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1 Introduction

The objective of this paper is to uncover which models allow for an enhanced prediction of

inflation risks in the euro area, that is, the risk of extreme realisations of inflation that

correspond to the tails of its distribution. For this purpose, we explore jointly two main

modelling directions. First, we assess the role of financial indicators in forecasting the

distribution of core inflation, concentrating on its left (negative or low inflation) and right

(high inflation) tails. To address this question, we adopt a time-series quantile regression

setting that has proven to be particularly useful in macroeconomic forecasting. Using such

setting, Adrian et al. (2019) show that the risks of low real economic activity growth are

particularly sensitive to deteriorating financial conditions. Similarly, Korobilis (2017) and

Lopez-Salido and Loria (2020) use quantile regressions to explore the factors that affect

different quantiles of inflation distribution. Within this econometric framework, our second

research question is methodological and pertains to understanding the role of time-varying

parameters in a quantile regression. Time-varying parameters (TVPs) have a long tradition in

macroeconomics (see for example Cooley and Prescott, 1976) and there is a large econometric

literature that also attempts to use TVP regressions to identify good predictors of the mean of

inflation at different points in time (Koop and Korobilis, 2012).1 Additionally, it has been

argued recently that regressions that feature time-varying variances can forecast output risks

as well as constant parameter quantile regression models (Brownlees and Souza, 2021; Carriero

et al., 2020). However, little is known about whether one can further improve forecasts by

combining the benefits of time-varying parameters with the flexibility of a quantile regression

setting.

Taking all the considerations above into account, our proposal is to use a time-varying

parameter quantile regression (TVP-QR) model for forecasting the full distribution of

inflation. At the conceptual level, specification of a TVP-QR model is not novel. However,

serious inference challenges are in order with the implementation of this model in a time-series

forecasting context. Kim (2007), Cai and Xu (2009), and Wu and Zhou (2017) use

nonparametric methods, such as splines and local polynomials, to estimate TVP-QR models.

However, nonparametric estimators are not straightforward to interpret and they are hard to

apply to models with more predictors/indicators than time-series observations (as is often the

case with euro area macroeconomic data) or if the interpretation of coefficients is key for

policy purposes. In contrast to previous contributions, our proposed framework is Bayesian,

meaning that error and parameter distributions are all flexible parametric rather than

nonparametric. We approximate the quantile regression (QR) problem with an asymmetric

Laplace error distribution (Kozumi and Kobayashi, 2011). The evolution of time-varying

1Summarising the results of a comprehensive comparison of different models, data and transformations, Faust
and Wright (2013) argue that a basic principle in forecasting inflation is to allow for its local mean to be smoothly
varying over time, and an obvious way of doing this is via time-varying parameters (Stock and Watson, 2007a).
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parameters follows a random walk specification which is traditionally tackled with standard

Markov chain Monte Carlo (MCMC) algorithms for state-space models; see for example the

Bayesian quantile state-space model of Gonçalves et al. (2020). However, in a QR setting we

need to estimate separate regressions for each quantile level, making MCMC estimation

cumbersome and costly for the purpose of recursive forecasting.2 Our main methodological

contribution is to propose an MCMC algorithm that makes estimation and forecasting with

the TVP-QR model feasible. We borrow ideas from Korobilis (2021) and write the TVP-QR

model as an equivalent high-dimensional (quantile) regression. The resulting

approximation-free algorithm ends up being a minor reparameterisation of the efficient

algorithm of Chan and Jeliazkov (2009), but it is computationally much faster, thereby

allowing estimation of the TVP-QR model over a fine grid of quantiles.

We establish the benefits of our approach using both synthetic and real data. When

generating synthetic data from regressions with time-varying parameters and flexible error

distributions we find that our framework recovers the true parameters with higher accuracy

compared to non-quantile TVP regressions that rely on a Gaussian disturbance term.

Additionally, we show using these simulated data examples that our algorithm is able to track

complex patterns of time-variation in parameters. We achieve this by adopting the “horseshoe

prior for sparse signals” of Carvalho et al. (2010), which in our setting allows for shrinkage of

the time-varying parameters towards few structural breaks or time-invariance, without any

dependence on prior tuning hyperparameters. That way, we fully address concerns in

Amir-Ahmadi et al. (2020) about the impact that prior hyperparameter choice has on

estimation of TVPs, making our new estimation algorithm both fast and easy to use by less

experienced users; forecasts produced by the TVP-QR methodology are fully replicable (up to

a typically small asymptotic bias resulting from Monte Carlo estimates of expectations).

We apply this flexible framework to the problem of forecasting core consumer price inflation

in the euro area using various financial indicators, both in the short run (four-quarters ahead) and

the medium run (twelve-quarters ahead). Using quarterly observations from 1990 to 2019, we

find that a number of specific financial volume indicators such as loans to the private sector, loans

to households and narrow money (M1) often provide the largest inflation tail risk forecasting

gains, especially in the context of quantile regressions with time-varying parameters or quantile

regression-based augmented Phillips curve models with time-varying parameters. A comparison

of several different models and financial indicators, including both financial prices and financial

volumes, allows to conclude that such forecast gains derive both from the predictive informational

content of such specific financial volume indicators and from the benefits of modelling time-

varying parameters in the context of quantile regressions.

2Gonçalves et al. (2020) propose a straightforward MCMC algorithm for general quantile state-space models,
but they acknowledge that this algorithm is very slow when iterating over quantiles, so they end up proposing a
faster, approximate algorithm. Similarly, Lim et al. (2020) estimate a TVP-QR model but estimation is based on
approximate variational Bayes methods.
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The article is organised as follows. The next section describes the Bayesian TVP-QR model,

its prior distributions, and our efficient MCMC estimation approach. In Section 3 we conduct

a small Monte Carlo experiment to establish that the TVP-QR model can recover estimates of

the true TVPs much more accurately than the default TVP regression with Gaussian errors and

stochastic volatility. In Section 4 we show the quantitative results from a large-scale forecasting

exercise involving versions of our proposed model using different indicators, as well as various

competing methodologies. Section 5 concludes the paper.

2 Bayesian time-varying parameter quantile regression

Let πt be the scalar observation of inflation in time periods t = 1, ..., T , and xt a p-dimensional

vector of predetermined variables that includes intercept, lags of inflation and exogenous

predictors. We want to model the full distribution of πt by specifying the following model for

each of its quantiles τ = {0.05, 0.10, ..., 0.90, 0.95}

πt = Qτ (πt|xt) + εt, (1)

where Qτ denotes the conditional quantile function of the τ -th quantile of πt. Several linear and

nonlinear quantile functions have been proposed, especially in microeconometric applications.

In a time-series context, we are interested in the following function

Qτ (πt|xt) = xtβt(τ), (2)

βt(τ) = βt−1(τ) + vt, (3)

where vt ∼ Np (0,V (τ)) is a state error with covariance matrix V (τ). Under this specification

parameters evolve as random walks. When V (τ) is small the evolution is smooth3, while for

larger values of V (τ) this specification can capture abrupt jumps. Therefore, the full time-

varying parameter quantile regression (TVP-QR) specification in its most general form comprises

Equations (1) to (3).

