Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
0	0	000	0	00000	0

Central Counterparty Exposure in Stressed Markets

Wenqian Huang¹ Albert J. Menkveld² Shihao Yu²

¹Bank for International Settlements

²Vrije Universiteit Amsterdam and Tinbergen Institute

ECBST Feb 6, 2020

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
	O	000	O	00000	O
Outline					

Objective & Findings

Approach

Data

Results

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
•	0	000	0	00000	0

What are central counterparties (CCPs)?

- CCPs have become systemic nodes of financial markets
- Regulators are worried about CCPs risk management in *fast-paced* electronic markets

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
•	0	000	0	00000	0

What are central counterparties (CCPs)?

- CCPs have become systemic nodes of financial markets
- Regulators are worried about CCPs risk management in fast-paced electronic markets

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
•	0	000	0	00000	0

What are central counterparties (CCPs)?

- CCPs have become systemic nodes of financial markets
- Regulators are worried about CCPs risk management in *fast-paced* electronic markets

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
O		000	O	00000	O
Outline					

Objective & Findings

Approach

Data

Results

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
0	•	000	0	00000	0

What is the nature of CCP exposure change?

- What drives CCP exposure changes? Normal vs. stress times?
- How is CCP exposure distributed among members/securities? Normal vs. stress times?
- We propose an approach to decomposing CCP exposure in near real-time and implement the approach on a sample of high-frequency equity CCP data and find
 - Contribution of member's portfolio returns correlation (i.e., crowding) ↑ as exposure increases → extreme
 - Concentration among members \uparrow as exposure level \rightarrow extreme

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
0	•	000	0	00000	0

- What is the nature of CCP exposure change?
 - What drives CCP exposure changes? Normal vs. stress times?
 - How is CCP exposure distributed among members/securities? Normal vs. stress times?
- We propose an approach to decomposing CCP exposure in near real-time and implement the approach on a sample of high-frequency equity CCP data and find
 - Contribution of member's portfolio returns correlation (i.e., crowding) ↑ as exposure increases → extreme
 - Concentration among members \uparrow as exposure level \rightarrow extreme

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
0	•	000	0	00000	0

- What is the nature of CCP exposure change?
 - What drives CCP exposure changes? Normal vs. stress times?
 - How is CCP exposure distributed among members/securities? Normal vs. stress times?
- We propose an approach to decomposing CCP exposure in near real-time and implement the approach on a sample of high-frequency equity CCP data and find
 - Contribution of member's portfolio returns correlation (i.e., crowding) ↑ as exposure increases → extreme
 - Concentration among members \uparrow as exposure level \rightarrow extreme

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
O		000	O	00000	O

- What is the nature of CCP exposure change?
 - What drives CCP exposure changes? Normal vs. stress times?
 - How is CCP exposure distributed among members/securities? Normal vs. stress times?
- We propose an approach to decomposing CCP exposure in near real-time and implement the approach on a sample of high-frequency equity CCP data and find
 - Contribution of member's portfolio returns correlation (i.e., crowding) ↑ as exposure increases → extreme
 - Concentration among members \uparrow as exposure level \rightarrow extreme

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
O		000	O	00000	O

- What is the nature of CCP exposure change?
 - What drives CCP exposure changes? Normal vs. stress times?
 - How is CCP exposure distributed among members/securities? Normal vs. stress times?
- We propose an approach to decomposing CCP exposure in near real-time and implement the approach on a sample of high-frequency equity CCP data and find
 - Contribution of member's portfolio returns correlation (i.e., crowding) ↑ as exposure increases → extreme
 - \blacktriangleright Concentration among members \uparrow as exposure level \rightarrow extreme

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
O		000	O	00000	O
.					

