Firm-bank linkages and optimal policies in a lockdown

Bank of Italy & CEPR UC Santa Cruz

Anatoli Segura Alonso Villacorta

ECB-RFS Macro-Finance Conference 23 March 2021

The views expressed in this paper are our own and do not necessarily coincide with those of Bank of Italy

Covid-19 and firms' liquidity needs

- Lockdowns have led to cash-flow losses for firms
- Multifront policies to support firms' liquidity needs
 - Direct: transfers
 - Indirect (through banks): loan guarantees, relaxation of capital requirements
- Bank lending expansion, but initial tightening evidence

Macro-financial loops and government policies

IMF and FSB warn of rising risk of macro-financial feedbacks

- Firms: increase in indebtedness & moral hazard/debt overhang problems
 - Crouzet & Gourio 2020, Carletti et al 2020, Brunnermeier & Krishnamurthy 2020
- Banks: loan losses erode capitalization and affect lending
 - Blank, Hanson, Stein, & Sunderam 2020, Acharya, Engle, & Steffen 2020
- But their importance depends on size and design of support policies

Macro-financial loops and government policies

IMF and FSB warn of rising risk of macro-financial feedbacks

- Firms: increase in indebtedness & moral hazard/debt overhang problems
 - Crouzet & Gourio 2020, Carletti et al 2020, Brunnermeier & Krishnamurthy 2020
- Banks: loan losses erode capitalization and affect lending
 - Blank, Hanson, Stein, & Sunderam 2020, Acharya, Engle, & Steffen 2020
- But their importance depends on size and design of support policies
- \Rightarrow Have governments optimally used their available budget to support firms?

This paper

Stylized framework

- Lockdown: Firms suffer output losses & need to borrow from banks
- Two frictions:
 - 1. Firms: Increase in indebtedness reduces output due to moral hazard
 - 2. Banks: Only funding through safe debt, which limits lending supply

This paper

Stylized framework

- Lockdown: Firms suffer output losses & need to borrow from banks
- Two frictions:
 - 1. Firms: Increase in indebtedness reduces output due to moral hazard
 - 2. Banks: Only funding through safe debt, which limits lending supply

\rightarrow Firm-bank amplification feedback

Results: Optimal government policies

Welfare maximizing policies given exogenous expected government budget:

- Government provides sufficient aggregate risk insurance
 - Removes banks' funding constraints
- Implementation: transfers to firms & fairly-priced bank debt guarantees
 - ► Guarantees fairly reimbursed → more budget for transfers
- Funding of guarantees through future procyclical corporate profit taxation

Timeframe and agents

- Two dates: t = 0 (lockdown), t = 1 (post lockdown)
- Four agents: savers, firms, bank, government

Timeframe and agents

- Two dates: t = 0 (lockdown), t = 1 (post lockdown)
- Four agents: savers, firms, bank, government

Savers

- Deep-pockets
- Only invest in safe assets

Firms

- At t = 0, many firms with a project in place and some debt b_0
- To continue they have to incur operating cost ρ
 - No lockdown: output $r_0 = \rho$ & used to pay cost
 - Lockdown: output destroyed, $r_0 = 0$, & need to borrow ρ to continue
- If continuation, project generates payoffs at t = 1

$$A_z = \begin{cases} A & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

• Effort-choice p is unobservable & disutility cost c(p)

Firms

- At t = 0, many firms with a project in place and some debt b_0
- To continue they have to incur operating cost ρ
 - No lockdown: output $r_0 = \rho$ & used to pay cost
 - Lockdown: output destroyed, $r_0 = 0$, & need to borrow ρ to continue
- If continuation, project generates payoffs at t = 1

$$A_z = \begin{cases} A & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

• Effort-choice p is unobservable & disutility cost c(p)

Lemma (Moral hazard)

- Effort choice $\hat{p}(b_0 + b_L)$ decreasing in additional debt due to lockdown b_L
- Low skin-in-the-game \rightarrow low effort $p \rightarrow$ low output