2.1 A reparameterised TVP-QR model

Our first building block for estimating this model is the treatment of the error. In the constant

parameter case, βt(τ) = β(τ), Koenker and Bassett (1978) show that univariate conditional

quantiles can be obtained as the solution to the following optimisation problem

β̂(τ) = min
β(τ)

E
T∑
t=1

ρτ (εt), (4)

3Notice that the solution V (τ) = 0 gives the constant parameter model as a special case of the TVP model.
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where ρτ (u) = (τ − I(u < 0))u is a loss function. The minimiser of Equation 4 is equivalent to

maximising an asymmetric Laplace likelihood (Yu and Moyeed, 2001), that is, the case where

εt has density given by

p(εt; τ, σ) ∼
τ(1− τ)

σ(τ)2

[
e
(1−τ)

εt
σ(τ)2 I(εt ≤ 0) + e

−τ
εt

σ(τ)2 I(εt > 0)
]
, (5)

where σ(τ) is a scale parameter.4 Following Kozumi and Kobayashi (2011), the asymmetric

Laplace distribution can be written as a Gaussian-Exponential scale mixture of the form

(εt|ut, zt) ∼ θ(τ)zt +
√
σ(τ)2κ(τ)2zt(τ)ut, (6)

where zt(τ) ∼ Exp(σ2(τ)) and ut ∼ N(0, 1), while θ(τ), κ(τ)2 are parameters defined as θ(τ) =
1−2τ
τ(1−τ) , κ(τ)

2 = 2
τ(1−τ) . If we marginalise Equation 6 over zt we obtain Equation 5; see more

details in our online Appendix and Khare and Hobert (2012). In a parametric setting, it is trivial

to adopt the parametric distribution in Equation 6 in the context of the quantile regression in

Equation 1, and this is what we do in this paper. The benefits of this approach are immediately

visible: since the likelihood is conditionally (on zt) Gaussian, the conditional posteriors will be

identical to the ones in the simple regression model.5

The second building block is the way we treat time variation. We extend ideas in Korobilis

(2021) and we rewrite the model in Equations (2) - (3) as a high-dimensional regression with

more covariates than observations. In particular, it is easy to show that if we stack all T

observations, these equations can be rewritten as

Qτ (π|X ) = Xβδ(τ), (11)

β∆(τ) = v, (12)

4In the time-varying parameter mean regression framework it is natural to assume the presence of stochastic
volatility, σ2

t . Combined with the typical assumption of Normality in the errors, time-varying variances are able to
produce more flexible, heavy-tailed unconditional distributions of inflation. The assumption of stochastic volatility
in the quantile regression model, σt(τ), is computationally trivial to incorporate. However, we have found that,
unlike longer financial data (Gerlach et al., 2011), it consistently produces inferior fit and out-of-sample forecasts
for euro area inflation data, given it relatively short sample size. Even when not allowing the variance parameter
to fluctuate over time, in the context of quantile regression it takes a different value in different quantiles, meaning
that we are able to capture very complex shapes of distributions.

5It is easy to visualize this; for example in the linear QR case

πt = xtβ(τ) + θ(τ)zt +
√
σ(τ)2κ(τ)2zt(τ)ut, (7)

if we condition on zt (i.e. we treat it as a known parameter) we can write

πt − θ(τ)zt = xtβ(τ) + σ(τ)κ(τ)
√
zt(τ)ut,⇒ (8)

πt − θ(τ)zt
κ(τ)

√
zt

=

(
xt

κ(τ)
√
zt

)
β(τ) + σ(τ)ut, (9)

π̃t = x̃tβ(τ) + ε̃t, (10)

which is a linear, Gaussian regression on the data π̃t and x̃t, and the error ε̃t ∼ N(0, σ(τ)). Therefore, it is fairly
trivial to derive conditional posteriors for β(τ) and σ(τ) using this form.
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where π = [π1, ..., πT ]
′, v = [v′

1, ...,v
′
T ]

′ and

X =


x1 0 ... 0 0

x2 x2 ... 0 0

... ... ... ... ...

xT−1 xT−1 ... xT−1 0

xT xT ... xT−1 xT

 , and

T × Tp

β∆(τ) =


β1(τ)

∆β2(τ)

...

∆βT−1(τ)

∆βT (τ)

 .

Tp× 1

(13)

We provide detailed derivations and discussion of this form in the Online Appendix. In this new

formulation, all Tp coefficients of the TVP regression are stacked in a single vector, while at

the same time they appear in first differences form. Specifically, in this hierarchical (multilevel)

regression specification, Equation 12 can be interpreted as a prior for β∆(τ) which means that

equation Equation 11 can be treated as a linear regression model and estimated using algorithms

for constant parameter models. Interpretation of this formulation is straightforward as we can

recover the original vector of TVPs, β = [β1(τ)
′, ...,βT (τ)

′]′ as the cumulative sum of the vector

of first differences, β∆(τ).

2.2 Likelihood, priors and a new Gibbs sampler

Putting together these pieces, the new parameterisation now combines Equation 1 with the

distributional assumptions on the error term in Equation 6 with the reparameterised TVP

function in Equations (11) and (12). The core of the TVP-QR model now has the following

form

π = Xβ∆(τ) + θ(τ)z(τ) + S̃u, (14)

where S̃ is a T × T diagonal matrix with t-th diagonal element
√
σ(τ)2κ(τ)2zt(τ). This model

is completed by considering priors on various parameters. By definition,

z(τ) ∼ Exponential(σ(τ)2). The scale parameter can take the standard inverse Gamma prior,

that is, σ(τ) ∼ inv − Gamma(ρ1, ρ2). Finally, from Equation 12 we already discussed that

β∆(τ) has a standard Normal prior of the form β∆(τ) ∼ N(0, V (τ)). Multiplication of these

priors with the reparameterised likelihood implied by the model in Equation (14), gives the
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following conditional posteriors

β∆(τ)|• ∼ N
(
Q×

(
X ′U−1ỹ

)
,Q
)
, (15)

σ(τ)2|• ∼ inv −Gamma

(
ρ1 +

3T

2
, ρ2 +

T∑
t=1

(y⋆t )
2

2zt(τ)κ(τ)2
+

T∑
t=1

zt(τ)

)
, (16)

zt(τ)|• ∼ IG

(√
θ(τ)2 + 2κ(τ)2

|yt −Xtβ∆(τ)|
,
θ(τ)2 + 2κ(τ)2

σ(τ)2κ(τ)2

)
, (17)

where the notation |• means “conditioning on other parameters and data”,

Q =
(
X ′U−1X + V (τ)−1

)−1
, U =

(
σ(τ)2κ(τ)2

)
× diag (z1(τ), ..., zT (τ)), ỹ = (y − θ(τ)z(τ)),

y⋆t =
(
yt −Xtβ

∆(τ)− θ(τ)zt(τ)
)
. This Gibbs sampler is a reparameterised version of the

ergodic Gibbs sampler for constant parameter quantile regressions developed by Khare and

Hobert (2012). Sampling from the conditional distributions is straightforward and

computation can be sped up by sampling for all values of τ simultaneously, instead of sampling

iteratively for each τ . The only computational challenge is sampling of the Tp elements in

β∆(τ), since Tp can be very large. Bhattacharya et al. (2016) provide a very efficient way of

sampling from such high-dimensional Normal posteriors, and we refer the reader to this paper

and our Online Appendix for more information about implementation.

The reparameterised form of the TVP regression shows that this is a model with more

predictors than observations (measurement matrix X has Tp covariates but only T observations).

Therefore, it is evident that prior selection for the high-dimensional vector β∆(τ) must be done

carefully; see Amir-Ahmadi et al. (2020) for a discussion of these issues in traditional TVP

models. Consequently, we adopt the horseshoe prior of Carvalho et al. (2010) that is shown in

several instances to have excellent theoretical guarantees, thus making it an established estimator

in statistics.6 The horseshoe prior for β∆(τ)

β∆(τ)|λ(τ)2, {ψi(τ)
2}Tp

i=1 ∼ N(0, V (τ)), (18)

Vi,i(τ) = λ(τ)2ψi(τ)
2, i = 1, ..., Tp,

λ(τ) ∼ Cauchy+ (0, 1) , (19)

ψi(τ) ∼ Cauchy+ (0, 1) , i = 1, ..., Tp, (20)

where Cauchy+ denotes the half-Cauchy distribution on the positive reals. 7 In line with Amir-

Ahmadi et al. (2020), V (τ) comprises hyperparameters that have their own prior distributions

6In linear Gaussian regression settings, the horseshoe prior is minimax in l2 norm (van der Pas et al., 2014),
attains risk equal to the Bayes oracle (Ghosh et al., 2016) and posterior credible intervals under the horseshoe
prior also have good frequentist coverage properties in an asymptotic sense. More recently, Bhadra et al. (2020)
show that horseshoe regularisation retains its excellent properties in several classes of complex models, including
non-linear, non-Gaussian regression, and deep neural networks.

7The formulation using the half-Cauchy priors is not ideal as it does not allow straightforward derivation of
conditional posteriors. Makalic and Schmidt (2016) note that the half-Cauchy distribution can be written as a
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and are, thus, updated by information in the data. The fact that the hyperpriors for λ(τ) and

ψi(τ) do not depend on further parameters that require tuning/calibration, makes the horseshoe

a fully automatic prior that adapts equally well to low-dimensional as well as high-dimensional

problems.

