaldi-Garcia (2019) uses forecast revisions to construct an instrument for news shocks.
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is a reasonable first approximation for many economic time series. For more compli-
cated processes, it can be more difficult to obtain the bias coefficients analytically. In
those cases, it is still straightforward to obtain estimates by simulation.

To streamline the exposition, we discuss four major models of expectations in the
main text (rational expectations, sticky information, diagnostic expectations, and adap-
tive expectations). In Appendix D, we show how to obtain bias coefficients for models
of noisy information, diagnostic expectations with noisy information, misperceived law
of motion, extrapolative expectations, adaptive learning, forecasting under adjustment
costs, and asymmetric loss functions.

The results for the models discussed in the current section are summarized in Fig-
ure 4. As shown in the figure, existing models have sharp predictions for the structure
of bias coefficients. The sticky information model by Mankiw and Reis (2002) implies
that the bias coefficients are all negative and decay geometrically (dashed blue line).
This finding is consistent with the standard view that sticky information is a model of
underreaction. In contrast, diagnostic expectations of Bordalo, Gennaioli, and Shleifer
(2018b) predict that the agent overreacts to current news but reacts rationally to all past
news (dotted magenta line). Again, this result accords with the intuition that diagnos-
tic expectations exhibit overreaction. Finally, we plot the bias coefficients implied by
adaptive expectations (solid red line). At the chosen parameter values, adaptive ex-
pectations predict strong underreaction to current news but mild overreaction to news
received further in the past. This last result is somewhat surprising since a common
perception is that adaptive expectations respond to new information sluggishly. Hence,
adaptive expectations may be expected to only generate underreaction. Intuitively, pre-
cisely because of the fact that adaptive expectations react to new information slowly,
they end up overreacting to old news.

3.1 Rational Expectations

Rational expectations in the sense of Muth (1961) are given by

aℓ = ρℓ

bℓ = 0

Here, the perceived response to a shock, aℓ, is identical to the true response of xt. As a
result, all bias coefficients are zero.
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Figure 4: Bias coefficients for selected models of expectations. Positive bias coefficients indicate over-
reaction to news at a particular lag, and negative coefficients indicate underreaction. Unbiased re-
action to news is given by a zero bias coefficient. The underlying process for xt is an AR(1) with
xt = 0.75xt−1 + εt. The models shown are: (i) diagnostic expectations of Bordalo, Gennaioli, and
Shleifer (2018b) with θ = 0.25; (ii) sticky information model of Mankiw and Reis (2002) with λ = 0.50;
(iii) adaptive expectations of Cagan (1956) and Nerlove (1958) with κ = 0.20.

3.2 Sticky Information

Consider the sticky information model of expectations proposed by Mankiw and Reis
(2002). Each period a fraction (1 − λ) ∈ (0, 1] of agents update their forecast to the
full-information rational expectation. The remaining agents use information obtained
in some previous period to form expectations that are rational conditional on their in-
formation set.20 Given these assumptions, expectations at the aggregate (or consensus)
level follow

Ft[xt+1] = (1− λ)
+∞∑
ℓ=0

λℓ Et−ℓ[xt+1]. (13)

For the AR(1) model, we have that Et−ℓ[xt+1] = ρℓ+1xt−ℓ, and some algebra yields

Ft[xt+1] =
+∞∑
ℓ=0

ρℓ+1(1− λℓ+1)εt−ℓ. (14)

20 Reis (2006, Section 5) provides a microfoundation for the Poisson adjustment process. See also Carroll
(2003).
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As a result, we find that

aℓ = ρℓ(1− λℓ)

bℓ = − sgn(ρℓ)(λρ)ℓ

As long as expectations do not adjust to news immediately (λ > 0), the sticky informa-
tion model exhibits underreaction at all lags.21

As seen above, the bias coefficients depend on both (i) how people form expecta-
tions; and (ii) the data-generating process. Different processes for xt will imply different
bias coefficients, even if people form expectations in the same way. In the present ex-
ample, the bias coefficients are larger in absolute value if the process is more persistent.
Intuitively, underreaction is more severe when the process is highly persistent.

3.3 Diagnostic Expectations

Suppose that the agent has diagnostic expectations as in Bordalo, Gennaioli, and Shleifer
(2018b) and overweights representative events. Bordalo, Gennaioli, and Shleifer (2018b,
Proposition 1) show that in this case expectations follow

Ft[xt+1] = Et[xt+1] + θ {Et[xt+1]− Et−1[xt+1]} , θ ≥ 0, (15)

where θ is a parameter capturing the extent to which the agent overweights representa-
tive events. The expression can be rewritten as Ft[xt+1] = Et[xt+1] + ρθεt. Therefore,
diagnostic expectations imply that

aℓ =

ρ(1 + θ) if ℓ = 1

ρℓ if ℓ ≥ 2
and bℓ =

θ|ρ| if ℓ = 1

0 if ℓ ≥ 2

Hence, diagnostic expectations predict overreaction to current news and unbiased reac-
tion to all other news.

3.4 Adaptive Expectations

Finally, consider adaptive expectations of Cagan (1956) and Nerlove (1958):

Ft[xt+1] = Ft−1[xt] + κ{xt − Ft−1[xt]} with κ ∈ (0, 1].

21 Underreaction at all lags with sticky information extends to more general processes. To see this, con-
sider a general xt as in Eq. (1) and perform the same calculations as for the AR(1) case. The calculation
shows that in the general case bℓ = − sgn(αℓ)λ

ℓαℓ.
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N x̄ σx ρx ē RMSE ρe R2
adj

Inflation: Consensus 196 3.45 2.59 0.83 -0.05 1.40 0.40 0.20
Inflation: Individual 7,475 3.77 2.72 0.82 0.02 1.96 0.32 0.16

Table 1: Summary statistics. Root mean-squared error (RMSE) is calculated as
√

1
N

∑
e2t where et is

the forecast error. Persistence ρz is measured by the estimate of b in the regression zt = a+ bzt−1 + vt.
R2

adj is the adjusted R-squared in the regression of forecast errors on the past four forecast errors et−1,
et−2, . . . , et−4.

Iterating we have that

Ft[xt+1] = κ

+∞∑
ℓ=0

(1− κ)ℓxt−ℓ = κ
+∞∑
ℓ=0

(
(1− κ)ℓ+1 − ρℓ+1

1− κ− ρ

)
εt−ℓ.

Hence, we obtain

aℓ = κ

[
(1− κ)ℓ − ρℓ

1− κ− ρ

]
and bℓ = sgn(ρℓ)

[
κ(1− κ)ℓ − (1− ρ)ρℓ

1− κ− ρ

]
.

Inspecting the expressions above, it is immediate that adaptive expectations can generate
both under- and overreaction to new information.

4 Application: Inflation Expectations

Our empirical application uses inflation forecasts from the Survey of Professional Fore-
casters (SPF), currently run by the Federal Reserve Bank of Philadelphia. This dataset
has been used extensively in prior work and provides a natural testing ground for our
method. To streamline the discussion, we focus on the findings and explain how we
construct the dataset in Appendix E.

We study one-step ahead quarterly GDP deflator inflation forecasts. Summary statis-
tics are provided in Table 1.22 Both consensus- and individual-level forecasts are con-
sidered. We use median forecasts for the consensus to be consistent with prior work, but
the median and mean forecasts are very similar. To avoid the possibility that our results
are driven by data revisions, we use real-time data to measure realized inflation.
22 The number of participants in the SPF has not been constant over time. As a result, estimates us-
ing the consensus- and individual-level datasets implicitly weight the data somewhat differently. The
individual-level dataset implies a somewhat higher weight on observations coming from the earlier part
of the sample.
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4.1 Composite Bias Coefficients

The estimated composite bias coefficients are shown in Figure 5. As discussed in Sec-
tion 2.1.2, composite bias coefficients measure the total reaction to shocks and do not
disentangle between the reaction to specific shocks (e.g., we cannot say whether agents
underreact to oil price shocks or monetary policy surprises). To calculate the bias co-
efficients, we estimate the univariate IRF of forecast errors using local projections, as
in Eq. (10).23 To be conservative, we show both the 65% and 95% confidence intervals
calculated with Newey-West standard errors.

The top panel plots the bias coefficients estimated using consensus forecasts. We
observe statistically significant negative bias coefficients for lag 1 (p = 0.005),24 lag 3
(p = 0.022), and lag 4 (p < 0.001). The evidence suggests that participants in the SPF
underreact to information that arrived up to one year ago. The bias coefficients are esti-
mated fairly precisely. That is especially reassuring in light of the fact that we consider
quarterly inflation forecasts, and quarterly inflation is rather volatile. In Appendix F, we
show that virtually identical results obtain—with somewhat smaller standard errors—
if instead of local projections we use maximum likelihood to fit a high-order moving
average model (Figure A.3) or an AR(4) model for forecast errors (Figure A.5).

The magnitude of underreaction is substantial. The point estimates indicate that a
positive 1σ shock to inflation in the current quarter leads the forecasters to underpredict
inflation by roughly 0.30σ four quarters from now.