Bank

Representative competitive bank: intermediates between savers & firms

- At t = 0, starts with portfolio of firms' loans with promise b_0 and liabilities d_0
- Issues new loans to firms with promise b_L , funded with safe debt d_L
- Diversifies firms' idiosyncratic project risk \rightarrow loan portfolio return at t = 1:

$$\widehat{p}(b_0+b_L)(b_0+b_L).$$

Success prob face value

Bank

Representative competitive bank: intermediates between savers & firms

- At t = 0, starts with portfolio of firms' loans with promise b_0 and liabilities d_0
- Issues new loans to firms with promise b_L , funded with safe debt d_L
- Diversifies firms' idiosyncratic project risk \rightarrow loan portfolio return at t = 1:

$$\theta \underbrace{\widehat{p}(b_0+b_L)}(b_0+b_L).$$

Success prob face value

• Aggregate shock θ , with $E[\theta] = 1$ & minimum value of $\underline{\theta}$

Bank

Representative competitive bank: intermediates between savers & firms

- At t = 0, starts with portfolio of firms' loans with promise b_0 and liabilities d_0
- Issues new loans to firms with promise b_L , funded with safe debt d_L
- Diversifies firms' idiosyncratic project risk \rightarrow loan portfolio return at t = 1:

$$\theta \underbrace{\widehat{p}(b_0+b_L)}_{(b_0+b_L)} \underbrace{(b_0+b_L)}_{(b_0+b_L)}.$$

Success prob face value

• Aggregate shock θ , with $E[\theta] = 1$ & minimum value of $\underline{\theta}$

• Bank funding constraint: new and legacy debts, *d*_L, *d*₀, must be safe

$$d_0 + d_L \le \underline{\theta} \widehat{p}(b_0 + b_L)(b_0 + b_L)$$

Market imposed leverage constraint

• Firms need to borrow $\rho \rightarrow$ banks must issue safe debt $d_L = \rho$

Firms

• Banks create safe collateral out of new risky loans

Firms

• New promise increases firms' moral hazard → value of legacy loans falls

• New promise even higher \rightarrow further aggravates firms' moral hazard

Firms

Government policies

- Government with resources at t = 0, 1 sets support policies:
 - t = 0: transfers to firms to pay operating cost
 - t = 1: transfers ≤ 0 to agents contingent on θ
- Expected cost of policies limited by exogenous *X* > 0
- Objective: maximize aggregate-welfare:

 \rightarrow Maximization of $Y \Rightarrow$ induce maximum p

Government policies

- Government with resources at t = 0, 1 sets support policies:
 - t = 0: transfers to firms to pay operating cost
 - t = 1: transfers ≤ 0 to agents contingent on θ
- Expected cost of policies limited by exogenous *X* > 0
- Objective: maximize aggregate-welfare:

 \rightarrow Maximization of *Y* \Rightarrow induce maximum *p*

Prop: Properties of optimal policies

- 1. Minimize bank profits & savers consumption, exhaust government budget
 - Welfare increasing in firms' skin-in-the-game
- 2. Government provides sufficient aggregate risk insurance
 - Bank's agg. risk insurance limited by its profits, which are optimally low

Decentralized implementation of optimal policies

Consider government policy consisting of (τ_L, κ) :

- Direct transfers to firms $\tau_L \ge 0$ at t = 0
- Fairly-priced guarantees on bank debt described by shock threshold $\kappa > \underline{\theta}$:
 - Gov. insures debt for shocks $\theta < \kappa \Rightarrow$ relaxes bank funding constraint:

$$d_0 + \rho - \tau_L \le \kappa \widehat{p}(b_0 + b_L)(b_0 + b_L)$$

Fairly priced: bank repays in good states ($\theta > \kappa$)

Decentralized implementation of optimal policies

Consider government policy consisting of (τ_L, κ) :

- Direct transfers to firms $\tau_L \ge 0$ at t = 0
- Fairly-priced guarantees on bank debt described by shock threshold $\kappa > \underline{\theta}$:
 - Gov. insures debt for shocks $\theta < \kappa \Rightarrow$ relaxes bank funding constraint:

$$d_0 + \rho - \tau_L \le \kappa \widehat{p}(b_0 + b_L)(b_0 + b_L)$$

Fairly priced: bank repays in good states ($\theta > \kappa$)

Prop. Intervention toolkit (τ_L , κ) achieves optimality:

- $\tau_L = X$: government uses its entire budget to grant transfers to firms
- $\kappa \geq \overline{\kappa}$: government provides sufficient aggregate risk insurance (at no cost)