3 Simulation study

In this section we use artificial data in order to examine the performance of our proposed

algorithm. We generate data from the following time-varying regression model

yt = xtβt + εt, (26)

βt = µ+ 0.99(βt−1 − µ) + T− 1
2ut, (27)

where x ∼ N(0, I2) is a vector of p = 2 synthetic predictors, µ ∼ U(−2, 2) is the long-run mean

of βt
8, and ut ∼ N(0, I). Since in the empirical section we are interested in capturing predictors

that are short-lived, we artificially shrink all values of β1,t to be zero for t > T/3, that is, the

first predictor is only relevant for y only for the first third of the sample. The second predictor

in the vector x is left unrestricted (i.e. not zero) in all periods.

Regarding the distribution of εt, we follow the Monte Carlo design in Yu (2017), and consider

eight different choices:

1. Gaussian: N(0, 12)

2. Skewed : 1/5N(−22/25, 12) + 1/5N(−49/125, (3/2)2) + 3/5N(49/250, (5/9)2)

3. Kurtotic: 2/3N(0, 12) + 1/3N(0, (1/10)2)

4. Outlier : 1/10N(0, 12) + 9/10N(0, (1/10)2)

5. Bimodal : 1/2N(−1, (2/3)2) + 1/2N(1, (2/3)2)

mixture of inverse Gamma distributions. Therefore, the horseshoe prior can be written equivalently as

β∆(τ)|λ(τ)2, {ψi(τ)
2}Tp

i=1 ∼ N(0, V (τ)), (21)

Vi,i(τ) = λ(τ)2ψi(τ)
2, i = 1, ..., Tp,

λ(τ)2|ξ(τ) ∼ inv −Gamma (1/2, 1/ξ(τ)) , (22)

ξ(τ) ∼ inv −Gamma (1/2, 1) , (23)

ψi(τ)
2|ζi(τ) ∼ inv −Gamma (1/2, 1/ζi(τ)) , (24)

ζi(τ) ∼ inv −Gamma (1/2, 1) , (25)

which is a formulation that allows for straightforward calculation of conditional posteriors; see Makalic and
Schmidt (2016) for more details on posterior computation. It is trivial to show that one can simply add the
formulas for the conditional posteriors of λ(τ)2, ξ, ψi(τ)

2, ζi(τ) to the Gibbs sampler in equations (15)-(17).
8Notice that even though βt will be estimated using the random walk evolution outlined in the previous section,

in the DGP we generate its path from a persistent yet stationary process. This choice ensures that we generate
time-varying parameters that are not explosive and won’t cause numerical problems during estimation.
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6. Bimodal, separate modes: 1/2N(−3/2, (1/2)2) + 1/2N(3/2, (1/2)2)

7. Skewed bimodal: 3/4N(−43/100, 12) + 1/4N(107/100, (1/3)2)

8. Trimodal: 9/20N(−6/5, (3/5)2) + 9/20N(6/5, (3/5)2) + 1/10N(0, (1/4)2)

This list covers a wide variety of flexible distributions, even though it is far from exhaustive.

We generate M = 500 datasets of length T = 200 from the eight time-varying parameter

regression data generating processes (DGPs). For each dataset we fit two models, a “mean”

TVP regression with stochastic volatility, and our quantile TVP regression. The former model

is simply a special case of the latter, where we allow the variance to be time-varying, and we

convert the asymmetric Laplace distribution into a Normal distribution.9 In both cases of these

two estimated models we use the same automatically tuned horseshoe prior, such that we do

not influence subjectively posterior estimates of time-varying parameters, and the same efficient

sampler for TVPs outlined in the previous section. Therefore, both TVP models are almost

identical with the exception of the assumption about the error distribution.

With this Monte Carlo-based exercise, we aim to find out how well the asymmetric Laplace

distribution can capture all of the eight error distributions we assume that generated the data.

In particular, we want to find out how large is the estimation error of the TVPs under the two

estimated models in each of the eight DGPs, as accuracy of estimates of the TVPs will have an

immediate impact on forecasting the synthetic outcome variable yt (and, as a result, inflation πt,

when we input real data). On that account, we measure estimation accuracy using the following

mean squared deviation (MSD) measure:

MSDj =
1

M

M∑
m=1

{
1

T

T∑
t=1

[
1

2

2∑
i=1

(
β
(m)
t,i − β̂

(m),j
t,i

)]}
, (28)

where j = {mean TVP regression, quantile TVP regression} and β̂
(m),j
t,i is the posterior mean

of the m-th Monte Carlo iteration, of coefficient βt,i, in model j. For this loss function, lower

values imply lower estimation error.

Results of this exercise are presented in Table 1. Numerical entries in this table are the

MSDs for the mean regression (first row) and quantile regression for quantiles

τ = 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95 (rows 2-8). There are eight columns in this table that

are associated with each of the error distributions assumed in the DGP. We observe that when

the data are generate from a TVP regression with Normal errors, then the mean TVP

regression estimator is optimal as it is based on the assumption that the disturbance term is

Normal. In this case the quantile TVP regression is overparameterised and the asymmetric

Laplace distribution assumption does not perform well. However, once we drop the assumption

9Using the scale mixtures of Normals representation in (6), we can obtain the Normal distribution by fixing

zt(τ) =
1

κ(tau)2
= τ(1−τ)

2
for all t and setting τ = 0.5.
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of Normality in the DGP, the mean regression model is performing worse than the quantile

regression model in terms of estimation error. In the case of more complex distributions

(Skewed bimodal, trimodal) the error produced by the mean regression model can be

substantially larger.

Table 1: Mean squared deviations (MSDs) of estimated vs true time-varying parameters, using
mean and quantile regressions

Gaussian Skewed Kurtotic Outlier Bimodal
Bimodal

sep. modes

Bimodal

skewed
Trimodal

MSD Regression

mean 0.01 0.25 0.04 0.01 0.10 0.21 0.45 1.03

MSD Quantile Regression

τ = 0.05 0.06 0.05 0.05 0.02 0.09 0.13 0.05 0.09

τ = 0.10 0.05 0.05 0.05 0.02 0.09 0.13 0.04 0.08

τ = 0.25 0.05 0.04 0.04 0.01 0.08 0.12 0.04 0.08

τ = 0.50 0.05 0.04 0.04 0.01 0.06 0.11 0.03 0.06

τ = 0.75 0.04 0.04 0.04 0.01 0.07 0.12 0.03 0.07

τ = 0.90 0.05 0.05 0.05 0.02 0.08 0.13 0.03 0.08

τ = 0.95 0.05 0.05 0.05 0.01 0.09 0.13 0.03 0.08

Notes: The mean regression model is a TVP regression with stochastic volatility assuming Normal measurement

error distribution. The quantile regression model allows for time-varying coefficients of predictors and constant

intercept and variance in each quantile.

In order to assist our understanding of how severe estimation error is in the TVP regression

with stochastic volatility and Normality, Figure 1 plots parameter estimates from the mean

and quantile regression models in the case of the true error distribution being trimodal (eighth

case). The left-hand side panel shows estimates of the coefficient on the first predictor (βt,1),

and the right-hand side panel estimates on the coefficient of the second predictor (βt,2). In all

plots the black, dotted line shows the (average over 500 iterations) true generated time-varying

coefficient. The green line is the average over 500 iterations of the posterior median of the TVPs

and the shaded areas are the 68% probability bands. Looking at βt,1 in the left-hand side panel

of the figure, the mean regression model (top graph) produces some error, as the true value

of the coefficient (black dotted line) is not close to the posterior median (green line), i.e. it

is not always inside the grey shaded area. In a few periods the true value of this coefficient

is even outside the 68% bands. This is not the case for the quantile regression estimates for

τ = 0.05, 0.10, 0.90, 0.95 (bottom four graphs), where the posterior median is much closer to

the true value of this coefficient. The picture of large estimation errors in the TVPs are more

pronounced when we look at βt,2. The “mean” regression estimates completely miss the true

path of this coefficient that is used to generate the data. By contrast, the estimates of this

time-varying parameter from the quantile regression are much more accurate. This graphical
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Figure 1: Posterior estimates of time-varying parameters (TVPs) estimated using mean (upper
panels) and quantile (middle and bottom panels) regressions. The five panels on the left pertain
to coefficient β1t in our DGP, and the five panels on the right to coefficient β2t. The DGP used to
produce this figure is that of a time-varying regression model with a trimodal error distribution.
Mean regression is done under the standard assumption of a Normal error distribution, while the
quantile regression is estimated using the flexible asymmetric Laplace distribution. Black lines
are the true TVPs, which are the same for both the mean and quantile regressions. The green
lines are the averages (over 100 Monte Carlo iterations) of the estimated posterior means, and
the shaded areas and the 68 percent probability bands.

illustration gives an example of how the MSDs of the previous table translate into significant

estimation errors. Consequently, when our data distribution is non-Gaussian (which is the

case with inflation and several other macroeconomic and financial variables), then our proposed

TVP-QR methodology will dominate traditional TVP regressions with stochastic volatility.