The bottom panel of Figure 5 performs the same exercise using individual fore-
casts.25 A nice feature local projections is that it is straightforward to use them with
panel data. We estimate a panel-data version of Eq. (10) including forecaster fixed ef-
fects. To account for the fact that the respondents are all forecasting the same variable,
and the forecast errors may be correlated over time for a given respondent, we cluster the
standard errors by both forecaster and quarter. The pattern of the estimated bias coeffi-
cients is very similar to that obtained using the consensus forecasts. The key difference
is that the coefficients are smaller in absolute value. As a result, the bias coefficient at
23 As shown in Appendix F (Figure A.4), the univariate IRF of inflation is positive at all the relevant lags,
so that sgn(αℓ) = 1. Hence, we obtain the bias coefficients by multiplying the IRF by (−1).

24 At the time of responding to the survey, participants know the advance estimate of inflation in the
previous quarter but not inflation in the current quarter (Federal Reserve Bank of Philadelphia, 2017,
p. 21). As a result, interpretation of the bias coefficient in the first lag requires some care. On the one
hand, forecasters have access to various real-time information on prices. On the other hand, they do
not yet know the official number for inflation in the current quarter. In that sense, the one-step ahead
forecast may really be a two-step ahead forecast. If that is the case, a non-zero bias coefficient at the
first lag should not be interpreted as bias. See Keane and Runkle (1990) for further discussion.

25 For recent papers that study individual forecasts in the SPF, see Fuhrer (2017), Bordalo, Gennaioli, Ma,
and Shleifer (2018a) and Ryngaert (2018).
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(a) Inflation: Consensus-Level Estimates
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(b) Inflation: Individual-Level Estimates

Figure 5: Composite bias coefficients for one-quarter-ahead inflation forecasts. Top panel: Estimates
using consensus (median) forecasts; Newey-West standard errors with max{4, ℓ − 1} lags are used to
calculate the confidence intervals. Bottom panel: Estimates using individual-level data (with forecaster
fixed effects); standard errors clustered by both forecaster and quarter. Both sets of estimates are obtained
by first using local projections (withK = 4) to estimate the univariate IRF of forecast errors:

xt+ℓ − Ft+ℓ−1[xt+ℓ] = β
(ℓ)
0 + β

(ℓ)
1 {xt − Ft−1[xt−1]}+ · · ·+ β

(ℓ)
4 {xt−3 − Ft−4[xt−3]}+ ut+ℓ,

for ℓ = 1, 2, . . . , 12. The bias coefficients are then estimated by b̂ℓ = −β̂
(ℓ)
1 .
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Figure 6: Biases in response to monetary policy shocks. The response of forecast errors to the monetary
policy shock is estimated by

xt+ℓ − Ft+ℓ−1[xt+ℓ] = β
(ℓ)
0 +

4∑
s=1

β(ℓ)
s FFRt+1−s +

4∑
s=1

γ(ℓ)
s {xt+1−s − Ft−s[xt−s+1]}+ ut+ℓ,

for ℓ = 1, 2, . . . , 12, instrumenting the Federal Funds Rate, FFR, at time t with the Romer and Romer
(2004) measure of a monetary surprise at time t. The bias coefficients are then given by b̂ℓ = β̂

(ℓ)
1 .

lag 3 is no longer statistically significant at the 5% level (p = 0.097).
The fact that bias coefficients estimated using individual forecasts are attenuated to-

wards zero suggests that expectations at the individual level contain some noise. There
are two primary explanations for this result. One possibility is measurement error. As
discussed in Section C.5, if observed expectations contain some measurement error, the
estimated composite bias coefficients will biased towards zero, explaining the observed
pattern. Another possibility is that expectations are measured without error but forecast-
ers overreact to idiosyncratic signals. A model of this kind has recently been developed
by Bordalo, Gennaioli, Ma, and Shleifer (2018a).26 As we show in Appendix D.2, their
model predicts exactly the same pattern that we find empirically. The standard noisy
information model, while more noisy at the individual level, does not predict attenuation
because expectations incorporate idiosyncratic signals optimally (see Appendix D.1 and
Ryngaert, 2018).

In the Appendix, we also provide estimates of the bias coefficients using individual
26 Broer and Kohlhas (2018) present a model based on overconfidence which similarly features overre-
action at the individual level. See also da Silveira and Woodford (2019).
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forecasts that are obtained from a simple AR(4) model, using iteration to obtain the
IRF of forecast errors (Figure A.5). The resulting estimates are very similar. The only
difference is that for deeper lags, bias coefficients are closer to zero, and the attenuation
bias in individual forecasts is more pronounced.

4.2 Monetary Policy Shocks

We now illustrate how our IV procedure can be used to measure biases in how agents
react to specific shocks. We focus on the effects of monetary policy on inflation expec-
tations. As our measure of a monetary surprise, we use the Romer and Romer (2004)
variable extended to a longer sample period byWieland and Yang (2017). Our specifica-
tion regresses forecast errors on lagged forecast errors and lagged values of the Federal
Funds Rate, instrumenting the Federal Funds Rate with the Romer-Romer monetary
surprise, as in Eq. (11).

The results are shown in Figure 6. The results indicate statistically significant un-
derreaction to monetary policy shocks that arrived 8 to 16 quarters ago. The timing of
underreaction is consistent with the effects of monetary policy shocks on actual infla-
tion. The response of inflation to monetary policy shocks is delayed, with the impact
on inflation kicking in around two years after the initial shock (see Figure A.6 in the
Appendix and Figures 4 and 5 in Romer and Romer, 2004). The magnitude of under-
reaction is again substantial. Bias coefficients are equal to roughly half of the actual
response of inflation (see Figure A.6 in the Appendix).27 Overall, these results are con-
sistent with both our findings for the composite bias coefficients above, as well as those
of Coibion and Gorodnichenko (2012) who document underreaction to other aggregate
shocks, including technology, news, and oil shocks.

4.3 Idiosyncratic Shocks

Next, we investigate how agents react to idiosyncratic shocks. By “idiosyncratic,” we
refer to shocks that are specific to each individual forecaster. These shocks could reflect
forecaster-specific information as well as phenomena such as overconfidence. As shown
in the Appendix (Appendix C.4), the way expectations react to idiosyncratic shocks
can be identified from the IRF of deviations of individual forecasts from the consensus
forecast. It is straightforward to obtain this IRF by estimating the univariate IRF of
27 The effects of Romer-Romer monetary policy surprises on inflation as well as other macro variables are
quantitatively high. This fact helps to explain why the magnitude of underreaction that we find is is also
substantial. See Coibion (2012) for more discussion on the magnitude of the effects of Romer-Romer
monetary policy surprises.
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(a) Reaction to Idiosyncratic Shocks
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(b) Bias Coefficients w.r.t. Idiosyncratic Shocks

Figure 7: Top panel: estimated reaction to idiosyncratic shocks. The same regression specification as in
the bottom panel of Figure 5 is used but with time fixed effects included. Bottom panel: Estimated bias
coefficients with respect to idiosyncratic shocks. The estimates are obtained from

xt+ℓ−Fi,t+ℓ−1[xt+ℓ] = µ
(ℓ)
i +

4∑
s=1

β(ℓ)
s Fi,t+1−s[xt+2−s]+

4∑
s=1

γ(ℓ)
s {xt+1−s−Fi,t−s[xt−s+1]}+ui,t+ℓ,

for ℓ = 1, 2, . . . , 12, instrumenting Fit[xt+1] with the deviation from consensus, Fit[xt+1] −
1/N

∑N
j=1 Fjt[xt+1]; standard errors clustered by both forecaster and quarter. The estimated bias co-

efficients are then b̂ℓ = −β̂
(ℓ)
1 .
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forecast errors, just as in the case of composite bias coefficients, but now including time
fixed effects.

The results of this exercise are shown in the top panel of Figure 7. Forecasters
indeed react to idiosyncratic shocks. However, these reactions are fairly small and short
lived, lasting up to one quarter. Hence, underreaction exhibited by the composite bias
coefficients stems from underreaction to aggregate shocks.

This empirical result is inconsistent with the basic noisy information model (see
Appendix D.1). The basic noisy information model predicts exactly the same behavior
for deviations from consensus as that for forecast errors. Our empirical results, on the
contrary, indicate that deviations from the consensus forecast are eliminated much more
rapidly than are forecast errors. This finding is suggestive of strategic behavior among
the forecasters and less consistent with a pure information friction. In the Appendix
(Figure A.8), we show that very similar results obtain if instead of local projections, we
use an AR(4) model with individual and time fixed effects.

