
Background & Motivation Objective & Findings Approach Data Results Conclusion

Central Counterparty Exposure
in Stressed Markets

Wenqian Huang 1 Albert J. Menkveld 2 Shihao Yu 2

1Bank for International Settlements

2Vrije Universiteit Amsterdam and Tinbergen Institute

ECBST Feb 6, 2020



Background & Motivation Objective & Findings Approach Data Results Conclusion

Outline

Background & Motivation

Objective & Findings

Approach

Data

Results

Conclusion



Background & Motivation Objective & Findings Approach Data Results Conclusion

Background & Motivation

I What are central counterparties (CCPs)?

Buyer Seller Buyer CCP Seller

I CCPs have become systemic nodes of financial markets

I Regulators are worried about CCPs risk management in fast-paced
electronic markets
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Objective & Findings

I What is the nature of CCP exposure change?
I What drives CCP exposure changes? Normal vs. stress times?

I How is CCP exposure distributed among members/securities? Normal
vs. stress times?

I We propose an approach to decomposing CCP exposure in near
real-time and implement the approach on a sample of
high-frequency equity CCP data and find

I Contribution of member’s portfolio returns correlation (i.e., crowding) ↑
as exposure increases→ extreme

I Concentration among members ↑ as exposure level→ extreme
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ExpCCP(Duffie and Zhu, 2011; Menkveld, 2017)
I A single CCP, J clearing members and I securities

I Aggregate loss:

At =
∑

j

Lj,t =
∑

j

−min (0,Xj,t ) =
∑

j

−min
(
0,N′j,tRt

)
(1)

where Rt ∼ N(0,Ωt )

I CCP exposure:

ExpCCPt ≡ VaR(At ) = E(At ) + αvar(At )
1
2 (2)

I Lots of algebra skipped...

ExpCCPt = f (Σt ) (3)

where Σt = N′t ΩtNt is the portfolio covariance matrix and
Nt = (N1,t ,N2,t , . . . ,NJ,t )
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Decomposition ∆ExpCCP
I To arrive at a meaningful decomposition, ExpCCP is rewritten as:

ExpCCPt = f (Σt )

= f (DΣt RΣt DΣt )

= f
(
DΣt

(
DΩt ,RΩt ,Pt , Ñt

)
,RΣt

(
DΩt ,RΩt ,Pt , Ñt

)) (4)

I One-factor-at-a-time (OFAT), i.e., sequentially update the deep
parameters All components

∆ExpCCPt =f

DΣ

 1
DΩt ,

2
RΩt ,

3
Pt ,

4

Ñt

 ,RΣ

 1
DΩt ,

2
RΩt ,

3
Pt ,

5

Ñt


− f

(
DΣ

(
DΩt−1 ,RΩt−1 ,Pt−1, Ñt−1

)
,RΣ

(
DΩt−1 ,RΩt−1 ,Pt−1, Ñt−1

))
(5)

I Exposure changes are decomposed into five components:

∆ExpCCPt = RetVolat + RetCorrt + PrLevelt︸                                     ︷︷                                     ︸
Price components

+ TrPositiont + TrCrowdingt︸                             ︷︷                             ︸
Trade components
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Decomposition ExpCCP

ExpCCP =
∑

j

σj

(
∂

∂σj
ExpCCP

)
(6)

ExpCCP =
∑

i

ωi

(
∂

∂ωi
ExpCCP

)
(7)
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Data

I A European Multilateral Clearing Facility (EMCF) sample of trade
reports filed by its (anonymous) members.

I It contains all trades in stocks listed in Denmark, Finland and
Sweden.

I The period is Oct 19, 2009 though Sep 10, 2010.

I 228 trading days, 242 stocks, 226 trading accounts (87 house and
139 client accounts)
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ExpCCP and ∆ExpCCP
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What drives ∆ExpCCP the most?

Full sample Top 100 ∆ExpCCP Top 10 ∆ExpCCP

Panel A : CCP exposure change decomposition in euro
RetVola 272 10,949 69,311
RetCorr 113 3,555 -89
PrLevel -133 3,195 -5,324
TrPosition 14,255 38,002 39,445
TrCrowding 443 8,186 15,571
∆ExpCCP 14,949 63,887 118,914

Panel B: CCP exposure change decomposition in percentage
RetVola 1.8% 17.1% 58.3%
RetCorr 0.8% 5.6% -0.1%
PrLevel -0.9% 5.0% -4.5%
TrPosition 95.4% 59.5% 33.2%
TrCrowding 3.0% 12.8% 13.1%
∆ExpCCP 100.0% 100.0% 100.0%
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Who contributes to ExpCCP the most?

