Special Repo Rates and the Cross-Section of Bond Prices

Stefania D'Amico & N. Aaron Pancost

Federal Reserve Bank of Chicago¹ University of Texas at Austin McCombs School of Business

November 23, 2020

¹The views expressed here are those of the authors and not necessarily those of the Federal Reserve Bank of Chicago or the Federal Reserve System.

Motivation: Treasury Market Anomalies

- An "anomaly" is when two assets or trades have virtually the same cash-flows but very different prices.
- Example: the "on-the-run" premium
 - On-the-run Treasury bond is the most recently issued bond of that maturity.
 - On-the-run Treasuries trade at higher prices (lower yields) than older Treasuries of equal duration.
 - Most of the term-structure literature throws these bonds out (Gürkaynak Sack & Wright 2007).
- Other examples:
 - TIPS-Treasury bond puzzle
 - TIPS relative illiquidity
 - Negative interest rate swap spread

What We Do

Estimate a DTSM directly on observed Treasury bond prices

 i.e., not the estimated zero-coupon yields from a different model (such as Gürkaynak Sack & Wright 2007)

Two advantages of using observed rather than estimated bond prices:

- Link cash prices to overnight repo rates in the bilateral "special" repo market.
- Using the full cross-section allows us to identify latent pricing factors without estimating the time-series parameters of the model.
- Special repo rates capture the value of each bond as collateral, beyond just its coupon and principal payments.
- Most important: collateral value is risky and includes a **risk premium**.

On-the-Run Special Rates

What We Find

- We account for the collateral value of Treasuries within a DTSM, effectively linking the pricing in the cash and repo markets.
- Analyze the extent to which cash price differences in the cross-section are consistent with observed special collateral (SC) rates.
- Derive a time-varying risk premium associated with the SC rate and verify its ability to explain price anomalies across Treasury markets.
- At the 10-year maturity, it explains 74%–90% of the on-the-run premium, about 68% of the TIPS-Treasury Bond puzzle, and about 58% of TIPS relative illiquidity.

Maturity at	Avg #	% On Special	Avg Spread	Avg Spread	
Issuance	Bonds	(off-the-run)	(off-the-run)	(on-the-run)	
All	220	84.7	4.79	19.7	
All	220	04.7	(6.16)	(41.6)	
2	11.2	87.3	5.37	20.5	
2	11.2	01.5	(8.8)	(38.7)	
3	21.7	88.9	5.72	21.1	
5	21.1	00.9	(7.6)	(36)	
5	46.9	84.5	3.84	24.5	
5	40.9	04.5	(6.09)	(41.7)	
7	47.8	86.4	4.85	6.18	
'	47.0	00.4	(5.47)	(11)	
10	35.2	83.2 82.4	3.44	35.4	
10	55.2		(3.69)	(66.5)	
30	58.6		5.86	8.97	
50	50.0	02.4	(6.43)	(23.2)	

Maturity at	Avg #	% On Special	Avg Spread	Avg Spread	
Issuance	Bonds	(off-the-run)	(off-the-run)	(on-the-run)	
All	220	84.7	4.79	19.7	
	220	04.7	(6.16)	(41.6)	
2	11.2	87.3	5.37	20.5	
2	11.2	07.5	(8.8)	(38.7)	
3	21.7	88.9	5.72	21.1	
5	21.1	00.9	(7.6)	(36)	
5	46.9	84.5	3.84	24.5	
5	40.5	04.5	(6.09)	(41.7)	
7	47.8	86.4	4.85	6.18	
1	+1.0	00.4	(5.47)	(11)	
10	35.2	83.2	3.44	35.4	
10	JJ.2	03.2	(3.69)	(66.5)	
30	58.6	82.4	5.86	8.97	
	50.0	02.4	(6.43)	(23.2)	