We next ask whether reacting to idiosyncratic shocks constitutes under- or overre-
action. To do so, we employ our instrumental variables procedure and regress forecast
errors on lagged forecast errors as well as lagged forecasts, instrumenting the forecast at
time t with the deviation from the consensus forecast at time t. The findings are shown
in the bottom panel of Figure 7 and indicate overreaction to idiosyncratic shocks that
lasts for around one quarter. The first bias coefficient is very close to one. The IV pro-
cedure, by construction, ensures that the idiosyncratic shock is such that the forecast at
time t is higher by one unit. The fact that the estimated bias coefficient is close to one
means that the increase in the forecast translates one-to-one into a larger forecast error.
The second bias coefficient is also positive and statistically significant, implying that
overreaction to idiosyncratic shocks is persistent. The magnitude of the bias coefficient
is very close to the reaction found in the top panel of Figure 7, again consistent with
idiosyncratic shocks translating into forecast errors one-for-one. However, the amount
of overreaction is quantitatively not very large. This latter finding explains why we find
that underreaction is the dominant feature of expectations when looking at the composite
bias coefficients.28

28We cannot rule out that the estimated positive bias coefficients with respect to idiosyncratic shocks are
driven by autocorrelated measurement error. However, it is not clear why measurement error would
have exactly this specific autocorrelation structure.
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Baseline High Inflation Recession Great Moderation Large FE

-0.33 -0.54 -0.16 -0.30 -0.27
Lag 1 (0.12) (0.14) (0.29) (0.09) (0.15)

[-2.27] [0.80] [0.15] [0.50]

-0.06 -0.06 -0.19 0.10 -0.07
Lag 2 (0.10) (0.13) (0.15) (0.09) (0.15)

[-0.42] [-0.87] [1.46] [-0.18]

-0.25 -0.32 -0.11 -0.15 -0.41
Lag 3 (0.11) (0.22) (0.16) (0.12) (0.15)

[-0.70] [1.28] [0.76] [-1.90]

-0.30 -0.48 0.09 -0.19 -0.47
Lag 4 (0.08) (0.13) (0.14) (0.10) (0.13)

[-2.28] [3.12] [1.03] [-1.12]

Table 2: State dependence in the composite bias coefficients. Standard errors in parentheses; t-statistics of
a test of no state dependence in brackets. High absolute values of the t-statistics indicate evidence of state
dependence with negative t-statistics indicating more underreaction. The same regression specification
is used as in Figure 5 but with all coefficients allowed to differ across the states.

High Inflation: Realized inflation above the 75th percentile of sample values. Recession: The economy
is in a recession as given by the NBER recession indicator. Great Moderation: Dummy variable that is
equal to 1 between 1985-01-01 and 2006-12-31. Large FE: Forecast error above the 75th percentile of
sample values.

4.4 State and Time Dependence

Our method can also be used to investigate whether biases in expectation formation vary
across time and state of the economy. We generalize Eq. (10) to

et+s = α0 + α1It + (1− It)
K∑
i=1

β
(s)
i,0 et−i + It

K∑
i=1

β
(s)
i,1 et−i + ut+s,

where It ∈ {0, 1} is a dummy variable equal to 1 if the economy is in a particular
state at time t (such as a high-inflation state), and s = 1, 2, . . . , L. Following Ramey
and Zubairy (2017), we allow all coefficients in the regression to differ across the two
states.

Table 2 collects the findings for a number of different states of the economy. The
estimated bias coefficients indeed exhibit state dependence. Expectations display more
underreaction in high-inflation periods, with a difference that is statistically significant.
In addition, there is some evidence that expectations show less underreaction during
recessions. However, state dependence in the estimated bias coefficients is primarily
driven by state dependence in the behavior of actual inflation. Table A.1 in the Appendix

31



1981 1985 1989 1993 1997 2001 2005 2009 2013 2017

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

B
ia
sC

oe
ffi
ci
en
t

65% Confidence Interval
95% Confidence Interval

Figure 8: Rolling window estimates of the first composite bias coefficient, b̂1. A window of 32 quarters
(8 years) is used for estimation. The regression specification is the same as in Figure 5.

shows that exactly the same qualitative pattern of state dependence is observed in actual
inflation. Hence, the results from this section further corroborate the previous evidence
of underreaction to aggregate shocks, suggesting that forecasters are slow to react to
state dependence in actual inflation.

We can also perform the same exercise for time variation in biases. To do so, we
estimate bias coefficients using a rolling-window regression. The results are given in
Figure 8 which plots the first bias coefficient over time. Recall that the first bias co-
efficient measures how expectations react to current news. There is substantial time
variation in the estimated bias coefficient. Once again, however, this time variation is
driven by time variation in the persistence of actual inflation, as shown in the Appendix
(Figure A.7).

4.5 Calibration Exercise

The estimated bias coefficients can be used to guide theory. To illustrate this point,
we perform a simple calibration exercise. For a number of models of expectations,
we choose their parameters to fit the estimated bias coefficients as closely as possible.
Specifically, for each model, we choose its parameters to minimize the sum of squared
deviations of the empirically estimated bias coefficients from the theoretically predicted
bias coefficients. To obtain theoretical predictions, we assume that the true inflation
process is an AR(1). Estimating the persistence parameter using least squares yields an
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estimate of ρ̂ = 0.83 (see Table 1).
The results from this exercise are shown in Table 3. Since the models all have a

single parameter (except for rational expectations which have no free parameters), we
do not adjust for model complexity. The model that best fits the data is a simple model
in which forecasters think that the true persistence of inflation is smaller than it actually
is (see Section D.3). The perceived level of persistence that provides the best fit is
0.61. This number is roughly 25% lower than the estimated persistence of inflation. As
discussed by Gabaix (2017a, pp. 14–15), limited attention can naturally lead to such
misperception.

The sticky information model also does well, with only a slightly worse fit than the
misperception model. The estimated information stickiness parameter for this model is
λ̂ = 0.51. The estimate is very close to that reported by Coibion and Gorodnichenko
(2015) who find λ̂ = 0.54 (s.e. = 0.10).29 While Coibion and Gorodnichenko (2015)
also use the SPF data, they consider one-year ahead forecasts, and their methodology
estimates the level of stickiness by regressing forecast errors on past forecast revisions.
The fact that we get a very similar number using a completely different methodology
is reassuring. In the context of the sticky information model, our estimate implies that
forecasters in the SPF update their information sets roughly twice a year on average.
The noisy information model is observationally equivalent at the level of consensus
forecasts, as shown in Appendix D.1. Hence, the noisy information model can match
the estimated bias coefficients equally well as sticky information.30

The model with adjustment costs performs better than simple rational expectations.
Finally, mechanical adaptive and extrapolative expectations perform worse than ratio-
nal expectations. The finding is consistent with previous research that has documented
that participants in the SPF are quite accurate.31 It is therefore not surprising that their
behavior is not very well described by mechanical models of expectations. The fact that
extrapolative expectations perform especially poorly is interesting in light of the fact
that extrapolative models explain inflation expectations well in laboratory experiments
(e.g., Pfajfar and Žakelj, 2014).
29We use the Delta Method to calculate the standard error for λ̂ from the estimates provided by Coibion
and Gorodnichenko, i.e., s.e.(λ̂) = s.e.(β̂)/(1 + β̂)2.

30 Bordalo, Gennaioli, Ma, and Shleifer (2018a) develop a model that introduces noisy information into
the model of diagnostic expectations. Since their model nests the basic noisy information model (when
the agent does not exhibit representativeness), this model does at least as well as the noisy information
model in fitting the empirical bias coefficients. The model has an additional parameter, and hence
comparing the fit requires adjusting for model complexity.

31 For example, Croushore (2010) documents that the median forecast in the SPF performs better than
simple time series models of inflation (Table 5), and that it is difficult to adjust forecasts for biases
observed in the past to obtain higher forecasting accuracy in real time (Table 4). See also Ang, Bekaert,
and Wei (2007).
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Model Parameter SSR

Misperception 0.61 0.16
Sticky 0.51 0.18
Adjustment Cost 0.43 0.25
Rational NA 0.32
Adaptive 0.17 0.36
Extrapolative -0.31 0.55

Table 3: Calibration exercise for matching the empirically estimated bias coefficients. The sum of squared
residuals (SSR) is calculated as

∑12
ℓ=1[b̂ℓ−bℓ(θ

∗)]2 where b̂ℓ is the empirically estimated bias coefficient,
and bℓ(θ

∗) is the theoretically predicted bias coefficient; θ∗ denotes the parameter value that minimizes
the sum of squared residuals. The estimated process for inflation is xt = 0.83xt−1 + εt. The precise
descriptions of the models are given in Section 3 and Appendix D.

5 Conclusions

Expectations play a key role in economics. However, views diverge on how expecta-
tions are formed. The divergence stems in part from the lack of a general framework
for measuring biases in expectation formation. Definitions of theoretical concepts—
such as under- and overreaction—are not always made explicit in applied work. As a
result, interpreting the results of existing empirical tests can be difficult. Theory does
not necessarily provide clear guidance either as there are many competing models of
expectations.

This paper attempts to provide a general measurement framework that fills this gap.
The key insight is that under- and overreaction to new information is identified by the
IRF of forecast errors. The starting point is a definition of under- and overreaction that
is natural and consistent with the existing theory. We then show that these biases can be
measured using a simple and widely applicable measurement procedure. The measure-
ment procedure boils down to estimating the IRF of forecast errors. The estimated bias
coefficients directly measure under- and overreaction to news at various lags, thereby
characterizing the whole term structure of biases.