Full sample Top 10% ExpCCP Top 1% ExpCCP

Panel A: Decomposition of CCP exposure across traders
Top 1 member 9.3% 14.4% 25.5%
Top 5 members 27.8% 34.9% 46.8%
Top 10 members 41.7% 48.2% 57.3%
Herfindahl-Hirschman Index (HHI) 0.030 0.046 0.085

Panel B: Decomposition of CCP exposure across stocks
Top 1 stock 18.7% 28.0% 16.1%
Top 5 stocks 43.3% 48.9% 41.1%
Top 10 stocks 59.3% 62.6% 57.3%
Herfindahl-Hirschman Index (HHI) 0.080 0.176 0.053
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Principal component analysis of member portfolio returns

Full sample Top 10% ExpCCP Top 1% ExpCCP

PC1 7.8% 20.8% 37.6%
PC2 5.2% 8.9% 10.8%
PC3 2.7% 6.4% 6.2%
PC1+PC2+PC3 15.7% 36.0% 54.7%

I The correlation of PC1 with the local market index: 0.43 for the full
sample, 0.86 for the top 10% subsample, and 0.98 for the top 1%
subsample.
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Decomposition of ExpCCP across house/client accounts

Full sample Top 10% ExpCCP Top 1% ExpCCP

Panel A: Contribution to CCP exposure by account type
Contribution by house accounts (%) 66.8% 66.0% 69.7%
Contribution by client accounts (%) 33.2% 34.0% 30.3%

Panel B: HHI within account type
HHI within house accounts 0.051 0.083 0.160
HHI within client accounts 0.068 0.071 0.081
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Conclusion

I We study the nature of CCP’s exposure towards its clearing
members.

I We develop an approach to decomposing CCP exposure to identify
the relative contribution of various factors, members and securities.

I The empirical results confirm that there is more
crowding/concentration in the extreme CCP exposure
levels/changes.
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Implementation issues

I Volume clock ≈ 15-minute frequency on wall clock volume-clock versus wall-clock

I Exponentially weighted moving average (EWMA) covariance matrix

Ωt = (1 − λ)Rt−1R ′t−1 + λΩt−1. (8)

I α = 2.5 to make ExpCCP a 99% VaR
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Literature

I Empirical literature on central clearing
I Daily CCP exposure versus margin: Lopez et al. (2017) and
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I The effect of central clearing on trading: benos16; Loon and Zhong

(2014), Loon and Zhong (2016), and Menkveld, Pagnotta, and Zoican
(2016).

I Literature on central clearing and systemic risk
I Endogenous build-up of asset concentration due to central

clearing: Capponi, Cheng, and Rajan (2019)
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Minca (2015)
I Margin requirements with multiple CCPs: Glasserman, Moallemi,

and Yuan (2015)
I Fire sale risk with a CCP: Menkveld (2016)
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Statistics on member portfolio returns: wall/volume-clock

Skewness Kurtosis Jarque-Bera
Member Wall-clock Volume-clock Wall-clock Volume-clock Wall-clock Volume-clock

1st largest -0.47 -0.05 15.51 1.97 10.06 0.16
2nd largest 1.96 0.19 46.60 3.15 91.12 0.42
3rd largest 1.50 0.01 30.66 3.16 39.54 0.42
4th largest 1.96 0.27 109.55 3.96 500.69 0.66
5th largest -0.29 -0.24 8.69 3.42 3.16 0.50
Largest 5 pooled 1.01 0.03 46.79 3.20 91.38 0.43
All pooled -0.62 -0.19 205.47 18.46 1759.19 14.20
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All components of ∆ExpCCP
I The three price components are:

RetVolat =f
(
D

(
DΩt ,RΩt−1 ,Pt−1, Ñt−1

)
,R

(
DΩt ,RΩt−1 ,Pt−1, Ñt−1

))
− f

(
D

(
DΩt−1 ,RΩt−1 ,Pt−1, Ñt−1

)
,R

(
DΩt−1 ,RΩt−1 ,Pt−1, Ñt−1

))
,

(9)

RetCorrt =f
(
D

(
DΩt ,RΩt ,Pt−1, Ñt−1

)
,R

(
DΩt ,RΩt ,Pt−1, Ñt−1

))
− f

(
D

(
DΩt ,RΩt−1 ,Pt−1, Ñt−1

)
,R

(
DΩt ,RΩt−1 ,Pt−1, Ñt−1

))
, and

(10)

PrLevelt =f
(
D

(
DΩt ,RΩt ,Pt, Ñt−1

)
,R

(
DΩt ,RΩt ,Pt, Ñt−1

))
− f

(
D

(
DΩt ,RΩt ,Pt−1, Ñt−1

)
,R

(
DΩt ,RΩt ,Pt−1, Ñt−1

))
.

(11)

I The two trade components are:

TrPositiont =f
(
D (DΩt ,RΩt ,Pt ,Nt ) ,R

(
DΩt ,RΩt ,Pt , Ñt−1

))
− f

(
D

(
DΩt ,RΩt ,Pt , Ñt−1

)
,R

(
DΩt ,RΩt ,Pt , Ñt−1

))
and

(12)

TrCrowdingt =f
(
D

(
DΩt ,RΩt ,Pt , Ñt

)
,R (DΩt ,RΩt ,Pt ,Nt )

)
− f

(
D

(
DΩt ,RΩt ,Pt , Ñt

)
,R

(
DΩt ,RΩt ,Pt , Ñt−1

))
.