4 Forecasting inflation risks in the euro area

4.1 Data

In order to assess the practical usefulness of the proposed approach for the projection of the

conditional distribution of inflation, we concentrate on euro area HICP excluding energy and food

inflation (henceforth referred to as core HICP inflation) developments from the first quarter of

1990 to the fourth quarter of 2019 (see Figures B1 and B2 in Appendix B). Taking core inflation

instead of headline (total) HICP inflation as reference allows abstracting from the influence of

temporary factors such as oil price and exchange rate swings and focusing on more fundamental

forces driving inflation tail risks. For core HICP quarterly inflation (measured by the annualised

quarter-on-quarter growth rate of HICP excluding energy and food) over the whole sample

size (1990Q1-2019Q4) the 5th and 95th percentiles correspond to quarterly inflation rates at
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0.7 percent and 4.2 percent, respectively (see Table B2 in Appendix B). The unconditional

distribution of core HICP quarterly inflation is slightly skewed to the left and exhibits a heavy

right-hand side tail.

Nineteen financial indicators are considered in the analysis, including both financial

volumes and financial prices. Specifically, these include four money volume indicators (M1 and

M3, each expressed in annualised quarterly growth rates and as a ratio to GDP), eight credit

volume indicators (total credit to the non-financial private sector, bank lending to the

non-financial private sector, bank lending to non-financial corporations and bank lending to

households, each expressed in annualised quarterly growth rates and as ratio to GDP), four

credit spreads (for the 10-year government bond yields, lending rates to non-financial

corporations, lending rates to households and investment grade corporate bond yields, all as

deviations from the 3-month Euribor rate) and three additional financial indicators (stock

prices, house prices and the composite indicator of systemic stress). Table B1 in Appendix B

reports the details of these data.

4.2 Models and forecast setup

The forecast performance of several models for the prediction of the conditional distribution of

core HICP inflation in the short and medium term (i.e. four-quarters and twelve-quarters ahead,

respectively) is assessed. The performance of various categories of models is analysed, including

bivariate models conditional on financial indicators and Phillips-curve based models augmented

with financial indicators, which are compared to the forecasting ability of various univariate

models, as well as standard Phillips-curve based models (i.e., not augmented with any financial

indicator). For each model we entertain various specifications, ranging from quantile regressions

to mean regressions, with or without time-varying parameters and with or without stochastic

volatility.

We consider forecasts from the TVP-QR and numerous competitors, all of which can be

written as special cases of the general formulation

πt+h = ct(τ) + ϕ1t(τ)πt + ϕ2t(τ)πt−1 + βt(τ)xt + εt+h, εt+h ∼ ALD(σt(τ)), (29)

where all the time-varying parameters follow the standard random walk assumption we

established in the previous section (but which we omit here for the sake of brevity). When

βt(τ) = 0 the exogenous predictors xt are absent, and we have the class of AR(2) models.

When also ϕ1t(τ) = ϕ2t(τ) = 0 no lags of inflation are present and the model belongs to the

class of time-varying intercept (local level) models. The assumption that εt+h follows the

asymmetric Laplace distribution (ALD), coupled with the additional assumption that

σt(τ) = σ(τ) (see footnote 4), provides us with our proposed class of TVP quantile regression

models. We already argued in footnote 9 that, when using the scale mixture of Normals
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representation of the ALD, we can obtain traditional TVP regression with stochastic volatility

as a special case, and this result also holds for equation (30). Finally, we can obtain constant

parameter regressions and quantile regressions simply by fixing time-varying parameters to be

constant over time (e.g. by setting the state variance in equation (3) to zero). Therefore, we

see that by placing appropriate restrictions in the specification above we can nest a wide class

of popular forecasting models for inflation. These range from the TVP-QR, as the most

flexible specification we can obtain from that equation, to the simple AR(2) model, being the

most parsimonious special case. In particular, we consider forecasts from the following models

1. AR(2) model with constant parameters and variance (AR(2)) – this model is our

benchmark upon which we measure the performance of all other models

2. AR(2) model with TVPs and stochastic volatility (TVP-AR-SV)

3. Time-varying intercept only model with stochastic volatility10 (TVI-SV)

4. Quantile AR(2) with time-varying parameters (TVP-QAR)

5. Quantile regression model with time-varying intercept (TVI-QR)

6. Mean regressions with constant parameters, exogenous predictors, and stochastic volatility

(AR-SV-X)

7. Mean regressions with time-varying parameters, exogenous predictors, and stochastic

volatility (TVP-AR-SV-X)

8. Quantile AR(2) with constant parameters augmented with exogenous predictors (QAR-X),

and

9. Quantile AR(2) with time-varying parameters augmented with exogenous predictors

(TVP-QAR-X)

On top of these purely time-series models, we also consider a semi-structural Phillips Curve

(PC) formulation of equation (29), similar to López-Salido and Loria (2019). In its most general

form, the PC formulation is

πt+h = (1− λt(τ))π
∗
t + λt(τ)π

LTE
t + θt(τ) (yt − y∗t ) + γt(τ)π

I
t + βt(τ)xt + εt+h, (30)

where π∗t is lagged inflation (computed as the average over the previous four quarters), πLTE
t+h are

the long-term inflation expectations (measured using Consensus 6 to 10 years ahead inflation

expectations), (yt − y∗t ) is the output gap (calculated as the principal component of available

estimates), and πIt+h are relative prices (measured as the spread between import deflator inflation

10This model is similar to the unobserved components stochastic volatility (UCSV) model of Stock and Watson
(2007b), although it does not assume stochastic volatility in the equation for trend inflation.
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and domestic inflation). Accordingly, we consider the following specifications based on the PC

restrictions:

1. Mean PC regression with stochastic volatility, no additional predictors (PC-SV)

2. Mean PC regression with time-varying parameters and stochastic volatility, no additional

predictors (TVP-PC-SV)

3. Quantile PC regression, no additional predictors (QPC)

4. Quantile PC regression with time-varying parameters, no additional predictors (TVP-

QPC)

5. Mean PC regression with stochastic volatility, with additional predictors (PC-SV-X)

6. Mean PC regression with time-varying parameters and stochastic volatility, with additional

predictors (TVP-PC-SV-X)

7. Quantile PC regression, with additional predictors (QPC-X)

8. Quantile PC regression with time-varying parameters, with additional predictors (TVP-

QPC-X)

All the models above, other than the AR(2) which is based on least squares, are estimated

using the same default, automatic horseshoe prior we specified in the previous two sections.

Whenever we consider models with exogenous predictors, we only estimate each class of

models with one predictor at a time. Even though the horseshoe prior can accommodate

ultra-high dimensional models, we are particularly interested in understanding the role of

individual variables for forecasting inflation risks. For that reason, we do not consider here

forecasting using the full model (all predictors), or principal components from the predictors,

or forecast combinations. These are all reliable methods for improving forecast accuracy in any

class of models, but they do not allow us to pin down the informational content of each

individual predictor. Given these considerations, overall, 160 models are estimated, eight of

which are models with no predictors and 152 of which are models with one individual financial

indicator as an exogenous predictor.

Using data from 1990Q1 to 2019Q4, each model is estimated on the basis of the first half

of the sample and used to produce four-quarters ahead and twelve-quarters ahead forecasts for

19 quantiles (τ = 0.05, 0.10, ..., 0.90, 0.95), and thereafter forecasting follows a recursive scheme.