To be sure, our measurement procedure is not a silver bullet. One issue is that the
notion of bias used in this paper is a statistical one. There may be multiple reasons for
why expectations are biased according to this definition, including psychological as well
as non-psychological ones. Distinguishing between competing explanations requires
additional structure. A related challenge is that different models of expectations can
yield similar predictions for bias coefficients. Predictions on additional moments of
the data are then necessary to discriminate between competing explanations. Finally,
identifying the IRF of forecast errors with respect to specific shocks requires valid and
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strong instruments.
In our empirical application we found evidence of forecasters underreacting to ag-

gregate shocks but overreacting to idiosyncratic shocks. The fact that we find both
under- and overreaction highlights the importance of a measurement framework that
can accommodate both types of biases. It remains to be seen whether our empirical
findings generalize to other contexts. Our own prior is that biases are likely to be con-
text dependent. Hence, we would expect to see overreaction to aggregate shocks in
other, especially financial market, contexts. The current framework may prove helpful
for researchers investigating these issues.
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Appendix A Proofs

Proof of Proposition 1

For necessity, suppose that some composite bias cofficients are not zero but—to obtain a
contradiction—all shock-specific bias coefficients are zero. In that case, Eq. (6) implies
that xt − Ft−1[xt] =

∑M
i=1 αi0εit. But then all composite bias coefficients are zero,

a contradiction. To see that zero composite bias coefficients are not sufficient for the
expectation formation process to be unbiased, suppose that xt = 0 with probability one
but Ft[xt] = ξt where ξt is a non-degenerate i.i.d. shock. Then, the agent overreacts to
ξt at the individual level, but the composite bias coefficients are all zero since ξt is an
i.i.d. shock.

To see that Eq. (8) holds, note that

γ0 = Var[et] = Var[νt]
+∞∑
ℓ=0

θ2ℓ

γk = Cov[et, et−k] = Var[νt]
+∞∑
ℓ=0

θℓθℓ+k

Dividing the second equation by the first and rearranging yields Eq. (8). The explicit
expressions for γk in terms of shock-specific bias coefficients are

γ0 =
M∑
i=1

Var[εit]

(
α2
i0 +

+∞∑
ℓ=1

b2iℓ

)

γk =
M∑
i=1

Var[εit]

(
− αi0 sgn(αik)bik

+
+∞∑
ℓ=1

sgn(αiℓ) sgn(αi,ℓ+k)biℓbi,ℓ+k

)
for k ≥ 1.

(A.1)

Proof of Proposition 2

Calculate that

E[ztet+ℓ] = − sgn(α1ℓ)b1ℓϕ for ℓ ≥ 1

E[ztwt] = γ10ϕ = ϕ︸ ︷︷ ︸
normalization γ10=1
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As a result, since ϕ ̸= 0 by Assumption 1, we have that

E[ztet+ℓ]

E[ztwt]
= − sgn(α1ℓ)b1ℓ.

But the instrumental-variables estimator of β(ℓ) is given by

β̂
(ℓ)
IV =

(
1

T − ℓ

T−ℓ∑
t=1

ztwt

)−1(
1

T − ℓ

T−ℓ∑
t=1

ztet+ℓ

)
p−→ E[ztet+ℓ]

E[ztwt]

under standard regularity conditions under which a Law of Large Number applies to the
terms in the parentheses. Since sgn(x)2 = 1, the result follows.
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Appendix B Other Reduced-Form Approaches

Consider the standard Mincer and Zarnowitz (1969) regression which estimates

xt = α + β Ft−1[xt] + ut,

and then tests the joint hypothesis that α = 0 and β = 1.32 The test for β = 1 can be
intuitively thought of as a test of under- and overreaction. If the agent overreacts to new
information, we expect the forecasts to be too extreme. As a result, one may expect to
see β < 1 with overreaction, and vice versa for underreaction (see, for example, De
Bondt and Thaler, 1990).

We can use our framework to check whether this intuition is in fact correct. Given
that plim β̂ = Cov(xt,Ft−1[xt])/Var(Ft−1[xt]), we find

plim β̂ ≤ 1 ⇔
+∞∑
ℓ=1

aℓ sgn(αℓ)bℓ ≥ 0. (A.2)

Hence, the basic intuition is only partially justified. The approach suffers from two
problems, both stemming from the fact that the regression cannot disentangle how the
agent reacts to information at different lags. First, even if expectations are biased, the
estimated slope coefficient may be close to one. The reason is that the key determinant
of the slope coefficient is the entire sum in Eq. (A.2). If some bias coefficients are
positive and some negative, the whole sum may be zero even if the shock-specific bias
coefficients are not. The second shortcoming is that the method is not able to determine
the horizon at which the agent exhibits bias. In contrast, our approach directly identifies
the whole term structure of biases and is not vulnerable to these problems. Finally, the
Mincer-Zarnowitz regression is vulnerable to measurement error (see, e.g., Jeong and
Maddala, 1991). If expectations are measured with classical measurement error, the
estimated slope coefficient is biased towards zero. Hence, the regression may suggest
that the agent exhibits biases even when no such biases exist.

A closely related empirical approach regresses forecast errors on the lagged value of
the variable being predicted (see, e.g., Barrero, 2018; Bordalo, Gennaioli, and Shleifer,
2018b; Kohlhas and Walther, 2018):

xt − Ft−1[xt] = δ + γxt−1 + ut.0 (A.3)

A negative estimate of γ is then interpreted as indicating overreaction or overextrapola-
32 An equivalent test regresses forecast errors on Ft−1[xt], with a negative coefficient interpreted as evi-
dence for overreaction.
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tion. Intuitively, if an agent observes a high value of xt and exaggerates that information
when making the forecast, the subsequent realization xt+1 will on average be lower than
predicted, giving rise to a negative forecast error. We calculate that

plim γ̂ ≤ 0 ⇔
+∞∑
ℓ=1

sgn(αℓ)αℓ−1bℓ ≥ 0.

Hence, interpreting γ̂ ≤ 0 as indicating overreaction makes an implicit assumption
on the data-generating process for xt. If the signs of αℓ and αℓ−1 are the same, then
the estimated coefficient is indeed negative whenever the agent exhibits overreaction
to news at all lags. In that case, still, the method is not able to disentangle the horizon
at which the agent is overreacting. However, if the process for xt exhibits reversals,
some of the adjacent αℓ coefficients will differ in sign, leading to potentially incorrect
conclusions about under- and overreaction. Finally, if the agent exhibits both under-
and overreaction to information at different lags, the estimated coefficient may be close
to zero even if the agent exhibits biases. An advantage of the approach relative to the
basic Mincer-Zarnowitz regression is that it is robust to classical measurement error in
expectations.

A special case in which the regression in Eq. (12) provides a valid measure of over-
reaction is given when the variable of interest is pure noise, xt = εt. In that case,
plim γ̂ = −b1, and the regression directly estimates the first bias coefficient. In fact,
more efficient estimates can be obtained by directly regressing forecasts on lagged val-
ues of xt, in effect estimating Eq. (2). This type of regression is commonly used in the
literature studying extrapolative expectations of stock market returns (see, e.g., Graham
and Harvey, 2001; Vissing-Jorgensen, 2004; Ben-David, Graham, and Harvey, 2013;
Dominitz and Manski, 2011; Greenwood and Shleifer, 2014). Classic asset pricing the-
ory predicts that stock prices follow martingales at short horizons (see, e.g. Cochrane,
2005, p. 22), and xt = εt is therefore a reasonable first approximation for stock re-
turns. This theory-implied restriction is likely to yield more precise estimates than un-
restricted estimation of the IRF of forecast errors. Our framework highlights that stock
returns must be uncorrelated over the relevant time horizon for the regression to yield a
meaningful measure of overreaction. If stock returns exhibit momentum, some degree
of extrapolation is justified.
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Appendix C Extensions to the Basic Framework

This appendix develops several extensions to the basic framework: multiple-step-ahead
forecasts, heterogeneity, state- and time-dependent biases, distinguishing biases with
respect to aggregate and idiosyncratic shocks, and measurement error.

C.1 Multiple-Step-Ahead Forecasts

Suppose that the agent makes h-step ahead forecasts with h ≥ 1 denoting the forecast
horizon. To simplify notation, suppose that xt is driven by a single shock, as given by
Eq. (1). We assume that the forecasts are generated as

Ft[xt+h] = b0 +
+∞∑
ℓ=0

aℓ+hεt−ℓ.

Performing the same calculations as in Section 2.1 shows that

xt − Ft−h[xt] = −b0 −
+∞∑
ℓ=h

sgn(αℓ)bℓεt−ℓ +
h−1∑
ℓ=0

αℓεt−ℓ.

Comparing the equation above to Eq. (4), we observe an additional term stemming from
themultiple-step ahead nature of forecasts. Even if subjective expectations react to news
in an unbiased way, forecast errors are mechanically autocorrelated—up to lag (h−1)—
if the underlying process is autocorrelated at these lags.

The methodology again boils down to estimating the IRF of forecast errors. Dif-
ferently from the one-step-ahead case, the first (h − 1) impulse responses need to be
discarded. The remaining impulse responses are converted to bias coefficients, with
bℓ+h giving the biased reaction to news that arrived ℓ periods ago.

C.2 Heterogeneity and Aggregation

Existing research has documented that expectations are heterogeneous across individu-
als (e.g., Manski, 2004, Section 5). Our method can easily be applied to subsamples of
the population. For example, we may estimate the bias coefficients for young and old
forecasters. When the method is applied to the whole population, it recovers an average
of the bias coefficients of the individual forecasts, as we now show.

Suppose, as in Section 2.1.2, that xt =
∑M

i=1

∑+∞
ℓ=0 αiℓεi,t−ℓ. The forecast of fore-
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caster f is generated as

F(f)
t [xt+1] = b

(f)
0 +

M∑
i=1

+∞∑
ℓ=0

a
(f)
i,ℓ+1εi,t−ℓ, f = 1, 2, . . . , N.