- What is the nature of CCP exposure change?
 - What drives CCP exposure changes? Normal vs. stress times?
 - How is CCP exposure distributed among members/securities? Normal vs. stress times?
- We propose an approach to decomposing CCP exposure in near real-time and implement the approach on a sample of high-frequency equity CCP data and find
 - Contribution of member's portfolio returns correlation (i.e., crowding) ↑ as exposure increases → extreme
 - Concentration among members \uparrow as exposure level \rightarrow extreme

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
O	O		O	00000	O
Outline					

Objective & Findings

Approach

Data

Results

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
0	0	•00	0	00000	0

- ► A single CCP, J clearing members and I securities
- Aggregate loss:

$$A_{t} = \sum_{j} L_{j,t} = \sum_{j} -\min(0, X_{j,t}) = \sum_{j} -\min(0, N_{j,t}' R_{t})$$
(1)

where $R_t \sim \mathbf{N}(\mathbf{0}, \Omega_t)$

► CCP exposure:

$$\mathsf{ExpCCP}_t \equiv \mathsf{VaR}(\mathsf{A}_t) = \mathsf{E}(\mathsf{A}_t) + \alpha \mathrm{var}(\mathsf{A}_t)^{\frac{1}{2}}$$
(2)

Lots of algebra skipped...

$$ExpCCP_t = f(\Sigma_t) \tag{3}$$

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
0	0	●00	0	00000	0

- ► A single CCP, J clearing members and I securities
- Aggregate loss:

$$A_{t} = \sum_{j} L_{j,t} = \sum_{j} -\min(0, X_{j,t}) = \sum_{j} -\min(0, N_{j,t}'R_{t})$$
(1)

where $R_t \sim \mathbf{N}(0, \Omega_t)$

► CCP exposure:

$$\mathsf{ExpCCP}_t \equiv \mathsf{VaR}(\mathsf{A}_t) = \mathsf{E}(\mathsf{A}_t) + \alpha \mathrm{var}(\mathsf{A}_t)^{\frac{1}{2}}$$
(2)

Lots of algebra skipped...

$$ExpCCP_t = f(\Sigma_t) \tag{3}$$

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
0	0	●00	0	00000	0

- ► A single CCP, J clearing members and I securities
- Aggregate loss:

$$A_{t} = \sum_{j} L_{j,t} = \sum_{j} -\min(0, X_{j,t}) = \sum_{j} -\min(0, N_{j,t}'R_{t})$$
(1)

where $R_t \sim \mathbf{N}(\mathbf{0}, \Omega_t)$

CCP exposure:

$$ExpCCP_t \equiv VaR(A_t) = E(A_t) + \alpha var(A_t)^{\frac{1}{2}}$$
(2)

Lots of algebra skipped...

$$ExpCCP_t = f(\Sigma_t) \tag{3}$$

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
0	0	●00	0	00000	0

- ► A single CCP, J clearing members and I securities
- Aggregate loss:

$$A_{t} = \sum_{j} L_{j,t} = \sum_{j} -\min(0, X_{j,t}) = \sum_{j} -\min(0, N_{j,t}'R_{t})$$
(1)

where $R_t \sim \mathbf{N}(\mathbf{0}, \Omega_t)$

CCP exposure:

$$ExpCCP_t \equiv VaR(A_t) = E(A_t) + \alpha var(A_t)^{\frac{1}{2}}$$
(2)

Lots of algebra skipped...

$$ExpCCP_t = f(\Sigma_t)$$
(3)

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
0	0	000	0	00000	0

Decomposition $\Delta ExpCCP$

► To arrive at a meaningful decomposition, *ExpCCP* is rewritten as:

$$\begin{aligned} \mathsf{ExpCCP}_{t} &= f\left(\Sigma_{t}\right) \\ &= f\left(\mathsf{D}_{\Sigma_{t}}\mathsf{R}_{\Sigma_{t}}\mathsf{D}_{\Sigma_{t}}\right) \\ &= f\left(\mathsf{D}_{\Sigma_{t}}\left(\mathsf{D}_{\Omega_{t}},\mathsf{R}_{\Omega_{t}},\mathsf{P}_{t},\tilde{\mathsf{N}}_{t}\right),\mathsf{R}_{\Sigma_{t}}\left(\mathsf{D}_{\Omega_{t}},\mathsf{R}_{\Omega_{t}},\mathsf{P}_{t},\tilde{\mathsf{N}}_{t}\right)\right) \end{aligned} \tag{4}$$