We concentrate on the relative quantile scores at the first and last quantiles, that is the 5th

and the 95th percentiles, to assess the ability of these models and indicators to predict low and

high tail risks to inflation. The analysis will take into consideration the quantile score of each

competing model relative to the benchmark AR(2) model, by taking an average of such scores
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across all the forecasting periods. For each competing model j, the relevant quantile score at

each quantile τ is defined as:

QSj
t (τ) = [πt − Q̂τ (πt|xt)][I{πt ≤ Q̂τ (πt|xt)}]. (31)

Smaller values of this loss function indicate better performance. We also use the predictive

likelihood as a measure of general performance of the whole predictive density from each model

we estimate (Korobilis, 2017). The predictive likelihood (PL) is obtained as the h-step ahead

predictive density evaluated at the h-step ahead out-of-sample realisation of inflation. For the

case of the PL, higher values indicate better performance.

4.3 Best performing categories of models

Starting with an assessment of the forecasting performance by category of model, in Table 2 we

report the relative scores for each of the four univariate models, the average relative score of

the four standard Phillips curve models (i.e., not augmented with any financial indicator), the

average relative score of the four Phillips curve models augmented with a financial indicator, and

the average relative score of the four bivariate models estimated with one additional financial

indicator at a time, for the two forecast horizons considered. We report these relative scores

for the first and last standard tails, alongside the Predictive Likelihood (PL) which provides an

evaluation of the forecast of the whole distribution of inflation.

The results suggest that for the four-quarters ahead horizon, most of the model classes

considered do not outperform the simple AR(2) benchmark model for the lowest quantile.

Indeed, only one univariate model (TVP-QAR), one group of standard PC models on average

(TVP-PC-SV) and one group of augmented PC models on average (TVP-PC-X) outperform

the AR(2) model at the lowest quantile (Q5) (see second column in Table 2). For the higher

quantile the relative performance of these models improves, with various quantile regression

univariate and bivariate model classes with time-varying parameters (TVP-QAR, TVI-QR,and

TVP-QAR-X) marking the strongest forecast improvements (see third column in Table 2).

The relative scores for the PL suggest that, along with one univariate model (TVI-SV), the

two quantile regression PC model categories with time-varying parameters (TVP-QPC, and

TVP-QPC-X) on average outperform all other model classes (see fourth column in Table 2).

For the twelve-quarters ahead horizon, no model class considered does outperform the simple

AR(2) benchmark model for the lowest quantile (see fifth column in Table 2). By contrast, for

the highest quantile some model classes outperform the benchmark, especially two univariate

models (TVP-AR-SV and TVI-SV) and a standard PC model class (QPC) (see sixth column in

Table 2). The two univariate quantile regression models with time-varying parameters (TVP-

QAR and TVI-QR) outperform all others when looking at the relative scores for the PL (see

last column in Table 2).
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Overall, looking at categories of models, it appears that the best performing specifications

tend to be represented by quantile regressions with time-varying parameters, either for univariate

or multivariate models. The classes of models including financial indicators most often do not

appear to be among the best performing ones on average. However, as we will see next, the poor

average performance of the latter models is due to the fact that within these classes of models

some specific ones perform very well while other ones display poor forecasting properties.

Table 2: Average relative scores by group of models for euro area core HICP inflation

4-quarters ahead 12-quarters ahead
QScore5 Qscore95 PL QScore5 Qscore95 PL

TVP-AR-SV 1.496 0.896 1.158 2.423 0.752 1.202
TVI-SV 1.654 0.914 1.314 2.412 0.691 1.210
TVP-QAR 0.988 0.839 1.218 1.144 0.852 1.245
TVI-QR 1.025 0.853 1.260 1.235 0.826 1.234

PC-SV 1.519 0.974 1.077 1.823 0.935 0.888
TVP-PC-SV 0.909 0.938 1.245 2.495 1.244 0.804
QPC 2.383 1.543 1.204 3.356 0.782 1.066
TVP-QPC 1.129 0.926 1.308 3.652 0.959 0.928

PC-SV-X 1.560 1.039 1.051 2.222 0.951 0.890
TVP-PC-SV-X 0.973 0.963 1.214 2.362 1.231 0.820
QPC-X 2.411 1.583 1.175 3.413 0.989 1.070
TVP-QPC-X 1.152 0.994 1.285 2.614 0.922 0.976

AR-SV-X 1.166 0.905 1.095 1.412 0.923 1.030
TVP-AR-SV-X 1.388 0.908 1.180 2.181 0.873 1.099
QAR-X 1.440 0.921 1.261 2.161 0.892 1.168
TVP-QAR-X 1.023 0.843 1.243 1.163 0.895 1.194

Notes: The quantile score refers to the average of the QSj
t (τ) over all forecasting periods relative to the AR(2)

benchmark, as an average across across all competing models with the specific model specification. The table
reports the ratios of the quantile score of the models described in each row to that of the AR(2) model. For the
four quantiles shown, any value below 1 signals an improvement of the forecast relative to the benchmark model
and the lower the value of such ratio the larger the improvement. For the Predictive Likelihood (PL) (fourth and
last columns), any value above 1 signals an improvement of the forecast relative to the benchmark model and the
higher the value of such ratio the larger the improvement.

4.4 Best performing specific models

When looking at the forecasting performance of the specific models, it appears that a number of

credit and money volume indicators are particularly useful in predicting tail risks of core HICP
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inflation, outperforming several other financial indicators, especially in the context of quantile

regression models featuring time-varying parameters.

For example, looking at forecasts for inflation tail risks four-quarters ahead (see upper panel

in Table 3) a number of specific models appear to be very useful especially for forecasting the

upper quantile (Q95). This is the case, in particular, of quantile regressions with time-varying

parameters (TVP-QAR-X) featuring bank loans to the private sector and total credit to the

private sector, which lead to forecast gains very close to the best performing model, that is the

PC model with time-varying parameters and stochastic volatility (TVP-PC-SV-X) featuring

bank loans to firms (see results under QScore95). For the lowest quantile (Q5) the improvement

is more limited but non-negligible, especially for PC models with time-varying parameters and

stochastic volatility (TVP-PC-SV-X) augmented with private sector loans, as well as for quantile

regressions with time-varying parameters (TVP-QAR-X) featuring the M1 to GDP ratio or

house prices (see results under QScore5). The overall density seems to be improved especially

for quantile regressions with time-varying parameters (TVP-QAR-X) featuring the M1 to GDP

ratio or loans to the private sector (see results under PL).

Also twelve-quarters ahead inflation tail risk forecasts can be improved, especially for

upper tail risks (Q95), by considering quantile regression-based PC models with time-varying

parameters (TVP-QPC-X) featuring loans to households (see lower panel in Table 3). The

latter specific model also appears to lead to the strongest improvement for the overall density

(see results under PL). By contrast, gains for the lowest quantile (Q5) are more limited but

can still be detected especially for quantile regressions with time-varying parameters

(TVP-QAR-X) featuring the ratio of private sector loans to GDP or the ratio to private sector

total credit to GDP.

Overall, when assessing specific models, financial volume indicators such as loans to the

private sector, loans to firms, loans to households, total credit to the private sector and the ratio

of M1 to GDP often provide the largest forecasting gains, especially in the context of quantile

regressions with time-varying parameters (TVP-QAR-X) or quantile regression-based Phillips

curve models with time-varying parameters (TVP-QPC-X).