Denote the consensus (average) forecast by Ft[xt+1] ≡ 1
N

∑
f F

(f)
t [xt+1]. Then, the

consensus forecast is given by

Ft[xt+1] = b̄0 +
M∑
i=1

+∞∑
ℓ=0

āi,ℓ+1εi,t−ℓ,

where b̄0 ≡ 1
N

∑
f b

(f)
0 and ā(ℓ)j ≡ 1

N

∑
f a

(f)
iℓ . Applying the results from Section 2.1.2,

the shock-specific bias coefficients of the consensus forecast, b̄iℓ, are equal to

b̄iℓ = sgn(αiℓ)(āiℓ − αiℓ) = sgn(αiℓ)

[
1

N

N∑
f=1

{
a
(f)
iℓ − αiℓ

}]
=

1

N

N∑
f=1

b
(f)
iℓ ,

where b(f)iℓ ≡ sgn(αiℓ)[a
(f)
iℓ − αiℓ]. Therefore, with heterogeneity, the bias coefficients

of the consensus forecast equal the average bias coefficients of the individual forecasts.
The linear aggregation result only holds for the shock-specific bias coefficients, in

the sense defined in Section 2.1.2. For the composite bias coefficients, aggregation is
non-linear. Therefore, the composite bias coefficients of the consensus forecast are not
given by the average composite bias coefficients of the individual forecasts.

C.3 State and Time Dependence

It is straightforward to generalize our framework to allow for state and time dependence
in both the data-generating process for the variable being predicted as well as how ex-
pectations are formed.

Instead of being time invariant, suppose that the true reactions αiℓ are given by a
function of a vector of state variables st, so that αiℓ = αiℓ(st), with αiℓ a deterministic
function mapping the state variables to the true reaction of the process.33 Various types
of state dependence can be achieved by choosing specific state variables st and func-
tional forms for αiℓ(·). Similarly, let the perceived reaction now be aiℓ = aiℓ(st). In that
33 If αiℓ(·) is not a deterministic function, then bias coefficients become random variables. In these cases,
it may be desirable to estimate the whole distribution of bias coefficients, instead of just their first
moment. See Koop, Pesaran, and Potter (1996) for a discussion of the issues.
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case, the bias coefficients are also state dependent and given by

biℓ(st) = sgn[αiℓ(st)][aiℓ(st)− αiℓ(st)].

Hence, state dependence does not affect the basic theory in any substantial way. The
only difference is that estimating state-dependent bias coefficients in practice now re-
quires controlling for the underlying state variables appropriately. The best way to do
that depends on the application at hand. An explicit example of state-dependent bias co-
efficients is provided in Section D.7 of the Appendix which derives bias coefficients for
a model in which the agent makes forecasts to minimize an asymmetric loss function,
and the shocks follow a GARCH process, as in Patton and Timmermann (2007).

C.4 Aggregate and Idiosyncratic Shocks

Theoretical models commonly distinguish between information that is available to every
agent in the economy and information that is agent specific. Such information structures,
in particular, are often used inmodels of incomplete information inmacroeconomics and
finance, as surveyed by Angeletos and Lian (2016).

Our multiple-shocks framework in Section 2.1.2 nests such information structures.
In addition, when data on individual forecasts is available, we can use our measurement
procedure to estimate how agents react to the idiosyncratic shocks. This exercise is
helpful for dissecting the sources of biases in expectations.

For ease of exposition, suppose that there is a single aggregate shock εt driving the
variable of interest, as in Section 2.1.1. However, in addition to the aggregate shock,
each agent i has an associated idiosynratic shock, ωit. We assume that individual fore-
casts are generated as

Fit[xt+1] = b0 +
+∞∑
ℓ=0

a
(ε)
ℓ+1εt−ℓ +

+∞∑
ℓ=0

a
(ω)
ℓ+1ωi,t−ℓ.

A concrete example of a model that gives rise to such expectations is given by the basic
noisy information model (see Appendix D.1). Suppose that each agent only observes a
noisy signal of xt given by yit = xt + ωit with ωit denoting normally distributed noise.
Then, the agent uses Bayesian updating to form expectations about xt. Provided that the
precision of signals, Var[ωit]

−1, is the same for each agent, the individual expectations
can be represented in the form above.

Defining the average or consensus forecast by Ft[xt+1] = E {Fit[xt+1]} where the
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expectation is taken across agents, we have that deviations from consensus are given by

Fit[xt+1]− Ft[xt+1]︸ ︷︷ ︸
deviation from consensus forecast

=
+∞∑
ℓ=0

a
(ω)
ℓ+1ωi,t−ℓ.

As a result, reactions to idiosyncratic shocks can be obtained from the IRF of deviations
from consensus. The result generalizes straightforwardly to the case with many aggre-
gate shocks. By the Frisch-Waugh-Lovell Theorem, this IRF can be estimated by simply
including time fixed effects in the local projections regression in Eq. (10) (when individ-
ual forecasts are used). If the reaction to the aggregate shocks is heterogeneous across
agents (e.g., agents observe signals with different levels of precision), so that the load-
ings on the aggregate shocks differ across agents, dynamic factor models may be used
to measure reactions to the idiosynratic shocks. Finally, deviations from the consensus
forecast can be used as an to measure the associated shock-specific bias coefficients, as
demonstrated in our empirical application.

C.5 Measurement Error

Expectations are typically measured with some error. Measurement error can arise for
many reasons, including survey design imperfections or limited attention of survey par-
ticipants.34 The magnitude of measurement error is often substantial, especially for
individual-level data. For example, Giglio, Maggiori, Stroebel, and Utkus (2019) elicit
expected stock market returns in a sample of individual investors using two indepen-
dent measurement methods. They find a correlation between the two measures of 0.43,
suggesting substantial measurement error.

The effects of measurement error depend on whether composite or shock-specific
bias coefficients are being estimated. Measurement error is not problematic for estimat-
ing the shock-specific bias coefficients using the method of external instruments. As
discussed in Section 2.1.2, this method provides consistent estimates of the bias coef-
ficients as long as measurement error is uncorrelated with the instrument. Of course,
in finite samples measurement error typically reduces precision of the estiamtes. This
robustness to measurement error is a key advantage of the IV procedure.

Now consider the case of estimating composite bias coefficients. Estimating com-
posite bias coefficients boils down to estimating the univariate IRF of forecast errors.
Classical measurement error tends to mask any existing predictability of the forecast
34 A closely related possibility is that subjective expectations are inherently noisy, such as in the model
of da Silveira and Woodford (2019). The empirical predictions of measurement error and inherently
noisy expectations are often very similar.
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errors, biasing the estimated bias coefficients towards zero. As a result, the empiri-
cally estimated composite bias coefficients are likely to represent a lower bound on the
true composite bias coefficients. To the extent that measurement error is idiosyncratic,
measurement error is less problematic for consensus forecasts.

We now provide explicit formulas for the attenuation bias caused by measurement
error for two models of expectations (sticky information and diagnostic expectations)
when calculating composite bias coefficients. As in Section 3, xt follows a stationary
AR(1) process.

First, suppose that the true expectations are generated by the sticky information
model of Mankiw and Reis (2002), implying that the true forecast errors follow

et = λρet−1 + εt.

However, instead of observing the true forecast Ft[xt+1], we can only observe

F∗
t [xt+1] = Ft[xt+1] + vt,

where vt is white noise measurement error with variance σ2
v (and independent of εt).

The observed forecast error is then equal to e∗t = et − vt−1. Now write

e∗t − λρe∗t−1 = εt − vt−1 + λρvt−2. (A.4)

The right-hand side of Eq. (A.4) is the sum of an MA(1) process and white noise, and
therefore also an MA(1) process (see, e.g., Hamilton, 1994, pp. 102–105). Denote the
resulting process as ξt + θξt−1 for some parameters θ and σ2

ξ to be determined. For the
representation to be valid, the autocovariances must match, namely

σ2
ε + [1 + (λρ)2]σ2

v = (1 + θ2)σ2
ξ

−λρσ2
v = θσ2

ξ

Substituting out σξ and rearranging leads to a quadratic equation in θ:

(−λρ)θ2 − θ

{
σ2
ε

σ2
v

+
[
1 + (λρ)2

]}
− λρ = 0.

The equation has two real solutions. Picking the solution associated with the invertible
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representation (i.e., with |θ| < 1) yields

θ =

{
σ2
ε

σ2
v
+ [1 + (λρ)2]

}
−
√{

σ2
ε

σ2
v
+ [1 + (λρ)2]

}2

− 4(λρ)2

−2λρ
. (A.5)

All in all, the observed forecast errors follow an ARMA(1, 1) process with

e∗t (1− λρL) = (1 + θL)ξt,

where L is the lag operator. As a result, the Wold representation of e∗t is

e∗t = ξt + (λρ+ θ)
+∞∑
ℓ=1

(λρ)ℓ−1ξt−ℓ.

Therefore, measurement error leads to an attenuation bias. The attenuation bias can be
substantial if measurement error is large (i.e., signal-to-noise ratio, σε/σv, is small). For
example, suppose that λ = 0.50, ρ = 0.75, σε = 0.25, and σv = 0.15. Then, the true
bias coefficient b1 is equal to (−λρ) = −0.375. In contrast, the bias coefficient in the
process with measurement error is equal to

−(λρ+ θ) ≈ −(0.375− 0.097) = −0.278.