 One-factor-at-a-time (OFAT), i.e., sequentially update the deep parameters (Al components)

$$\Delta ExpCCP_{t} = f\left(D_{\Sigma}\left(D_{\Omega_{t}}^{1}, R_{\Omega_{t}}^{2}, \tilde{P}_{t}^{3}, \tilde{N}_{t}\right), R_{\Sigma}\left(D_{\Omega_{t}}^{1}, R_{\Omega_{t}}^{2}, \tilde{P}_{t}^{3}, \tilde{N}_{t}\right)\right) - f\left(D_{\Sigma}\left(D_{\Omega_{t-1}}, R_{\Omega_{t-1}}, P_{t-1}, \tilde{N}_{t-1}\right), R_{\Sigma}\left(D_{\Omega_{t-1}}, R_{\Omega_{t-1}}, P_{t-1}, \tilde{N}_{t-1}\right)\right)$$
(5)

Exposure changes are decomposed into five components:

 $\Delta ExpCCP_t = RetVola_t + RetCorr_t + PrLevel_t + TrPosition_t + TrCrowding_t$

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
0	0	000	0	00000	0

Decomposition $\Delta ExpCCP$

► To arrive at a meaningful decomposition, *ExpCCP* is rewritten as:

$$\begin{aligned} \mathsf{ExpCCP}_{t} &= f\left(\Sigma_{t}\right) \\ &= f\left(D_{\Sigma_{t}} R_{\Sigma_{t}} D_{\Sigma_{t}}\right) \\ &= f\left(D_{\Sigma_{t}}\left(D_{\Omega_{t}}, R_{\Omega_{t}}, P_{t}, \tilde{N}_{t}\right), R_{\Sigma_{t}}\left(D_{\Omega_{t}}, R_{\Omega_{t}}, P_{t}, \tilde{N}_{t}\right)\right) \end{aligned}$$
(4)

 One-factor-at-a-time (OFAT), i.e., sequentially update the deep parameters (All components)

$$\Delta ExpCCP_{t} = f\left(D_{\Sigma}\left(D_{\Omega_{t}}^{1}, R_{\Omega_{t}}^{2}, \tilde{P}_{t}^{3}, \tilde{N}_{t}\right), R_{\Sigma}\left(D_{\Omega_{t}}^{1}, R_{\Omega_{t}}^{2}, \tilde{P}_{t}^{3}, \tilde{N}_{t}\right)\right) - f\left(D_{\Sigma}\left(D_{\Omega_{t-1}}, R_{\Omega_{t-1}}, P_{t-1}, \tilde{N}_{t-1}\right), R_{\Sigma}\left(D_{\Omega_{t-1}}, R_{\Omega_{t-1}}, P_{t-1}, \tilde{N}_{t-1}\right)\right)$$
(5)

Exposure changes are decomposed into five components:

 $\Delta ExpCCP_t = RetVola_t + RetCorr_t + PrLevel_t + TrPosition_t + TrCrowding_t$

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
0	0	000	0	00000	0

Decomposition $\Delta ExpCCP$

► To arrive at a meaningful decomposition, *ExpCCP* is rewritten as:

$$\begin{aligned} \mathsf{ExpCCP}_{t} &= f\left(\Sigma_{t}\right) \\ &= f\left(D_{\Sigma_{t}} R_{\Sigma_{t}} D_{\Sigma_{t}}\right) \\ &= f\left(D_{\Sigma_{t}}\left(D_{\Omega_{t}}, R_{\Omega_{t}}, P_{t}, \tilde{N}_{t}\right), R_{\Sigma_{t}}\left(D_{\Omega_{t}}, R_{\Omega_{t}}, P_{t}, \tilde{N}_{t}\right)\right) \end{aligned}$$
(4)

 One-factor-at-a-time (OFAT), i.e., sequentially update the deep parameters (All components)

$$\Delta ExpCCP_{t} = f\left(D_{\Sigma}\left(D_{\Omega_{t}}^{1}, R_{\Omega_{t}}^{2}, \tilde{P}_{t}^{3}, \tilde{\tilde{N}}_{t}\right), R_{\Sigma}\left(D_{\Omega_{t}}^{1}, R_{\Omega_{t}}^{2}, \tilde{P}_{t}^{3}, \tilde{\tilde{N}}_{t}\right)\right) - f\left(D_{\Sigma}\left(D_{\Omega_{t-1}}, R_{\Omega_{t-1}}, P_{t-1}, \tilde{N}_{t-1}\right), R_{\Sigma}\left(D_{\Omega_{t-1}}, R_{\Omega_{t-1}}, P_{t-1}, \tilde{N}_{t-1}\right)\right)$$
(5)