The good forecasting properties of credit and money indicators for inflation tail risks appear

consistent with economic intuition. Credit growth indicators, the coefficients of which tend to

be positive within the estimated quantile regression models considered, can be seen as proxies

of the degree of tightness of financial constraints for firms and households, which affect the price

setting decisions of firms and the spending decisions of households. By contrast, the estimated

coefficient for the ratio of M1 to GDP tends to be negative, which could reflect the fact that

increases in M1 in excess of GDP are likely to capture increased uncertainty which is typically

associated with the postponement of expenditure thereby creating disinflationary pressures.
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Table 3: Best financial indicators and models for the prediction of core HICP inflation tail risks

Measure Ranking Indicator Specification Score

4-quarters ahead

1st loans to private sector TVP-PC-SV-X 0.891
QScore5 2nd M1/GDP TVP-QAR-X 0.900

3rd house prices TVP-QAR-X 0.900

1st loans to firms TVP-PC-SV-X 0.761
QScore95 2nd loans to private sector TVP-QAR-X 0.767

3rd credit to private sector TVP-QAR-X 0.780

1st M1/GDP TVP-QAR-X 1.474
PL 2nd loans to private sector TVP-QAR-X 1.429

3rd house prices QAR-X 1.383

12-quarters ahead

1st private sector loans/GDP TVP-QAR-X 0.951
QScore5 2nd private sector credit/GDP TVP-QAR-X 0.962

3rd yield curve TVP-QAR-X 0.963

1st loans to households TVP-QPC-X 0.635
QScore95 2nd private sector credit/GDP QAR-X 0.685

3rd loans to households/GDP QAR-X 0.692

1st loans to households TVP-QPC-X 1.552
PL 2nd loans to households QAR-X 1.336

3rd loans to households/GDP QAR-X 1.295

Notes: PC stands for Phillips curve, QAR for quantile autoregression with two lags, AR for mean autoregression
with two lags, TVP for time-varying parameters and SV for stochastic volatility. Low inflation tail risks are
captured by the 5th percentile (Q5) while high inflation tail risks are captured by the 95th percentile (Q95).
The lower blocks for each horizon reports the Predictive Likelihood (PL) which provides an evaluation of the
forecast of the whole distribution of inflation. The last column reports the ratios of the predictive quantile score
of the models described in each row to that of the AR(2) model. For the quantiles, a value below 1 signals an
improvement of the forecast relative to the benchmark and the lower the value the larger is the improvement.
For the PL, any value above 1 signals an improvement of the forecast relative to the benchmark model and the
higher the value of such ratio the larger the improvement.

4.5 The role of financial indicators

In order to understand what role the inclusion of financial indicators might play, it can be

interesting to compare the evolution over time of the upper and lower quantile scores, as a

measure of tail risk forecast errors, for different models. By comparing the evolution of the

quantile scores of the best models for the upper and lower quantiles (Q5 and Q95) among the

quantile regression models with time-varying parameters - which are often among the best and

which are the main focus of the paper - as highlighted in Table 3, with those of a similar model
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without the financial indicator we can derive some indication on the importance of considering

such additional indicator when forecasting inflation tail risks. A similar comparison with the

quantile scores of the same models with constant parameters, but all else equal, can give an idea

on the importance of this specific modelling choice.

Starting with the best TVP-QAR model for the prediction of four-quarters ahead inflation

low quantiles (Q5), that is the TVP-QAR model featuring the M1 to GDP ratio, and comparing

its quantile score with that of the TVP-QAR model (i.e., without any financial indicator) we

can notice that the latter model leads to additional large forecast errors especially during the

global financial crisis, that is around 2008 and 2009 (see left-hand side chart of the top panel of

Figure 2). Similarly, the model with constant parameters (QAR-X) for M1 to GDP produces

additional large forecast errors not only in 2008 and 2009, though smaller than those of the

TVP-QAR model, but also in 2013, 2016 and 2017, by contrast to the benchmark TVP-QAR

model for M1 to GDP (see right-hand side chart of the top panel of Figure 2).

Figure 2: Quantile score evolution for the best TVP-QAR-X model and alternative models: 4-
quarter ahead

As regards the best TVP-QAR model for the prediction of the highest quantile (Q95) for
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infation four-quarters ahead, that is the TVP-QAR model featuring loans to the private sector,

the same model without this financial indicator leads to higher forecasting errors both in both

prolonged periods, such as between 2007 and 2009, and in specific quarters, such as in mid-2011

and late 2014 (see left-hand side chart of the bottom panel of Figure 2). The same model with

constant parameters implies much larger forecast errors especially between 2010 and 2011 and

in late-2014, compared to the model with time-varying parameters (see right-hand side chart of

the bottom panel of Figure 2).

Figure 3: Quantile score evolution for the best TVP-QAR-X model and alternative models: 12-
quarter ahead

A similar exercise with the best TVP-QAR model for the prediction of the lowest quantile

(Q5) of inflation twelve-quarters ahead, that is the TVP-QAR model featuring the ratio of loans

to the private sector to GDP, suggests that the same model without this financial indicator leads

to higher forecasting errors around 2009 and in mid-2016 (see left-hand side chart of the top

panel of Figure 3). The same model with constant parameters implies much larger forecast errors

especially around 2009, 2014 and 2016, compared to the model with time-varying parameters
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(see right-hand side chart of the top panel of Figure 3). As regards the upper quantile (Q95),

taking the time-varying parameters quantile regression PC augmented with loans to households

as reference, the forecast error of the same model either without financial indicator or with fixed

parameters are clearly higher for prolonged periods (bottom panel of Figure 3).

Overall, for the prediction of tail risks of inflation both one-year and three-years ahead, it

appears that the inclusion of the financial indicator outperforming other ones within

TVP-QAR-X or TVP-QPC-X models explains a significant fraction of the reduction in

forecasting errors compared to competing specific models. However, also the key modelling

specification characterising such models, that is time-varying parameters, seems to be

instrumental in explaining the good forecasting performance of the models highlighted.

5 Conclusion

We develop a methodology for modelling and forecasting inflation risks flexibly via time-varying

parameter quantile regressions. A key methodological contribution is represented by a new Gibbs

sampler for time-varying parameters that is highly efficient and can be easily adapted to other

settings that admit familiar state-space forms and are notoriously computationally intensive,

such as dynamic factor models and time-varying parameter VARs. In terms of forecasting

accuracy, we show that our feasible TVP-QAR model indeed provides improvements over its

constant parameter alternative, as well as traditional TVP regressions with stochastic volatility.

An application of this methodology to the prediction of euro area core inflation tail risks

with data spanning the past thirty years points to a very good forecasting performance of

quantile regressions with time-varying parameters augmented with specific credit and money-

based indicators, both in the short and the medium run.

Follow-up work will concentrate on assessing the ability of the proposed modelling framework

to enhance the prediction of the tail risks of other core macroeconomic and financial variables,

such as real GDP and asset prices, both in the euro area and in other countries.
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A Bayesian inference in the quantile regression model

A.1 Linear quantile regression setting

Following Yu and Moyeed (2001) the quantile regression model has a parametric representation

yt = xtβ(τ) + σ(τ)εt, (A.1)

where β(τ) and σ(τ) are the regression coefficients and the scale parameter, respectively, for

each quantile level τ , and εt are i.i.d. from a joint Asymmetric Laplace density of the form∏T
t=1

τ(1−τ)
σ(τ)2

[
e
(1−τ)

εt
σ(τ)2 I(εt ≤ 0) + e

−τ
εt

σ(τ)2 I(εt > 0)
]
. We can write the Asymmetric Laplace

distribution using the following mixture representation (cf Kozumi and Kobayashi, 2011)

yt = xtβ(τ) + θ(τ)zt + σ(τ)κ(τ)
√
zt(τ)ut, ut ∼ N(0, 1), (A.2)

where θ(τ) = 1−2τ
τ(1−τ) and κ(τ)2 = 2

τ(1−τ) and zt(τ) ∼ exp(σ(τ)2). Under this mixture

representation the density of yt is of the form

T∏
t=1

1√
2πzt(τ)σ(τ)2κ(τ)2

exp

{
−(yt − xtβ(τ)− θ(τ)zt(τ))

2

2zt(τ)σ(τ)2κ(τ)2

}
exp

{
− zt(τ)

σ(τ)2

}
, (A.3)

which conditionally on zt(τ) is a Normal density, while marginalizing (i.e. integrating) over the

unknown zt(τ) gives the desired Asymmetric Laplace density (see the Appendix of Khare and

Hobert, 2012, for a proof).