The attenuation bias is roughly 26% in relative terms.
Now consider the case of diagnostic expectations. In that case, the true forecast

errors follow an MA(1) process with et = εt − θρεt−1, implying that the observed
forecast errors are given by e∗t = εt−θρεt−1−vt−1. The right-hand side again follows an
MA(1) process but with different parameters. Write e∗t = ξt+ψξt−1 for some parameters
ψ and σ2

ξ . Similar calculations to those performed earlier show that

ψ =

{
σ2
v

σ2
ε
+ [1 + (θρ)2]

}
−
√{

σ2
v

σ2
ε
+ [1 + (θρ)2]

}2

− 4(θρ)2

−2θρ
.

To gauge the size of the attenuation bias, suppose that θ = 0.50, ρ = 0.75, σε = 0.25,
and σv = 0.15. With these parameters, the true bias coefficient is equal to b1 = θρ =

0.375. However, the bias coefficient from the process with measurement error (i.e.,−ψ)
is equal to approximately 0.268. In relative terms, the attenuation bias is roughly 29%.
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Appendix D Mapping Existing Models

D.1 Noisy Information

We now analyze a model in which agents are rational and understand the structure of the
model but do not observe the underlying state perfectly. Models of this type include the
rational inattention model of Sims (2003) and the imperfect information model studied
by Woodford (2003).

Suppose the true process for xt is an AR(1) but each agent i only observes

yit = xt + ωit.

Here, ωit is a normally distributed mean-zero noise term which is i.i.d. across time and
agents and uncorrelated with εt at all leads and lags. The Kalman filter equations imply

Fit[xt+1] = ρ {Gyit + (1−G)Fi,t−1[xt]} , (A.6)

where G ∈ [0, 1] is the Kalman gain.
From Eq. (A.6) and the fact that xt follows an AR(1), forecast errors at the individual

level also follow an AR(1) with

xt − Fi,t−1[xt] = ρ(1−G) {xt−1 − Fi,t−2[xt−1]}+ εt − ρGωi,t−1. (A.7)

According to our definitions, at the individual level, the agent overreacts to the idiosyn-
cratic noise, ωit, and underreacts to the aggregate shock εt.

We now calculate bias coefficients for the consensus forecast. Assuming that there
is a continuum of agents and making the usual Law of Large Numbers assumption, we
can integrate over agents to find that

xt − Ft−1[xt] = ρ(1−G) {xt−1 − Ft−2[xt−1]}+ εt.

Here, Ft[xt+1] = E{Fit[xt+1]} is the average (consensus) forecast, with the expectation
taken across agents. Hence, at the consensus level forecast errors again follow anAR(1).
Therefore,

aℓ = ρℓ − [(1−G)ρ]ℓ

bℓ = − sgn(ρℓ)[(1−G)ρ]ℓ

Hence, as long as the signal is not perfectly revealing of the state (G ̸= 1), the noisy
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information model predicts underreaction at the consensus level. Since idiosyncratic
shocks wash out in the aggregate, the consensus forecast does not overreact to ωit. The
noisy information model predicts identical bias coefficients as the sticky information
model when λ = 1−G.

We note that deviations from the consensus forecast also follow an AR(1) with the
same persistence parameter. Specifically, we have that

Fit[xt+1]− Ft[xt+1] = ρ(1−G) {Fi,t−1[xt]− Ft−1[xt]}+ ρGωit.

Hence, in the basic noisy information model, forecast errors at the individual level,
forecast errors at the consensus level, and deviations from the consensus all follow an
AR(1) process with the same persistence parameter ρ(1−G).

Huo and Pedroni (2018) show that a wide class of models with strategically in-
teracting agents and incomplete information is equivalent to single-agent forecasting
problems with a modified information structure. In this modified information structure,
private signals are more noisy, in accordance to the degree of strategic complementarity
in the model. Hence, results from the present section apply more broadly to settings in
which agents interact strategically (such as agents trying to stay close to the consensus
forecast). The only change in that case would be in the value of G, the Kalman gain
parameter.35

D.2 Diagnostic Expectations With Noisy Information

Bordalo, Gennaioli, Ma, and Shleifer (2018a) combine noisy information and diagnostic
expectations. As in Appendix D.1, suppose that the agents do not observe xt directly
but only receive a noisy signal. Each agent i observes yit = xt + ωit where ωit is
normally distributed noise. If the agent used Bayesian updating, the agent would form
expectations as

F∗
it[xt+1] = ρ

{
Gyit + (1−G)F∗

i,t−1[xt]
}
,

where G is the Kalman gain, just as in Section D.1. However, the agent is subject to
the representativeness heuristic and overweights representative events. Under repre-
sentativeness, Bordalo, Gennaioli, Ma, and Shleifer (2018a, Proposition 1) show that
35 Of course, the information structure in the current section does not explicitly distinguish between private
and public signals. For an explicit example, see, for example, Coibion and Gorodnichenko (2012,
pp. 126–129).
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expectations follow

Fit[xt+1] = F∗
it[xt+1] + ρθG

{
yit − F∗

i,t−1[xt]
}
.

Denoting e∗it = xt − F∗
i,t−1[xt], we can express forecast errors as

ei,t+1 = e∗i,t+1 − ρθGe∗it − ρθGωit (A.8)

= ρ[1− (1 + θ)G]e∗it + εt+1 − ρ(1 + θ)Gωit,

where the second equality uses Eq. (A.7). Subtracting ρ(1−G)eit from both sides and
using Eqs. (A.7) and (A.8), we have

ei,t+1 − ρ(1−G)eit = εt+1 − ρθGεt − ρG(1 + θ)

(
ωit −

ρθ

1 + θ
ωi,t−1

)
.

The right-hand side is a sum of two independent MA(1) processes and hence also an
MA(1) process (see, e.g., Hamilton, 1994, pp. 102–105). All in all, then, forecast errors
follow anARMA(1, 1) process. TheARMA(1, 1) representation then yields expressions
for the composite bias coefficients. We omit the resulting lengthy formulas.

Consensus forecasts, Ft[xt+1] ≡ E{Fit[xt+1]}, with the expectation taken across
agents i, also follow an ARMA(1, 1) process. The only difference is that idiosyncratic
shocks, ωit, wash out in the consensus forecast. Therefore, forecast errors at the con-
sensus level follow

ei,t+1 − ρ(1−G)eit = εt+1 − ρθGεt.

A numerical example of the resulting bias coefficients is provided in Figure A.1.
The parameter values are based on the estimates provided by Bordalo, Gennaioli, Ma,
and Shleifer (2018a, Table 8). They find that for a broad range of macroeconomic ex-
pectations, the representativeness parameter θ is around 0.60. For GDP deflator infla-
tion, they estimate the standard deviation of noise in the measurement equation to be
roughly three times larger than the standard deviation of the true shocks. Following the
parametrization in Coibion and Gorodnichenko (2012), we set ρ = 0.85 and σ2

ε = 1.005

to approximate the behavior of actual GDP deflator inflation. The optimal steady-state
Kalman gain parameter is then calculated using values for the variances of the shocks
and persistence of the process, implying a value of G ≈ 0.19.36 The predicted bias
36 The steady-state Kalman gain is G = Σ/(Σ + σ2

ω) where σ2
ε = Var[εt], σ2

ω = Var[ωit] and

Σ =
−(1− ρ2)σ2

ω + σ2
ε +

√
[(1− ρ2)σ2

ω − σ2
ε ]

2 + 4σ2
ωσ

2
ε

2
.
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Figure A.1: Composite bias coefficients for the mixed noisy information and diagnostic expectations
model of Bordalo, Gennaioli, Ma, and Shleifer (2018a) at the individual and consensus level. Parameter
values are ρ = 0.85, σ2

ε = 1.005, Var[ωit] = 3.182σ2
ε , and θ = 0.60.

coefficients are consistent with our empirical findings in Section 4. Bias coefficients of
the individual forecasts are attenuated toward zero with respect to the bias coefficients
of the consensus forecast, just as in the data.

D.3 Misperceived Law of Motion

Suppose that the agent misperceives the true persistence of the process and makes fore-
casts as

Ft[xt+1] = ρ̂xt, ρ̂ ∈ (−1, 1),

with ρ̂ potentially different from ρ. Examples of models with misperceived laws of
motion abound in the literature, with two prominent cases given by Barberis, Shleifer,
and Vishny (1998) and Fuster, Laibson, and Mendel (2010); see also Gabaix (2017a,
pp. 14–15). In the present case,

Ft[xt+1] = ρ̂
+∞∑
ℓ=0

ρℓεt−ℓ
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and therefore

aℓ = ρ̂ρℓ−1

bℓ = sgn(ρℓ)
[
ρ̂ρℓ−1 − ρℓ

]
When ρ ̸= 0, we can write

bℓ = sgn(ρℓ)ρℓ
(
ρ̂− ρ

ρ

)
.

If ρ > 0, the agent overreacts to news whenever ρ̂ > ρ and underreacts otherwise.

D.4 Extrapolative Expectations

We now consider pure extrapolative expectations

Ft[xt+1] = xt + γ(xt − xt−1),

as in Goodwin (1947, p. 191). The parameter γ could be either positive or negative,
with a positive γ representing extrapolation or trend following, while a negative γ could
capture contrarian expectations.