Exposure changes are decomposed into five components:

 $\Delta ExpCCP_{t} = \underbrace{RetVola_{t} + RetCorr_{t} + PrLevel_{t}}_{Price approach} + \underbrace{TrPosition_{t} + TrCrowding_{t}}_{T_{t}}$

Objective & Findings

Approach

Data O Results 0000 Conclusion O

Decomposition ExpCCP

$$ExpCCP = \sum_{j} \sigma_{j} \left(\frac{\partial}{\partial \sigma_{j}} ExpCCP \right)$$
(6)
$$ExpCCP = \sum_{i} \omega_{i} \left(\frac{\partial}{\partial \omega_{i}} ExpCCP \right)$$
(7)

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
O	O	000	O	00000	O
Outline					

Objective & Findings

Approach

Data

Results

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
O	O	000	●	00000	O
Data					

- ► A European Multilateral Clearing Facility (EMCF) sample of trade reports filed by its (anonymous) members.
- It contains all trades in stocks listed in Denmark, Finland and Sweden.
- ▶ The period is Oct 19, 2009 though Sep 10, 2010.
- 228 trading days, 242 stocks, 226 trading accounts (87 house and 139 client accounts)

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
O	O	000	●	00000	O
Data					

- A European Multilateral Clearing Facility (EMCF) sample of trade reports filed by its (anonymous) members.
- It contains all trades in stocks listed in Denmark, Finland and Sweden.
- ▶ The period is Oct 19, 2009 though Sep 10, 2010.
- 228 trading days, 242 stocks, 226 trading accounts (87 house and 139 client accounts)

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
O	O	000	●	00000	O
Data					

- ► A European Multilateral Clearing Facility (EMCF) sample of trade reports filed by its (anonymous) members.
- It contains all trades in stocks listed in Denmark, Finland and Sweden.
- ► The period is Oct 19, 2009 though Sep 10, 2010.
- 228 trading days, 242 stocks, 226 trading accounts (87 house and 139 client accounts)

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
O	O	000	●	00000	O
Data					

- ► A European Multilateral Clearing Facility (EMCF) sample of trade reports filed by its (anonymous) members.
- It contains all trades in stocks listed in Denmark, Finland and Sweden.
- ► The period is Oct 19, 2009 though Sep 10, 2010.
- 228 trading days, 242 stocks, 226 trading accounts (87 house and 139 client accounts)

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
O	O	000	O		O
Outline					

Objective & Findings

Approach

Data

Results

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
0	0	000	0	●0000	0

ExpCCP and $\triangle ExpCCP$

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
0	0	000	0	00000	0

What drives $\triangle ExpCCP$ the most?

		Full sample	Top 100 △ExpCCP	Top 10 △ <i>ExpCCP</i>			
	Panel A : CCP exposure change decomposition in euro						
RetVola		272	10,949	69,311			
RetCorr		113	3,555	-89			
PrLevel		-133	3,195	-5,324			
TrPosition		14,255	38,002	39,445			
TrCrowding		443	8,186	15,571			
$\Delta ExpCCP$		14,949	63,887	118,914			
·	P	anel B: CCP exp	oosure change decomposition in	percentage			
RetVola		1.8%	17.1%	58.3%			
RetCorr		0.8%	5.6%	-0.1%			
PrLevel		-0.9%	5.0%	-4.5%			
TrPosition		95.4%	59.5%	33.2%			
TrCrowding		3.0%	12.8%	13.1%			
ΔExpCCP		100.0%	100.0%	100.0%			

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
0	0	000	0	00000	0

Who contributes to *ExpCCP* the most?