Illustration: Optimal policies versus only-transfers

Firms' taxation and funding of bank debt guarantees

- Bank debt guarantees imply government disbursements upon bad shocks
- Assumption so far: government has resources from unmodeled source

Firms' taxation and funding of bank debt guarantees

- Bank debt guarantees imply government disbursements upon bad shocks
- Assumption so far: government has resources from unmodeled source

Procyclical corporate profit taxation at t = 1

- Bad shocks: Tax firms that make profits to pay bank debt guarantees \Rightarrow Expands safe collateral out of firms' payoffs: $\underline{\theta}p(b_0 + b_L) \rightarrow \underline{\theta}pA$
- Good shocks: Rebate bank repayment of guarantees to non-defaulting firms
 ⇒ Neutralizes negative effect of taxes on firms' effort

Prop: Procyclical firm taxation funds bank debt guarantees in optimal policy if $\underline{\theta}$ not too low.

Conclusions

- New framework of firm-bank loops used to analyze optimal policies in a lockdown
- Optimal that Government provides aggregate risk insurance & is reimbursed for it
- Optimal mix: transfers to firms and fairly-priced guarantees on bank debt
- Role of procyclical corporate profit taxation to finance those guarantees

Results on alternative policy toolkits

- Suboptimal: transfers + loan guarantees + relaxation of capital requirements
- Optimal: transfers + bank's equity injections

Actually implemented policy toolkits

Toolkit 1

- Transfers & non-priced bank debt guarantees
 - Analogous to relaxation of capital requirements for bank with insured deposits
- Aggregate risk insurance provided for "free" \rightarrow limited by gov. budget

Actually implemented policy toolkits

Toolkit 1

- Transfers & non-priced bank debt guarantees
 - Analogous to relaxation of capital requirements for bank with insured deposits
- Aggregate risk insurance provided for "free" \rightarrow limited by gov. budget

Toolkit 2

- Transfers & bank loan guarantees
 - Government repays fraction of new loans that default
- Provides some agg. risk insurance but disbursements even when bank does not fail

Pecking order of policy toolkits: Transfers + guarantee type

Fairly priced bank debt \succ Non-priced bank debt \succ Bank loan

Comparison of intervention toolkits

Transfers' expenditure share: $\tau_L^*(X)/X$

Agg. risk insurance

Alternative optimal toolkit: transfers & bank equity injections

- Key feature optimal policy: fairly priced agg. risk insurance provision
- Public equity injection in banks could achieve same role

Prop. Transfers to firms and fairly reimbursed equity injections in banks constitute alternative optimal policy mix

- Government takes fairly priced equity stake \neq bailout!
- Lower budget for transfers to firms \rightarrow larger equity injection to banks
- Alternative toolkit implies larger initial government expenditures
 - But no additional costs upon bad shocks in the future
- Equivalence of bank debt guarantees and equity injections may not hold in reality
 - Due to, e.g., bank default externalities or political costs from public bank ownership

Implementation of optimal allocation with decentralized government policies

Government policy described by (τ_L, κ) :

- Direct transfers to firms τ_L
- Fairly-priced guarantees on bank deposits described by $\kappa \geq \underline{\theta}$:
 - Government insures deposits for $\theta < \kappa \rightarrow \tau(\theta) > 0$
 - Government requires compensation for $\theta > \kappa \rightarrow \tau(\theta) < 0$

Competitive bank lending given (τ_L , κ)

Equilibrium. New debt promise b_L in exchange of funds $\rho - \tau_L$, such that:

• Leverage Constraint (LC): Bank deposits are safe given guarantee

$$d_0 + \rho - \tau_L \le \kappa \widehat{p}(b_0 + b_L)(b_0 + b_L)$$

• κ increases bank lending capacity

• Participation Constraint (PC): Bank finds optimal to lend:

$$\Pi(b_L) = \widehat{p}(b_0 + b_L)(b_0 + b_L) - d_0 - (\rho - \tau_L) \ge \underline{\Pi_B}$$

Competitive promise $b_L^*(\tau_L, \kappa)$ is the lowest b_L that satisfies LC & PC

- If the Leverage Constraint is binding
 - Bank profits are decreasing in τ_L and κ
 - As funding constraint is relaxed, competition leads to cheaper financing $\Rightarrow b_L^* \downarrow$