Substituting in the expression for xt, we calculate that

Ft[xt+1] = (1 + γ)εt +
+∞∑
ℓ=1

{
(1 + γ)ρℓ − γρℓ−1

}
εt−ℓ,

and so we find that

aℓ =

1 + γ if ℓ = 1

(1 + γ)ρℓ−1 − γρℓ−2 if ℓ ≥ 2
,

and

bℓ =

sgn(ρ)(1 + γ − ρ) if ℓ = 1

sgn(ρℓ)
{
(1 + γ)ρℓ−1 − γρℓ−2 − ρℓ

}
if ℓ ≥ 2

Suppose expectations are of the trend-following type (γ > 0). Then, if xt is positively
autocorrelated, the agent always overreacts to current news (b1 > 0). However, extrap-
olative expectations may well lead to underreaction to past news.
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D.5 Adaptive Learning

Many models in economics feature agents that form expectations by estimating econo-
metric models; for recent overviews, see Evans and Honkapohja (2001) and Evans and
Honkapohja (2009). Such models lead to a time-varying process of expectation forma-
tion. As a result, they are nested in the class of models studied in Section C.3. While
deriving the time-varying bias coefficients is straightforward, we may also be interested
in calculating the average bias coefficients, especially for comparison with empirical
estimates. Calculating the average bias coefficients analytically is challenging. Never-
theless, it is straightforward to estimate them using Monte Carlo simulation, as we now
demonstrate.

The true process for xt is again an AR(1). However, we no longer assume that the
agent knows the true parameter values governing the process. Instead, the agent esti-
mates the parameters using least squares. We assume that the first value that is observed
is x1. As in Orphanides andWilliams (2005) orMalmendier and Nagel (2016), the agent
perceives the process to be

xt = b0 + b1xt−1 + ut,

with parameter vector b = (b0, b1)
⊤ to be estimated.

Denoting the data for period t by Xt = (1, xt)
⊤, the agent estimates the parameters

using the following recursion:

bt = bt−1 + γtR−1
t Xt−1(xt − X⊤

t−1bt−1)

Rt = Rt−1 + γt(Xt−1X⊤
t−1 − Rt−1)

(A.9)

Here, bt is the current estimate of the parameter vector b, Rt is the current estimate of
the second moment matrix of Xt−1, and {γt} is a sequence of gains.

We choose initial values for bt and Rt to ensure that when the sequence of gains
is chosen appropriately, bt equals the standard least-squares estimator. Specifically, we
start the recursion at t = 3 with

b3 =
1

2
R−1

3 (X1x2 + X2x3)

R3 =
1

2
(X1X⊤

1 + X2X⊤
2 )

Then, for t ≥ 4 we use the recursion in Eq. (A.9); see Evans and Honkapohja (2001,
pp. 32–33) for more details.37

The model with adaptive learning is effectively a time-varying version of the model
37 Recall that the first available value of xt is x1. Hence, data for estimation is available for t ≥ 2.
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in Appendix D.3 in which the agent misperceives the law ofmotion for xt. With adaptive
learning, the perceived persistence of xt is determined by the observed data and varies
over time. In the notation of Section C.3, bias coefficients depend on a state variable
st that contains all past values of xt, i.e., st = (xt, xt−1, . . . , x1)

⊤. The dependence of
expectations on st depends on the exact form of learning and the chosen gain sequence.
At any rate, the results from Appendix D.3 carry through to the present setting, the only
difference being that the perceived persistence of xt is now a function of st.

In practice, we may also be interested in calculating the average bias coefficients.
Doing so analytically is challenging. As a result, we now show howMonte Carlo simu-
lation can be used to estimate the average bias coefficients. We investigate two different
specifications for the sequence of gains, {γt}. First, we consider standard least-squares
learning with γt = 1/(t− 1). With this choice for γt, bt coincides with the usual least-
squares estimator. As is well known, such least-squares learning is optimal—in the
sense of being implied by Bayesian updating—under certain conditions. Specifically, if
the true shocks are i.i.d. normally distributed, and the prior distribution of b is normal
with Var[b]−1 = 0 (diffuse prior), then the posterior distribution of b is also normal,
with its mean given by the least-squares estimate (see, e.g., Hoff, 2009, pp. 154–155).

Second, we consider constant-gain learning with γt = γ. Constant-gain learn-
ing discounts past data and leads to perpetual learning. This form of learning is opti-
mal when parameters undergo certain forms of structural change (see, e.g., Branch and
Evans, 2006, and references therein). In addition, as shown by Malmendier and Nagel
(2016, Section V.A.), if people overweight information from their own lifetimes, aver-
age expectations can be closely approximated by constant-gain learning, even if individ-
ual expectations are generated by adaptive learning with a decreasing gain sequence. We
use two values for the gain parameter, informed by existing empirical evidence. First,
we investigate γ = 0.018. Malmendier and Nagel (2016) find that constant-gain learn-
ing with γ = 0.018 can closely approximate average inflation expectations in a model
with learning from experience. Second, we consider γ = 0.0345. Branch and Evans
(2006) document that forecasts generated with this value of the gain parameter closely
match both inflation and GDP forecasts from the Survey of Professional Forecasters.

Results from the simulation are shown in Figure A.2. We set ρ = 0.85, σ2
ε = 1.005

and simulate the model for T = 150 periods, following the Monte Carlo simulation
study in Coibion and Gorodnichenko (2012). These parameters are chosen to approxi-
mate the behavior of GDP deflator inflation.38 In each simulation, we estimate the bias
38We use a burn-in period of 1,000 periods for simulations with constant-gain learning. For least-squares
learning, we do not use a burn-in period. Since the least-squares estimator is consistent, in a large
sample the estimates converge to the true values, and bias coefficients would be close to zero with a
large burn-in period.
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coefficients by regressing forecast errors on the true shocks, as in Eq. (9). Since the
true bias coefficients are time varying, such estimation yields a time average of the true
bias coefficients. TheMonte Carlo estimate is then obtained by averaging across 10,000
replications.

For standard least-squares learning, the agent underreacts to recent news but overre-
acts to news that arrived more than 5 periods ago. Underreaction to recent news is likely
related to the fact that the least-squares estimate of ρ, the AR(1) persistence parameter,
is biased towards zero in small samples (see, e.g., MacKinnon and Smith, 1998, and
references therein). Hence, we expect an agent with least-squares learning, on average,
to behave similarly in finite samples to an agent who misperceives ρ to be smaller than
it actually is, as in Appendix D.3. We emphasize that in the present case, non-zero bias
coefficients is a small-sample phenomenon. In a large enough sample, least-squares
learning would converge to the true (constant) parameter values, and bias coefficients
would tend to zero.39

For constant-gain learning, average bias coefficients exhibit a hump-shaped pat-
tern, mostly exhibiting overreaction to new information. This finding is intuitive, given
that constant-gain learning in effect discards past data, while the true process has time-
invariant coefficients. As a result, the agent thinks that incoming data is more informa-
tive than it actually is.

In both cases the magnitude of biases is fairly small (in the range of [−0.04, 0.03])
and significantly smaller than biases we estimate in the data for inflation expectations
(Section 4). To be fair for these models, however, we note that the postulated process
for xt in the simulations is time invariant. In the data, inflation has undergone impor-
tant structural shifts, and hence a process with time-invariant coefficients may be not
be an appropriate benchmark. That is especially the case for constant-gain learning
which can be microfounded as an optimal response to certain types of structural change
(Muth, 1960). The simulation results nevertheless indicate that agents who use adap-
tive learning to form expectations are fairly sophisticated, and their biases may be small
quantitatively.

D.6 Adjustment Costs

We now consider a model in which the agent has rational expectations but faces a cost
in adjusting forecasts from one period to the next. We interpret the adjustment cost as a
stand-in for reputational costs or career concerns. For example, forecasters who change
39 Relatedly, Andolfatto, Hendry, and Moran (2008) document that time-varying parameters can lead to
spurious rejections of the rational expectations hypothesis in small samples for tests using the Mincer-
Zarnowitz regression.
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Figure A.2: Estimated average bias coefficients for selected models of adaptive learning, estimated by
Monte Carlo simulation with 10,000 replications. The variable being predicted follows an AR(1) model
xt = ρxt−1 + εt, t = 1, 2, . . . , 150 with ρ = 0.85 and σ2

ε = 1.005. Results shown for constant-gain
learning (γ = 0.018 and γ = 0.0345) and recursive least squares (RLS). A burn-in period of 1,000
periods is used for constant-gain learning. Shaded areas indicate Monte Carlo confidence bounds at the
0.1% significance level.

their forecasts by large amounts may be perceived as having lower forecasting ability.
Similarly to Coibion andGorodnichenko (2015, p. 2660), suppose that in each period

t the agent makes a forecast of xt+1. The agent wishes to minimize the mean-squared
error of the prediction but faces a quadratic adjustment cost.40 Denoting the current
value of xt as x and the previous forecast by F , the Bellman equation of the agent is
given by

V (x, F ) = min
F ′

1

2
E[(ρx+ ε̃− F ′)2] +

α

2
(F ′ − F )2 + δ E[V (ρx+ ε̃, F ′)],

where F ′ is the current period’s forecast, α ≥ 0 is the weight on the adjustment cost,
δ ∈ (0, 1) is a discount factor, and we have used tildes to denote random variables. The
40 There are no game-theoretic considerations in the present setting. Coibion and Gorodnichenko (2012,
pp. 126–129) study a dynamic game in which forecasters have an incentive to stay close to the consen-
sus forecast. They show that forecast errors follow an AR(1) process, implying geometrically decaying
bias coefficients. Ottaviani and Norman (2006) study the effects of different incentive structures (repu-
tational signaling and winner-take-all tournaments) and derive implications for observed forecasts; see
also Marinovic, Ottaviani, and Sorensen (2013).
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first-order condition is

−(ρx− F ′) + α(F ′ − F ) + δ E[VF (ρx+ ε̃, F ′)] = 0.