	Full sample	Top 10% ExpCCP	Top 1% ExpCCP				
Panel A: Decomposition of CCP exposure across traders							
Top 1 member	9.3%	14.4%	25.5%				
Top 5 members	27.8%	34.9%	46.8%				
Top 10 members	41.7%	48.2%	57.3%				
Herfindahl-Hirschman Index (HHI)	0.030	0.046	0.085				
Panel B: Dec	omposition of CCP	exposure across stocks					
Top 1 stock	. 18.7%	. 28.0%	16.1%				
Top 5 stocks	43.3%	48.9%	41.1%				
Top 10 stocks	59.3%	62.6%	57.3%				
Herfindahl-Hirschman Index (HHI)	0.080	0.176	0.053				

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
0	0	000	0	00000	0

Principal component analysis of member portfolio returns

	Full sample	Top 10% ExpCCP	Top 1% ExpCCP
PC1	7.8%	20.8%	37.6%
PC2	5.2%	8.9%	10.8%
PC3	2.7%	6.4%	6.2%
PC1+PC2+PC3	15.7%	36.0%	54.7%

The correlation of PC1 with the local market index: 0.43 for the full sample, 0.86 for the top 10% subsample, and 0.98 for the top 1% subsample.

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
0	0	000	0	00000	0

Decomposition of ExpCCP across house/client accounts

	Full sample	Top 10% ExpCCP	Top 1% ExpCCP				
Panel A: Contribution to CCP exposure by account type							
Contribution by house accounts (%)	66.8%	66.0%	69.7%				
Contribution by client accounts (%)	33.2%	34.0%	30.3%				
Pan	Panel B: HHI within account type						
HHI within house accounts	0.051	0.083	0.160				
HHI within client accounts	0.068	0.071	0.081				

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
O	O	000	O	00000	O
Outline					

Objective & Findings

Approach

Data

Results

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
O	O		O	00000	•
Conclusion					

- We study the nature of CCP's exposure towards its clearing members.
- We develop an approach to decomposing CCP exposure to identify the relative contribution of various factors, members and securities.
- The empirical results confirm that there is more crowding/concentration in the extreme CCP exposure levels/changes.

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
O	O	000	O	00000	•
Conclusion					

- We study the nature of CCP's exposure towards its clearing members.
- We develop an approach to decomposing CCP exposure to identify the relative contribution of various factors, members and securities.
- The empirical results confirm that there is more crowding/concentration in the extreme CCP exposure levels/changes.

Background & Motivation	Objective & Findings	Approach	Data	Results	Conclusion
O	O	000	O	00000	•
Conclusion					

- We study the nature of CCP's exposure towards its clearing members.
- We develop an approach to decomposing CCP exposure to identify the relative contribution of various factors, members and securities.
- The empirical results confirm that there is more crowding/concentration in the extreme CCP exposure levels/changes.
Implementation issues

► Volume clock ≈ 15-minute frequency on wall clock volume-clock versus wall-clock

Exponentially weighted moving average (EWMA) covariance matrix

$$\Omega_t = (1 - \lambda) R_{t-1} R'_{t-1} + \lambda \Omega_{t-1}.$$
(8)

• $\alpha = 2.5$ to make *ExpCCP* a 99% VaR

Implementation issues

- ► Volume clock ≈ 15-minute frequency on wall clock volume-clock versus wall-clock
- Exponentially weighted moving average (EWMA) covariance matrix

$$\Omega_t = (1 - \lambda) R_{t-1} R'_{t-1} + \lambda \Omega_{t-1}.$$
(8)

• $\alpha = 2.5$ to make *ExpCCP* a 99% VaR

Implementation issues

- ► Volume clock ≈ 15-minute frequency on wall clock volume-clock versus wall-clock
- Exponentially weighted moving average (EWMA) covariance matrix

$$\Omega_t = (1 - \lambda) R_{t-1} R'_{t-1} + \lambda \Omega_{t-1}.$$
(8)

• $\alpha = 2.5$ to make *ExpCCP* a 99% VaR

Literature

- Empirical literature on central clearing
 - Daily CCP exposure versus margin: Lopez et al. (2017) and Menkveld (2017)
 - Netting efficiency of central clearing: Duffie, Scheicher, and Vuillemey (2015)
 - The effect of central clearing on trading: benos16; Loon and Zhong (2014), Loon and Zhong (2016), and Menkveld, Pagnotta, and Zoican (2016).
- Literature on central clearing and systemic risk
 - Endogenous build-up of asset concentration due to central clearing: Capponi, Cheng, and Rajan (2019)
 - Adverse effects of partial multilateral netting: Amini, Filipović, and Minca (2015)
 - Margin requirements with multiple CCPs: Glasserman, Moallemi, and Yuan (2015)
 - Fire sale risk with a CCP: Menkveld (2016)