Maturity at	Avg #	% On Special	Avg Spread	Avg Spread	
Issuance	Bonds	(off-the-run)	(off-the-run)	(on-the-run)	
All	220	84.7	4.79	19.7	
	220	04.7	(6.16)	(41.6)	
2	11.2	87.3	5.37	20.5	
2	11.2	07.5	(8.8)	(38.7)	
3	21.7	88.9	5.72	21.1	
J	21.7	00.9	(7.6)	(36)	
5	46.9	84.5	3.84	24.5	
5	40.9	04.5	(6.09)	(41.7)	
7	47.8	86.4	4.85	6.18	
1	47.0	00.4	(5.47)	(11)	
10	35.2	83.2	3.44	35.4	
10	JJ.Z	03.2	(3.69)	(66.5)	
30	58.6	82.4	5.86	8.97	
	50.0	0∠.4	(6.43)	(23.2)	

Maturity at Issuance	Avg ∦ Bonds	% On Special Avg Spread (off-the-run) (off-the-run)		Avg Spread (on-the-run)
All	220	84.7	4.79	19.7
	220	04.7	(6.16)	(41.6)
2	11.2	87.3	5.37	20.5
2	11.2	07.5	(8.8)	(38.7)
3	21.7	88.9	5.72	21.1
J	21.7	00.9	(7.6)	(36)
5	46.9	84.5	3.84	24.5
J	40.9	04.5	(6.09)	(41.7)
7	47.8	86.4	4.85	6.18
1	47.0	00.4	(5.47)	(11)
10	35.2	83.2	3.44	35.4
10	55.2	03.2	(3.69)	(66.5)
30	58.6	82.4	5.86	8.97
	50.0	02.4	(6.43)	(23.2)

D'Amico & Pancost

Special Spreads over the Auction Cycle

variation

Special Spreads are a Dividend Proportional to Price (1)

- GC rate is R_t , special rate is $r_t < R_t$.
- At t I borrow P_t against my special collateral at rate r_t, and lend an amount Δ at the GC rate R_t.
- At t + 1 earnings are $(1 + R_t)\Delta (1 + r_t)P_t$.
- Choose Δ such that no gain or loss at t + 1: $\Delta = \frac{1+r_t}{1+R_t}P_t < P_t$.

Special Spreads are a Dividend Proportional to Price (2)

• Gain at t of
$$\left(1 - \frac{1+r_t}{1+R_t}\right) P_t$$
.

Define

$$y_t \equiv \log \frac{1+R_t}{1+r_t} \geq 0$$

Then the price of a zero-coupon bond on special with special spread y_t is

$$P_{t} = (1 - e^{-y_{t}}) P_{t} + E_{t}^{*} P_{t+1}$$
$$= e^{y_{t}} E_{t}^{*} P_{t+1}$$

Model: link dynamics of y_t to other factors that influence Treasury bond prices.

D'Amico & Pancost

Repo Specials and Price Residuals, GSW Model

Maturity at	Avg Spread	Avg Price Res
Issuance	(on-the-run)	(% of par)
All	19.7	0.185
All	(41.6)	(0.592)
2	20.5	0.00738
2	(38.7)	(0.0512)
3	21.1	0.0516
5	(36)	(0.1)
5	24.5	0.109
5	(41.7)	(0.126)
7	6.18	0.0469
I	(11)	(0.173)
10	35.4	0.676
10	(66.5)	(0.903)
30	8.97	0.217
30	(23.2)	(0.953)

Repo Specials and Price Residuals, GSW Model

Maturity at	Avg Spread	Avg Price Res
Issuance	(on-the-run)	(% of par)
All	19.7	0.185
All	(41.6)	(0.592)
2	20.5	0.00738
2	(38.7)	(0.0512)
3	21.1	0.0516
5	(36)	(0.1)
5	24.5	0.109
5	(41.7)	(0.126)
7	6.18	0.0469
1	(11)	(0.173)
10	35.4	0.676
10	(66.5)	(0.903)
30	8.97	0.217
30	(23.2)	(0.953)