Given priors of the form

β(τ) ∼ N(0, V (τ)), (A.4)

σ(τ) ∼ IG(ρ1, ρ2), (A.5)

zt(τ) ∼ exp(σ(τ)), (A.6)
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for each τ = 0.05, 0.10, ..., 0.90, 0.95 1, we obtain conditional posteriors of the form

β(τ)|• ∼ N
((
x′Ux+ V (τ)−1

)−1 × (x′U [y − θ(τ)z(τ)]) ,
(
x′Ux+ V (τ)−1

)−1
)
, (A.7)

σ(τ)2|• ∼ inv −Gamma

(
ρ1 +

3T

2
, ρ2 +

T∑
t=1

(yt − xtβ(τ)− θ(τ)zt(τ))
2

2zt(τ)κ(τ)2
+

T∑
t=1

zt(τ)

)
, (A.8)

zt(τ)|• ∼ IG

(√
θ(τ)2 + 2κ(τ)2

|yt − xtβ(τ)|
,
θ(τ)2 + 2κ(τ)2

σ(τ)2κ(τ)2

)
, (A.9)

where x = [x′1, ..., x
′
T ]

′, x = [y1, ..., yT ]
′, and U is a T × T diagonal covariance matrix with t-th

element (zt(τ)σ(τ)
2κ(τ)2)−1. In equation (A.9) IG denotes the Inverse Gaussian distribution.2

Kozumi and Kobayashi (2011) derive a posterior for zt(τ) as in equation (A.9) that is Generalized

Inverse Gaussian (GIG) with different hyperparameters. The expression in (A.9) is derived by

noting the property that the IG(µ, λ) distribution is a GIG(λ/µ2, λ,−1/2) distribution, see

Johnson et al. (1994).

A.2 Dealing with high-dimensional settings

Before we proceed with the time-varying parameter (TVP) version of the previous sampling

algorithm, we discuss how we deal with high-dimensional versions of the Bayesian quantile

regression model (the TVP quantile regression is such a model). Our focus is both on fast and

efficient computation, as well as automatic shrinkage of the vector of regression coefficients.

Unlike the regular regression model, notice that in the quantile regression shrinkage is

imperative even in the case where the number of predictors, p, is much smaller relative to the

number of time series observations, T , that is, even when p ≪ T . This is because we need to

estimate a p-dimensional vector β(τ) for each quantile level τ = 0.05, 0.10, ..., 0.90, 0.95. While

around the median nearby quantiles can help assist estimate the β’s more accurately,

estimation in more extreme quantiles will rely on only a small part of the sample. Therefore,

even small or moderate values of p can induce large estimation error of unrestricted estimators.

We specify a hiearchical shrinkage prior for β(τ) and, in particular, we follow Bhattacharya

et al. (2016) who adopt a horseshoe prior of the form

β(τ)i|λ(τ)2, ψi(τ)
2 ∼ N

(
0, λ(τ)2ψi(τ)

2
)
, (A.10)

λ(τ) ∼ Cauchy+ (0, 1) , (A.11)

ψi(τ) ∼ Cauchy+ (0, 1) , (A.12)

1Note that each β(τ) has its own prior variance V (τ) for each quantile level τ , while σ(τ) depends on the
same hyperparmeters ρ1, ρ2 for all τ . This is because it is trivial to be noninformative for the variance parameters
σ(τ), while this is not the case for β(τ): as we detail in the next subsection we are interested in regularizing
this parameter for the sake of estimation accuracy, therefore, V (τ) will be estimated adaptively (i.e. for each
τ = 0.05, 0.10, ..., 0.90, 0.95).

2While the inverse of a Gamma variate is distributed inverse Gamma, and vice-versa, the same is not true for
the Normal (Gaussian) and Inverse Gaussian distributions.
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for i = 1, ..., p and τ = 0.05, 0.10, ..., 0.90, 0.95. The conditional posteriors of λ, ψi can be

obtained if we consider the formulation of the horseshoe prior adopted in Makalic and Schmidt

(2016). These authors write the horseshoe prior using the equivalent hierarchical notation

β(τ)i|λ(τ)2, ψi(τ)
2 ∼ N(0, λ(τ)2ψi(τ)

2), (A.13)

λ(τ)2|ξ(τ) ∼ inv −Gamma (1/2, 1/ξ(τ)) , (A.14)

ξ(τ) ∼ inv −Gamma (1/2, 1) , (A.15)

ψi(τ)
2|ζi(τ) ∼ inv −Gamma (1/2, 1/ζi(τ)) , (A.16)

ζi(τ) ∼ inv −Gamma (1/2, 1) . (A.17)

Conditional posteriors under this prior formulation are trivial to derive and exact formulas can

be found in Makalic and Schmidt (2016).

The next step in our analysis is to sample efficiently the large dimensional vector β(τ)

using equation (A.7), especially when p ≫ T . We follow again Bhattacharya et al. (2016) who

propose an efficient way to sample from the Normal distribution using the Woodbury matrix

identity. Calculation of the posterior covariance matrix of β(τ) relies on inverting the p × p

matrix
(
x′Ux+ V −1

)
which requires O(p3) algorithmic operations. The same number of

algorithmic operations are needed to obtain the Cholesky decomposition of the posterior

covariance, which is essential in order to generate from the desired Normal posterior

distribution. In high dimensions, that is when p gets large, both these operations become

computationlly cumbersome. Bhattacharya et al. (2016) propose instead the following

sampling scheme3:

Algorithm for efficient sampling from (A.7)

Step 1 Sample η ∼ N(0, V (τ)) and δ ∼ N(0, IT )

Step 2 Set v = x̃η + δ

Step 3 Set w = (x̃V x̃′ + IT )
−1[y − θ(τ)z(τ)− v]

Step 4 Set β(τ) = η + V x̃′w

where x̃ = xU−1/2 where U−1/2 is a T × T diagonal matrix with elements (
√
zt(τ)σ(τ)κ(τ))

−1

on its main diagonal. Instead of generating from a p-variate Normal posterior distribution,

the algorithm above involves generating from the p-variate Normal prior distribution, and a

T -variate standard Normal. As long as the prior covariance matrix is diagonal, generating from

η ∼ N(0, V ) is computationally trivial. Similar arguments hold for δ ∼ N(0, IT ). The remaining

transformations in the algorithm result from the Woodbudy identity (see Bhattacharya et al.,

2016, for a straightforward proof) and they can be extremely efficient. The worst case complexity

3This algorithm only works when the prior covariance matrix is diagonal, which is the case with the Horseshoe
prior and the vast majority of Bayesian prior specifications.
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of the algorithm is O(T 2p), which provides huge gains relative to inverting and taking the

Cholesky factor of the p× p matrix
(
x′Ux+ V −1

)
.

Since our algorithm for estimating the quantile regression model is written in MATLAB,

further gains can be achieved by replacing for loops with vector operators. This is very relevant

here, because the algorithm requires for each MCMC iteration to also iterate through equations

(A.7)-(A.9) for each quantile level τ . MATLAB allows to generate from matrix-variate versions

of the required posterior distributions, such that all parameters can be generated at once ∀
τ ∈ {0.05, 0.10, ..., 0.90, 0.95}.

A.3 Bayesian inference in the quantile regression model with time-varying

parameters

Following the previous sections, the Bayesian time-varying parameter quantile regression model

can be written as

yt = xtβ(τ)t + εt, εt ∼ ALD(σ(τ)2), (A.18)

βt(τ) = βt−1(τ) + vt, vt ∼ N(0, V (τ)) (A.19)

subject to the initial condition β0(τ) ∼ N (0, V0(τ)), where xt is a 1 × p vector of predictors,

and V (τ) is a p× p covariance matrix. Given that the ALD distribution for εt admits a mixture

of Normals representation, it is trivial to treat the system above as a linear, conditionally

Gaussian state-space model. However, doing so would result in recursive sampler that would be

quite inefficient.

We first note that the t-th observation yt can be solved for ∆βt(τ) = βt(τ)− βt−1(τ) as

yt = xtβt(τ) + εt (A.20)

= xt∆βt(τ) + xtβt−1(τ) + εt (A.21)

= xt∆βt(τ) + xt∆βt−1(τ) + xtβt−2(τ) + εt (A.22)

... (A.23)

= xt∆βt(τ) + xt∆βt−1(τ) + ...+ xt∆β2(τ) + xtβ1(τ) + εt (A.24)

which shows that the coefficients at time t, β(τ)t is simply the cumulative sum of changes over

the previous time periods. More intuition can be built if we stack for all observations t and
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rewrite equations (A.18)-(A.19) in the form
y1

y2

...

yT−1

yT

 =


x1 0 ... 0 0

x2 x2 ... 0 0

... ... ... ... ...

xT−1 xT−1 ... xT−1 0

xT xT ... xT−1 xT




β1(τ)

∆β2(τ)

...

∆βT−1(τ)

∆βT (τ)

+


ε1

ε2

...

εT−1

εT

 ,(A.25)


β1(τ)

∆β2(τ)

...