Statistics on member portfolio returns: wall/volume-clock

Member	Skewness		Kurtosis		Jarque-Bera	
	Wall-clock	Volume-clock	Wall-clock	Volume-clock	Wall-clock	Volume-clock
1st largest	-0.47	-0.05	15.51	1.97	10.06	0.16
2nd largest	1.96	0.19	46.60	3.15	91.12	0.42
3rd largest	1.50	0.01	30.66	3.16	39.54	0.42
4th largest	1.96	0.27	109.55	3.96	500.69	0.66
5th largest	-0.29	-0.24	8.69	3.42	3.16	0.50
Largest 5 pooled	1.01	0.03	46.79	3.20	91.38	0.43
All pooled	-0.62	-0.19	205.47	18.46	1759.19	14.20

All components of $\Delta ExpCCP$

• The three price components are:

$$RetVola_{t} = f\left(D\left(\mathbf{D}_{\Omega_{t}}, R_{\Omega_{t-1}}, P_{t-1}, \tilde{N}_{t-1}\right), R\left(\mathbf{D}_{\Omega_{t}}, R_{\Omega_{t-1}}, P_{t-1}, \tilde{N}_{t-1}\right)\right) \\ - f\left(D\left(D_{\Omega_{t-1}}, R_{\Omega_{t-1}}, P_{t-1}, \tilde{N}_{t-1}\right), R\left(D_{\Omega_{t-1}}, R_{\Omega_{t-1}}, P_{t-1}, \tilde{N}_{t-1}\right)\right),$$
(9)

$$\begin{aligned} & RetCorr_{t} = f\left(D\left(D_{\Omega_{t}}, R_{\Omega_{t}}, P_{t-1}, \tilde{N}_{t-1}\right), R\left(D_{\Omega_{t}}, R_{\Omega_{t}}, P_{t-1}, \tilde{N}_{t-1}\right)\right) \\ & - f\left(D\left(D_{\Omega_{t}}, R_{\Omega_{t-1}}, P_{t-1}, \tilde{N}_{t-1}\right), R\left(D_{\Omega_{t}}, R_{\Omega_{t-1}}, P_{t-1}, \tilde{N}_{t-1}\right)\right), \text{ and} \end{aligned} \tag{10} \\ & PrLevel_{t} = f\left(D\left(D_{\Omega_{t}}, R_{\Omega_{t}}, P_{t}, \tilde{N}_{t-1}\right), R\left(D_{\Omega_{t}}, R_{\Omega_{t}}, P_{t}, \tilde{N}_{t-1}\right)\right) \\ & - f\left(D\left(D_{\Omega_{t}}, R_{\Omega_{t}}, P_{t-1}, \tilde{N}_{t-1}\right), R\left(D_{\Omega_{t}}, R_{\Omega_{t}}, P_{t-1}, \tilde{N}_{t-1}\right)\right). \end{aligned} \tag{11}$$

The two trade components are:

$$TrPosition_{t} = f\left(D\left(D_{\Omega_{t}}, R_{\Omega_{t}}, P_{t}, \mathbf{N}_{t}\right), R\left(D_{\Omega_{t}}, R_{\Omega_{t}}, P_{t}, \tilde{N}_{t-1}\right)\right) \\ - f\left(D\left(D_{\Omega_{t}}, R_{\Omega_{t}}, P_{t}, \tilde{N}_{t-1}\right), R\left(D_{\Omega_{t}}, R_{\Omega_{t}}, P_{t}, \tilde{N}_{t-1}\right)\right) \text{ and }$$

$$(12)$$

$$TrCrowding_{t} = f\left(D\left(D_{\Omega_{t}}, R_{\Omega_{t}}, P_{t}, \tilde{N}_{t}\right), R\left(D_{\Omega_{t}}, R_{\Omega_{t}}, P_{t}, \mathbf{N}_{t}\right)\right) \\ - f\left(D\left(D_{\Omega_{t}}, R_{\Omega_{t}}, P_{t}, \tilde{N}_{t}\right), R\left(D_{\Omega_{t}}, R_{\Omega_{t}}, P_{t}, \tilde{N}_{t-1}\right)\right).$$
(13)