Prices and Special Spreads: Reduced-Form Evidence

$$\eta_{i,t} = \alpha_i + \beta_1 y_t^i + \beta_2 \eta_{i,t-1} + \xi_{i,t}$$

Уt	0.00280*** (5.121)	0.000340*** (5.704)	0.00231*** (4.970)	0.000382*** (5.326)		
$\eta_{i,t-1}$		0.902*** (105.7)		0.866*** (69.47)		
R ²	0.007	0.822	0.006	0.759		
Observations	496,420	495,792	496,420	495,792		
CUSIP FE	NO	NO	YES	YES		
# of CUSIP	628	628	628	628		
<i>t</i> -statistics in parentheses, clustered at CUSIP level						

*** p<0.01, ** p<0.05, * p<0.1

D'Amico & Pancost

Model: Special Spreads

Non-negative special spread on bond *i* at time *t*:

where

- $y^D_{\tau(t,i)}$ is the deterministic component of the square root of the special spread that depends on time since issuance τ
- y_t^S is a stochastic aggregate repo factor
- $\blacktriangleright x_t^i$ is a stochastic bond-level residual that follows

$$x_{t+1}^i = \rho x_t^i + \sigma_x \varepsilon_{t+1}^i$$

Special Spreads over the Auction Cycle (10-Year)

back

Observed Repo Factor

Repo factor: average deviation from auction cycle:

$$y_t^S = \frac{1}{n_t} \sum_{i=1}^{n_t} \left[\sqrt{y_t^i} - y_{\tau(t,i)}^D \right]$$

where we include on-the-run and first off-the-run bonds of varying maturities.

$$x_t^i = \sqrt{y_t^i} - y_t^S - y_{ au(t,i)}^D$$

► x_t^i and $y_{\tau(t,i)}^D$ appended to the state vector X_t , bond by bond.

D'Amico & Pancost

Model: Dynamics and Risk Prices

Aggregate state is a VAR(1): state variables

$$X_{t+1} = \mu + \Phi X_t + \Sigma \varepsilon_{t+1}$$

where $\varepsilon_{t+1} \sim \mathbb{N}(0, I)$.

Short rate of interest is affine in the state:

$$\log\left(1+R_t\right) = \delta_0 + \delta_1' X_t$$

Stochastic discount factor exposed to ε_{t+1} through $\lambda_t \equiv \lambda + \Lambda X_t$:

$$\log \frac{M_{t+1}}{M_t} = -\delta_0 - \delta_1' X_t - \frac{1}{2} \lambda_t' \lambda_t - \lambda_t' \varepsilon_{t+1}$$

Special spread is quadratic in the state:

$$y_t^i = X_t' \Gamma_i X_t$$

D'Amico & Pancost

Bond Prices

Result: a zero-coupon bond with n days to maturity has log price given by

$$\log P_t^{(n)} = X_t' \Gamma X_t + \log E_t \left\{ \frac{M_{t+1}}{M_t} P_{t+1}^{(n-1)} \right\} \\ = A_n + B_n' X_t + X_t' C_n X_t$$

▶ With loadings given by $A_0 = 0$, $B_0 = \vec{0}_{k \times 1}$, $C_0 = \vec{0}_{k \times k}$, and loadings given by loadings

Measurement

All bonds in the sample pay coupons, making them portfolios of zero-coupon bonds:

$$P_{t}^{i} = \sum_{j} c_{j} \exp \left\{ A_{m_{j}} + B_{m_{j}}^{\prime} X_{t} + X_{t}^{\prime} C_{m_{j}} X_{t} \right\}$$
$$\equiv P^{Z} \left\{ \vec{c} (i), \vec{m} (i), X_{t} \right\}$$

Stacking all bonds for a given t gives the measurement equation

$$\vec{P}_{t} = \begin{bmatrix} P^{Z} \left\{ \vec{c} (1), \vec{m} (1), X_{t} \right\} \\ P^{Z} \left\{ \vec{c} (2), \vec{m} (2), X_{t} \right\} \\ \dots \\ P^{Z} \left\{ \vec{c} (n_{t}), \vec{m} (n_{t}), X_{t} \right\} \end{bmatrix} + \vec{\eta}_{t}$$

n_t is typically greater than 100, so we can estimate the X_t for each t using NLLS without using a nonlinear Kalman filter.