(13)

Back
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Decomposition of ExpCCP across securities

I ExpCCP being homogeneous of degree one in ωk , k = 1, 2, . . . , I
yields:

ExpCCP =
∑

i

ωk

(
∂

∂ωk
ExpCCP

)
. (14)

I The contribution of security k therefore is:

ExpCCPk =
∑

i,j

ωk

(
∂

∂ωk
ExpCCP

)
=

∑
j

√
1
2π

Bjj

2σj
+

+
α

2stdA

∑
i,j

(
π − 1

2π

) M′ (ρij) Bij +

√
1 − ρ2

ij − 1

π − 1

(
σj

2σi
Bii +

σi

2σj
Bjj

)
(15)

where
Bij = n′i

∂Ω

∂ωk
nj . (16)

Back



Appendix References

Alternative sequencing in ∆ExpCCP decomposition
Full sample Top 100 ∆ExpCCP Top 10 ∆ExpCCP

Panel A : CCP exposure change decomposition in euro
RetVola 275 11,003 69,022

(263, 288) (1,0581, 1,1427) (65,622, 72,392)
RetCorr 115 3,612 215

(112, 118) (3,555, 3,669) (-93, 534)
PrLevel -132 3,363 -3,619

(-136, -128) (3,171, 3,555) (-5,390, -1,881)
TrPosition 14,598 38,656 39,875

(14,245, 14,951) (37,609, 39,723) (37,246, 42,661)
TrCrowding 93 7,253 13,421

(-253, 439) (6,347, 8,180) (11,435, 15,565)
∆ExpCCP 14,949 63,887 118,914

Panel B: CCP exposure change decomposition in percentage
RetVola 1.8% 17.2% 58.0%

(1.8%, 1.9%) (16.6%, 17.9%) (55.2%, 60.9%)
RetCorr 0.8% 5.7% 0.2%

(0.8%, 0.8%) (5.6%, 5.7%) (-0.1%, 0.4%)
PrLevel -0.9% 5.3% -3.0%

(-0.9%, -0.9%) (5%, 5.6%) (-4.5%, -1.6%)
TrPosition 97.7% 60.5% 33.5%

(95.3%, 100%) (58.9%, 62.2%) (31.3%, 35.9%)
TrCrowding 0.6% 11.4% 11.3%

(-1.7%, 2.9%) (9.9%, 12.8%) (9.6%, 13.1%)
∆ExpCCP 100.0% 100.0% 100.0%
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Alternative covariance in ∆ExpCCP decomposition

EWMA estimate of Cov(R) Rolling-window estimate of Cov(R)

Full sample Top 100 Top 10 Full sample Top 100 Top 10

Panel A : CCP exposure change decomposition in euro
RetVola 272 10,949 69,311 -414 5,156 24,953
RetCorr 113 3,555 -89 -22 553 -1,225
PrLevel -133 3,195 -5,324 -168 4,964 -525
TrPosition 14,255 38,002 39,445 18,956 59,148 80,765
TrCrowding 443 8,186 15,571 624 11,388 20,255
∆ExpCCP 14,949 63,887 118,914 18,976 81,208 124,223

Panel B: CCP exposure change decomposition in percentage
RetVola 1.8% 17.1% 58.3% -2.2% 6.3% 20.1%
RetCorr 0.8% 5.6% -0.1% -0.1% 0.7% -1.0%
PrLevel -0.9% 5.0% -4.5% -0.9% 6.1% -0.4%
TrPosition 95.4% 59.5% 33.2% 99.9% 72.8% 65.0%
TrCrowding 3.0% 12.8% 13.1% 3.3% 14.0% 16.3%
∆ExpCCP 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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Alternative frequencies in ∆ExpCCP decomposition

Baseline: 34 bins per day 17 bins per day 8 days per day
(15-minute intervals) (30-minute intervals) (1-hour intervals)

Full sample Top 10 Full sample Top 10 Full sample Top 10

Panel A : CCP exposure change decomposition in euro
RetVola 272 69,311 984 89,104 3,881 276,342
RetCorr 113 -89 316 14,133 683 26,155
PrLevel -133 -5,324 -351 -20,163 -1,603 -24,318
TrPosition 14,255 39,445 38,730 101,854 123,654 327,711
TrCrowding 443 15,571 1,279 22,431 5,052 77,654
∆ExpCCP 14,949 118,914 40,959 207,359 131,667 683,545

Panel B: CCP exposure change decomposition in percentage
RetVola 1.8% 58.3% 2.4% 43.0% 2.9% 40.4%
RetCorr 0.8% -0.1% 0.8% 6.8% 0.5% 3.8%
PrLevel -0.9% -4.5% -0.9% -9.7% -1.2% -3.6%
TrPosition 95.4% 33.2% 94.6% 49.1% 93.9% 47.9%
TrCrowding 3.0% 13.1% 3.1% 10.8% 3.8% 11.4%
∆ExpCCP 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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