Decomposition of ExpCCP across securities

ExpCCP being homogeneous of degree one in ω_k, k = 1, 2, ..., I yields:

$$\mathsf{ExpCCP} = \sum_{i} \omega_k \left(\frac{\partial}{\partial \omega_k} \mathsf{ExpCCP} \right). \tag{14}$$

► The contribution of security *k* therefore is:

$$ExpCCP_{k} = \sum_{i,j} \omega_{k} \left(\frac{\partial}{\partial \omega_{k}} ExpCCP \right) = \sum_{j} \sqrt{\frac{1}{2\pi}} \frac{B_{jj}}{2\sigma_{j}} + \frac{\alpha}{2 \text{std}A} \sum_{i,j} \left(\frac{\pi - 1}{2\pi} \right) \left(M'(\rho_{ij}) B_{ij} + \frac{\sqrt{1 - \rho_{ij}^{2}} - 1}{\pi - 1} \left(\frac{\sigma_{j}}{2\sigma_{i}} B_{ii} + \frac{\sigma_{i}}{2\sigma_{j}} B_{jj} \right) \right)$$
(15)

where

$$B_{ij} = n'_i \frac{\partial \Omega}{\partial \omega_k} n_j. \tag{16}$$

Alternative sequencing in $\Delta ExpCCP$ decomposition

	Full sample	Top 100 ΔExpCCP	Top 10 △ <i>ExpCCP</i>	
-	Panel A : CCP exposi	ure change decomposition in eu	ro	
RetVola	275	11,003	69,022	
	(263, 288)	(1,0581, 1,1427)	(65,622, 72,392)	
RetCorr	115	3,612	215	
	(112, 118)	(3,555, 3,669)	(-93, 534)	
PrLevel	-132	3,363	-3,619	
	(-136, -128)	(3,171, 3,555)	(-5,390, -1,881)	
TrPosition	14,598	38,656	39,875	
	(14,245, 14,951)	(37,609, 39,723)	(37,246, 42,661)	
TrCrowding	93	7,253	13,421	
	(-253, 439)	(6,347, 8,180)	(11,435, 15,565)	
$\Delta ExpCCP$	14,949	63,887	118,914	
	Panel B: CCP exposure	change decomposition in percer	ntage	
RetVola	1.8%	17.2%	58.0%	
	(1.8%, 1.9%)	(16.6%, 17.9%)	(55.2%, 60.9%)	
RetCorr	0.8%	5.7%	0.2%	
	(0.8%, 0.8%)	(5.6%, 5.7%)	(-0.1%, 0.4%)	
PrLevel	-0.9%	5.3%	-3.0%	
	(-0.9%, -0.9%)	(5%, 5.6%)	(-4.5%, -1.6%)	
TrPosition	97.7%	60.5%	33.5%	
	(95.3%, 100%)	(58.9%, 62.2%)	(31.3%, 35.9%)	
TrCrowding	0.6%	11.4%	11.3%	
Ũ	(-1.7%, 2.9%)	(9.9%, 12.8%)	(9.6%, 13.1%)	
$\Delta ExpCCP$	100.0%	100.0%	100.0%	