D'Amico & Pancost

Estimation Steps

- Split sample into 10-year on-the-run and first off-the-run ("special") bonds, and all others ("normal" bonds).
- Estimate a 3-factor model on "normal" bonds ignoring special spreads.
 - 10 parameters
 - $\blacktriangleright \rightarrow X_t$ at each date t.
- 4-factor models
 - 1. Price on-the-runs and first off-the-run, ignoring their special spreads.
 - 2. Price their special spreads risk-neutral (no risk premia earned on repo factor, repo factor doesn't affect other risk premia)
 - 3. Allow a constant repo risk premium (one additional parameter)
 - 4. Allow a time-varying risk premium (four additional parameters)

Price Residuals, Special Bonds (ignoring repos)

sum of squared residuals: 0.379

D'Amico & Pancost

Price Residuals, Special Bonds (risk-neutral)

sum of squared residuals: 0.37. $R^2 = 0.024$.

D'Amico & Pancost

Price Residuals, Special Bonds (constant risk premium)

sum of squared residuals: 0.238. $R^2 = 0.374$.

D'Amico & Pancost

Price Residuals, Special Bonds (time-varying)

sum of squared residuals: 0.042. $R^2 = 0.889$.

D'Amico & Pancost

Other Anomalies

- SC risk premium correlates with other Treasury anomalies.
- Often, anomalies are defined using the 10-year on-the-run note.
- Some work "controls" for repo specials but implicitly assumes risk-neutral pricing.

Anomoly	10-Year Only		10-Year (pooled)	
Anomaly	Corr	R^2	Corr	R^2
GSW 10-Year On-the-Run	0.91	0.83	0.9	0.81
Off Note-Bond Spread	0.79	0.62	0.73	0.53
TIPS-Treasury Puzzle	0.82	0.68	0.78	0.61
TIPS Liq Premium	0.76	0.58	0.78	0.62
Nominal Fitting Errors	0.6	0.36	0.52	0.27

Other Anomalies

- SC risk premium correlates with other Treasury anomalies.
- Often, anomalies are defined using the 10-year on-the-run note.
- Some work "controls" for repo specials but implicitly assumes risk-neutral pricing.

Anomoly	10-Ye	10-Year Only		10-Year (split)	
Anomaly	Corr	R^2	Corr	R^2	
GSW 10-Year On-the-Run	0.91	0.83	0.75	0.56	
Off Note-Bond Spread	0.79	0.62	0.68	0.46	
TIPS-Treasury Puzzle	0.82	0.68	0.71	0.5	
TIPS Liq Premium	0.76	0.58	0.63	0.4	
Nominal Fitting Errors	0.6	0.36	0.6	0.36	

Conclusion and Further Work

- Cash prices for highly-valued 10-year Treasury securities are consistent with their SC repo rates only after incorporating a time-varying risk premium on the repo factor.
- This repo risk premium can explain a significant portion of price anomalies across Treasury cash, repo, and derivatives markets.
- This suggests a common underlying economic mechanism for these anomalies, linked to the collateral value of high-quality securities.

Future work:

- Explore special spreads on seasoned bonds and delivery fails.
- Jointly price Treasury futures along with spot prices and repo rates.
- Link this factor to other price anomalies.
Estimated Yield Loadings $-\frac{1}{n}B_n$

back

D'Amico & Pancost

Yield Curve in Late December 2008

D'Amico & Pancost

Yield Curve in Late December 2008

D'Amico & Pancost

Jucit

back

D'Amico & Pancost

D'Amico & Pancost

back

D'Amico & Pancost

D'Amico & Pancost

Model (Bond Price Loadings)

$$\log P_t^{(n)} = A_n + B'_n X_t + X'_t C_n X_t$$

$$C_n = \Gamma + \Phi^{*'} C_{n-1} D_{n-1} \Phi^*$$

$$B'_n = -\delta'_1 + (2\mu^{*'} C_{n-1} + B'_{n-1}) D_{n-1} \Phi^*$$

$$A_n = -\delta_0 + A_{n-1} + \frac{1}{2} B'_{n-1} \Sigma G_{n-1} \Sigma' B_{n-1}$$