The envelope condition is just VF (x, F ) = −α(F ′−F ). Therefore, the optimal forecast
is given by

(F ′)∗ =
ρx+ α(1− δ)F

1 + α(1− δ)
.

If the agent is fully patient (δ = 1) or there is no adjustment cost (α = 0), the forecast
coincides with the true conditional expectation. In the other extreme, if α → +∞, then
it is optimal to never change the forecast.

Defining ϕ ≡ α(1− δ)/[1 + α(1− δ)], the optimal forecasting rule is

Ft[xt+1] = (1− ϕ)ρxt + ϕFt−1[xt].

Performing similar manipulations to those in Section 3.4, we arrive at

Ft[xt+1] = (1− ϕ)ρ
+∞∑
ℓ=0

[
ϕℓ+1 − ρℓ+1

ϕ− ρ

]
εt−ℓ.

Hence, the bias coefficients are equal to

aℓ = (1− ϕ)ρ

[
ϕℓ − ρℓ

ϕ− ρ

]
bℓ = sgn(ρℓ)(aℓ − ρℓ)

Inspecting the expressions above, it is clear that the model can generate both under- and
overreaction.

D.7 Asymmetric Loss Function

Finally, consider the setting studied by Patton and Timmermann (2007, pp. 898–899).
Suppose that the agent has the linex loss function

L(et; a) =
1

a²
[exp(aet)− aet − 1],

where a is a parameter controlling asymetry in losses. If a → 0, the loss function
is proportional to e2, and hence symmetric around zero. If a > 0, the agent dislikes
positive forecast errors (i.e., xt is higher than predicted) more than negative forecast
errors, and vice versa when a < 0.
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The true process for xt is now given by

xt = ρxt−1 + εt

εt = σtvt, vt
iid∼ N (0, 1)

σ2
t = ω + αε2t−1 + βσ2

t−1

withω > 0 andα, β ≥ 0. In contrast to before, the shocks εt now follow aGARCH(1, 1)
process and are therefore conditionally heteroskedastic. To ensure that the {εt} process
is stationary, assume that α + β < 1.

Some calculus shows that the optimal forecast is given by

Ft[xt+1] = ρxt +
a

2
σ2
t+1.

Iterating the law of motion for σ2
t , we have

σ2
t =

ω

1− β
+ α

+∞∑
ℓ=0

βℓε2t−1−ℓ,

and therefore

Ft[xt+1] = ρxt +
a

2

(
ω

1− β
+ α

+∞∑
ℓ=0

βℓε2t−ℓ

)

=
aω

2(1− β)
+

+∞∑
ℓ=0

(
ρℓ+1 +

aα

2
βℓεt−ℓ

)
εt−ℓ.

Since GARCH is a nonlinear process, the expectation formation process is also nonlin-
ear. The model is therefore nested in the setup studied in Section C.3, and we have

aℓ(st) = ρℓ +
aα

2
βℓ−1εt−1−ℓ

bℓ(st) = sgn(ρℓ)
aα

2
βℓ−1εt−1−ℓ

with the state variable st given by all past shocks, i.e., st = (εt, εt−1, . . . )
⊤. Depending

on the realized values of the shocks, the model can generate both under- and overreac-
tion. This result again illustrates how the first-order autocorrelation can be misleading
as a measure of underreaction. Patton and Timmermann (2007, Eq. (23), p. 899) show
that for this model, the first-order autocorrelation of forecast errors is always positive.
Nevertheless, the model can in fact generate both under- and overreaction.
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Appendix E Data Appendix

We download data for individual inflation forecasts from the website of the Federal
Reserve Bank of Philadelphia (link). The downloaded file contains forecasts of GDP
deflator inflation for the past quarter (PGDP1), current quarter (PGDP2), and the next
four quarters (PGDP3 up to PGDP6), see Federal Reserve Bank of Philadelphia (2017,
pp. 20–22).

To construct consensus inflation forecasts, we first calculate the median forecast of
PGDP2 and PGDP3 in each quarter. Then, we calculate annualized quarter-on-quarter
inflation forecasts as

100

[(
PGDP3
PGDP2

)4

− 1

]
.

The approach follows the standard practice in the Survey of Professional Forecasters.
To calculate individual inflation forecasts, we directly use the equation above.

For realizations, we use the Real-Time Data Set for Macroeconomists which is also
provided by the Philadelphia Fed (link). We use the first-release data for “Price Index
for GNP/GDP (P).” In 1995Q4, the first-release data for inflation is not available. In
this period, we use the second-release data.

To match forecasts and actuals, we align the forecasts to the date for which they
were made. For example, the one-quarter ahead forecast made in the 1970Q1 survey is
matched with the actual inflation reported for 1970Q2.

In addition, we use data from the FRED database (link) for the Federal Funds Rate
(code DFF, link) and the NBER recession indicator (code USRECQ, link). To convert
the Federal Funds Rate to a quarterly frequency, we take an average of the daily data.

For the Romer-Romer monetary-surprise measure, we use the extended dataset pro-
vided by Wieland and Yang (2017) (link). Wieland and Yang extend the original series
of Romer and Romer (2004) up to the end of 2007.
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Appendix F Additional Empirical Results
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Figure A.3: Bias coefficients for one-quarter ahead inflation forecasts: maximum likelihood estimates.
The estimation uses consensus (median) forecasts. The impulse response function of the forecast errors
is obtained by estimating

xt − Ft−1[xt] = εt + θ1εt−1 + θ2εt−2 + · · ·+ θ12εt−12, εt ∼ N (0, σ2
ε)

by maximum likelihood. The bias coefficients are then given by b̂ℓ = −θ̂ℓ.
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Figure A.4: Univariate impulse response function: quarterly GDP deflator inflation. The estimation uses
local projections; Newey-West standard errors withmax{4, ℓ−1} lags are used to calculate the confidence
intervals where ℓ = 1, 2, . . . , 12 denotes the horizon of the local projection.
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(a) Inflation: Consensus-Level Estimates
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(b) Inflation: Individual-Level Estimates

Figure A.5: Composite bias coefficients for one-quarter-ahead inflation forecasts estimated using an
AR(4) model. The model used to estimate the IRF of forecast errors is

xt − Ft−1[xt] = α+ β1{xt−1 − Ft−2[xt−1]}+ · · ·+ β4{xt−4 − Ft−5[xt−4]}+ ut.

The IRF is then obtained by iteration. Confidence intervals are generated with a parametric bootstrap.
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Figure A.6: Response of inflation to monetary policy shocks. The response is estimated by γ̂1
(ℓ) in the

regression

xt+ℓ = β
(ℓ)
0 +

4∑
s=1

γ(ℓ)
s FFRt+1−s +

4∑
s=1

β(ℓ)
s xt+1−s + ut+ℓ,

for ℓ = 1, 2, . . . , 12, instrumenting the Federal Funds Rate, FFR, at time t with the Romer and Romer
(2004) measure of a monetary surprise at time t.
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Figure A.7: Rolling window estimates of the univariate IRF of quarterly GDP deflator inflation (first lag).
The estimation uses local projections and a window of 32 quarters (8 years); Newey-West standard errors
with 4 lags are used to calculate the confidence intervals.
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Figure A.8: Reaction of one-quarter-ahead inflation forecasts to idiosyncratic shocks, estimated using an
AR(4) model. We first estimate

xt − Fi,t−1[xt] = αi + γt + β1{xt−1 − Fi,t−2[xt−1]}+ · · ·+ β4{xt−4 − Fi,t−5[xt−4]}+ uit.

The IRF is then obtained by iteration. Confidence intervals are generated with a parametric bootstrap.

Baseline High Inflation Recession Great Moderation Large FE

0.47 0.64 0.41 0.36 0.39
Lag 1 (0.11) (0.14) (0.24) (0.09) (0.14)

[2.60] [-0.39] [-0.80] [-0.59]

0.40 0.32 0.51 0.07 0.37
Lag 2 (0.11) (0.17) (0.17) (0.12) (0.15)

[0.65] [0.83] [-2.38] [0.08]

0.50 0.46 0.34 0.30 0.61
Lag 3 (0.12) (0.22) (0.24) (0.08) (0.18)

[0.87] [-1.06] [-1.39] [1.43]

0.65 0.58 0.20 0.43 0.72
Lag 4 (0.12) (0.16) (0.14) (0.09) (0.19)

[1.50] [-4.51] [-1.51] [0.42]

Table A.1: State dependence in the univariate IRF of quarterly GDP deflator inflation. Standard errors in
parentheses; t-statistics of a test of no state dependence in brackets. High absolute values of the t-statistics
indicate evidence of state dependence, with negative t-statistics indicating less persistence. Definitions
of the different states are provided in Table 2.
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