Alternative covariance in $\triangle ExpCCP$ decomposition

	EWMA estimate of $Cov(R)$			Rolling-window estimate of $Cov(R)$		
	Full sample	Top 100	Top 10	Full sample	Top 100	Top 10
	Panel A	A : CCP expos	ure change de	ecomposition in et	ıro	
RetVola	272	10,949	69,311	-414	5,156	24,953
RetCorr	113	3,555	-89	-22	553	-1,225
PrLevel	-133	3,195	-5,324	-168	4,964	-525
TrPosition	14,255	38,002	39,445	18,956	59,148	80,765
TrCrowding	443	8,186	15,571	624	11,388	20,255
$\Delta ExpCCP$	14,949	63,887	118,914	18,976	81,208	124,223
	Panel B: C	CP exposure	change decor	nposition in perce	ntage	
RetVola	1.8%	17.1%	58.3%	-2.2%	6.3%	20.1%
RetCorr	0.8%	5.6%	-0.1%	-0.1%	0.7%	-1.0%
PrLevel	-0.9%	5.0%	-4.5%	-0.9%	6.1%	-0.4%
TrPosition	95.4%	59.5%	33.2%	99.9%	72.8%	65.0%
TrCrowding	3.0%	12.8%	13.1%	3.3%	14.0%	16.3%
$\Delta ExpCCP$	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

Alternative frequencies in $\Delta ExpCCP$ decomposition

	Baseline: 34 bins per day (15-minute intervals)		17 bins per day (30-minute intervals)		8 days per day (1-hour intervals)	
	Full sample	Top 10	Full sample	Top 10	Full sample	Top 10
	Panel	A : CCP expos	sure change deco	omposition in	euro	
RetVola	272	69,311	984	89,104	3,881	276,342
RetCorr	113	-89	316	14,133	683	26,155
PrLevel	-133	-5,324	-351	-20,163	-1,603	-24,318
TrPosition	14,255	39,445	38,730	101,854	123,654	327,711
TrCrowding	443	15,571	1,279	22,431	5,052	77,654
$\Delta ExpCCP$	14,949	118,914	40,959	207,359	131,667	683,545
·	Panel B: (CCP exposure	change decomp	osition in per	centage	
RetVola	1.8%	58.3%	2.4%	43.0%	2.9%	40.4%
RetCorr	0.8%	-0.1%	0.8%	6.8%	0.5%	3.8%
PrLevel	-0.9%	-4.5%	-0.9%	-9.7%	-1.2%	-3.6%
TrPosition	95.4%	33.2%	94.6%	49.1%	93.9%	47.9%
TrCrowding	3.0%	13.1%	3.1%	10.8%	3.8%	11.4%
$\Delta ExpCCP$	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

References I

- Amini, Hamed, Damir Filipović, and Andreea Minca (2015). "To fully net or not to net: Adverse effects of partial multilateral netting". In: *Operations Research* 64.5, pp. 1135–1142.
- Capponi, Agostino, W. Allen Cheng, and Sriram Rajan (2019). "Firm capital dynamics in centrally cleared markets". In: *Mathematical Finance*, pp. 1–38.
- Duffie, Darrell, Martin Scheicher, and Guillaume Vuillemey (2015). "Central clearing and collateral demand". In: *Journal of Financial Economics* 116.2, pp. 237–256.
- Duffie, Darrell and Haoxiang Zhu (2011). "Does a Central Clearing Counterparty Reduce Counterparty Risk". In: *The Review of Asset Pricing Studies* 1, pp. 74–95.
- Glasserman, Paul, Ciamac C Moallemi, and Kai Yuan (2015). "Hidden illiquidity with multiple central counterparties". In: *Operations Research* 64.5, pp. 1143–1158.

References II

- Loon, Yee Cheng and Zhaodong Ken Zhong (2014). "The impact of central clearing on counterparty risk, liquidity, and trading: Evidence from the credit default swap market". In: *Journal of Financial Economics* 112, pp. 91–115.
- (2016). "Does Dodd-Frank affect OTC transaction costs and liquidity? Evidence from real-time CDS trade reports". In: *Journal of Financial Economics* 119.3, pp. 645–672.
- Lopez, Jorge A Cruz et al. (2017). "CoMargin". In: Journal of Financial and Quantitative Analysis 52.5, pp. 2183–2215.
- Menkveld, Albert J (2016). Systemic risk in central clearing: Should crowded trades be avoided? Working paper. Vrije Universiteit Amsterdam.
- (2017). "Crowded positions: An overlooked systemic risk for central clearing parties". In: *The Review of Asset Pricing Studies* 7.2, pp. 209–242.
- Menkveld, Albert J, Emiliano Pagnotta, and Marius A Zoican (2016). Does Central Clearing Affect Price Stability? Evidence from Nordic Equity Markets. Working paper. Vrije Universiteit Amsterdam.