$$+ \frac{1}{2} \log |G_{n-1}| + (\mu^{*'} C_{n-1} + B'_{n-1}) D_{n-1} \mu^*$$

where

$$G_{n-1} = \left[I - 2\Sigma' C_{n-1}\Sigma\right]^{-1}$$
$$D_{n-1} = \Sigma G_{n-1}\Sigma^{-1}$$
$$\mu^* \equiv \mu - \Sigma\lambda$$
$$\Phi^* \equiv \Phi - \Sigma\Lambda.$$

D'Amico & Pancost

Model (Bond Price Loadings)

$$\log P_t^{(n)} = A_n + B'_n X_t + X'_t C_n X_t$$

$$C_n = \Gamma + \Phi^{*'} C_{n-1} D_{n-1} \Phi^*$$

$$B'_n = -\delta'_1 + (2\mu^{*'} C_{n-1} + B'_{n-1}) D_{n-1} \Phi^*$$

$$A_n = -\delta_0 + A_{n-1} + \frac{1}{2} B'_{n-1} \Sigma G_{n-1} \Sigma' B_{n-1}$$

$$+ \frac{1}{2} \log |G_{n-1}| + (\mu^{*'} C_{n-1} + B'_{n-1}) D_{n-1} \mu^*$$

where

$$G_{n-1} = \left[I - 2\Sigma' C_{n-1}\Sigma\right]^{-1}$$
$$D_{n-1} = \Sigma G_{n-1}\Sigma^{-1}$$
$$\mu^* \equiv \mu - \Sigma\lambda$$
$$\Phi^* \equiv \Phi - \Sigma\Lambda.$$

D'Amico & Pancost

Model (Bond Price Loadings)

$$\log P_t^{(n)} = A_n + B_n' X_t$$

$$B'_{n} = -\delta'_{1} + B'_{n-1}\Phi^{*}$$
$$A_{n} = -\delta_{0} + A_{n-1} + \frac{1}{2}B'_{n-1}\Sigma\Sigma'B_{n-1} + B'_{n-1}\mu^{*}$$

where

$$\mu^* \equiv \mu - \Sigma \lambda$$
$$\Phi^* \equiv \Phi - \Sigma \Lambda.$$

D'Amico & Pancost

раск

D'Amico & Pancost

Fit over Time ("normal" bonds)

Model: Special Spreads

Non-negative special spread on bond *i* at time *t*:

where

- y^D_{t,τi} is the deterministic component of the square root of the special spread that depends on time since issuance
- y_t^S is a stochastic aggregate repo factor
- $\blacktriangleright x_t^i$ is a stochastic bond-level residual that follows

$$x_{t+1}^i = \rho x_t^i + \sigma_x \varepsilon_{t+1}^i$$

Observed Repo Factor

Repo factor: average deviation from auction cycle:

$$y_t^S = \frac{1}{n_t} \sum_{i=1}^{n_t} \left[\sqrt{y_t^i} - y_{t,\tau_i}^D \right]$$

where we include on-the-run and first off-the-run for the 10-year note.
Idiosyncratic factor is the residual:

$$x_t^i = \sqrt{y_t^i} - y_t^S - y_{t,\tau_i}^D$$

► x_t^i and y_{t,τ_i}^D appended to the state vector X_t , bond by bond.

Model: State Variables

We assume 3 latent bond-pricing factors (level slope curvature)

- State vector X_t : $[L, S, C, y^S, y_{\tau_i}^D, x^i]$
 - 1. Level picture
 - 2. Slope picture
 - 3. Curvature picture
 - 4. Aggregate repo factor
 - 5. Deterministic repo factor
 - 6. Idiosyncratic repo factor
- On-the-run bonds and first-off-the-runs load on all six factors. All other bonds load only on L, S, C.

TIPS-Treasury Bond Puzzle

TIPS Relative Illiquidity