∆βT−1(τ)

∆βT (τ)

 =


v1

v2

...

vT−1

vT

 (A.26)

or more compactly

y = Xβ∆(τ) + ε, (A.27)

β∆(τ) = v, (A.28)

where β∆ = [∆β1(τ)
′,∆β2(τ)

′, ...,∆βT (τ)]
′ and X is the block triangular matrix shown

analytically above. The first equation is a static linear regression with parameters β∆(τ). The

main characteristic of this equation is that it is represents a high-dimensional setting, since the

lower-triangular matrix X has dimensions T × Tp, i.e. more covariates than observations. The

second equation is an identity and, instead of having the interpretation of a state equation, it

can be seen as a standard Normal prior for the difference between βt(τ) and βt−1(τ). This

high-dimensional representation shows clearly why shrinkage in TVP models is imperative, and

why choice of the state covariance matrix (V (τ) here) is of paramount importance; see the

discussion in Amir-Ahmadi et al. (2020).

It is notable that this representation of the TVP regression is equivalent to a minor

reparametrization of the formulation and algorithm of Chan and Jeliazkov (2009). Using their

methods, the time-varying parameter quantile regression would be written as

y = Xβ(τ) + ε, (A.29)

β(τ) = H−1v, (A.30)
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where

H =



Ip 0 ... 0 0

−Ip Ip
. . . 0 0

. . .
. . .

. . .
. . .

...

0 0 −Ip Ip 0

0 0 0 −Ip Ip


, X =



x1 0 ... 0 0

0 x2
. . . 0 0

...
. . .

. . . 0
...

0 ... 0 xT−1 0

0 ... 0 0 xT


(A.31)

and β = [β1(τ)
′, ..., βT (τ)

′]′. Note that if we compare (A.29) with (A.27) it holds that:

Xβ(τ) = XH−1Hβ(τ) = (XH−1)(Hβ(τ)) = Xβ∆(τ). (A.32)

Similarly, if we left-multiply both sides of (A.30) with H, we obtain (A.28), showing that our

suggested specification is a simple rotation of Chan and Jeliazkov (2009) using matrix H that

creates first differences of the coefficients β(τ) and turns the diagonal matrix X into a lower

triangular matrix. Despite the similarities, the formulation we propose makes full use of the fast

algorithm of Bhattacharya et al. (2016) because the prior distribution of β∆(τ) is diagonal (i.e.

easy to sample from), while the distribution of β(τ) is tridiagonal; see Chan and Jeliazkov (2009)

for its exact form. Therefore, our proposed Gibbs sampler is faster than the one proposed by

Chan and Jeliazkov (2009), especially in high-dimensions (large p) and in the case of the quantile

regression model where we need to sample TVPs for each quantile level τ .

Replacing ε with its mixture of Normal representation of the previous subsection, and adding

the Horseshoe prior on V (τ) we can write the full Bayesian TVP quantile regression model using

the following equations

y = Xβ∆(τ) + θ(τ)z(τ) + (̃S)u, (A.33)

β∆(τ) ∼ N(0, V (τ)), (A.34)

Vi,i(τ) = σ(τ)2λ(τ)2ψi(τ)
2, i = 1, ..., Tp,

λ(τ) ∼ Cauchy+ (0, 1) , (A.35)

ψi(τ) ∼ Cauchy+ (0, 1) , (A.36)

σ(τ) ∼ IG(ρ1, ρ2), (A.37)

zt(τ) ∼ exp(σ(τ)), t = 1, ..., T, (A.38)

where S̃ is a T × T diagonal matrix with diagonal element σ(τ)κ(τ)
√
zt(τ).

A.4 Noncrossing quantiles

All estimation algorithms for quantile regression models, included the one presented above,

assume that the quantile curves are fitted independently from each other. If we write the
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quantile regression model using the generic form

yt = Qτ (yt|xt) + εt, (A.39)

then each curve Qτ (yt|xt) is estimated independently for each τ = 0.05, 0.1, ..., 0.90, 0.95. This

independence means that there no mechanism in place in order to guarantee that estimates

Q̂τ (yt|xt) satisfy the very definition of a quantile, that is the fact that Q̂τ1(yt|xt) < Q̂τ2(yt|xt)
when τ1 < τ2. This condition is also known as “quantile noncrossing”. Various algorithms

have been proposed in the literature to deal with this issue. Most algorithms propose to post-

process the estimated quantile functions using some smoothing procedure/function. Such post-

processing can work well, however, inevitably, will introduce some bias in quantile estimates,

therefore choice of an appropriate algorithm is essential.

Here we use the recently proposed algorithm of Rodrigues and Fan (2017) for Bayesian

quantile regression. This algorithm involves to first use a consistent MCMC-based estimator to

obtain quantile regression estimates (such as the one outlined above), and then use a Gaussian

process regression to smooth out the quantile estimates. In order to achieve this, Rodrigues and

Fan (2017) note that exactly because adjacent quantiles are correlated, one can use the following

auxiliary model

Qτ,τ⋆(yt|xt) =


xtβ(τ

⋆) + σ(τ⋆)
1−τ⋆ log

(
τ
τ⋆

)
, if 0 ≤ τ ≤ τ⋆,

xtβ(τ
⋆)− σ(τ⋆)

τ⋆ log
(

1−τ
1−τ⋆

)
, if τ⋆ ≤ τ ≤ 1,

(A.40)

where Qτ,τ⋆(yt|xt) is the induced quantile, and τ, τ⋆ ∈ {0.05, 0.10, ..., 0.90, 0.95}. When τ = τ⋆

thenQτ,τ⋆(yt|xt) ≡ Qτ (yt|xt), that is, the induced quantile is equivalent to the estimated quantile

based on our model. However, for all other levels of τ⋆ we obtain additional induced quantile

values that provide information for the quantile curve at τ . The principle is that the closer τ⋆

is to τ , the more information its quantile curve can provide for estimation of the quantile curve

at τ .

Given that there are 19 values in the set τ, τ⋆ ∈ {0.05, 0.10, ..., 0.90, 0.95}, in our application

Qτ,τ⋆(yt|xt) is a 19× 19 matrix. The diagonal elements of this matrix are identical to Qτ (yt|xt).
Rodrigues and Fan (2017) specify a Gaussian process regression that ends up being equivalent to

a weighting scheme where for each τ the quntiles Qτ,τ⋆(yt|xt) take increasingly more weight the

closer τ⋆ is to τ . That way, the induced quantile at τ = τ⋆ (i.e. Qτ (yt|xt)) takes the most weight

and very distant quantiles get decreasing weights. It is very trivial to specify and implement

this weighting/smoothing scheme, and we refer the reader to Rodrigues and Fan (2017) for more

details.4 Proposition 2 in that paper shows that this smoothed estimate of the quantiles is

4Their method introduces two new parameters, σ2
κ and b (using their notation). We follow the authors and

set σ2
κ = 100 and we select the minimum b that provides a non-crossing solution.
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consistent, and a Monte Carlo study supports the good properties of this method.
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B Data

Figure B1: Euro area inflation

Figure B2: Euro area core inflation
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Table B1: List of euro area Indicators

VARIABLE FULL DESCRIPTION UNIT SOURCE CATEGORY

HICPCORE HICP - All-items excluding energy and food index Eurostat

LTIE Consensus Long-Term Inflation Expectations 6-10Y percent Consensus

OG Output gap (PC of EC, IMF and OECD estimates) percentage pointsEC, IMF, OECD

IMPP Relative import prices index Eurostat

M1 M1 nominal stock index ECB money

M12GDP M1 to GDP ratio percent ECB money

M3 M3 nominal stock index ECB money

M32GDP M3 to GDP ratio percent ECB money

CRNFPS Credit to the non-fin. priv. sector (NFPS) nom. stock index BIS credit

CRNFPS2GDPCredit to the NFPS to GDP ratio percent BIS credit

LONFPS Bank loans to the non-fin. priv. sector (NFPS) nom. stock index BIS credit

LONFPS2GDPBank loans to the NFPS to GDP ratio percent BIS credit

LONFC Bank loans to non-fin. corporations (NFC) nom. stock index ECB credit

LONFC2GDP Bank loans to NFC to GDP ratio percent ECB credit

LOHH Bank loans to households (HH) nom. stock index ECB credit

LOHH2GDP Bank loans to HH to GDP ratio percent ECB credit

CISS Composite Indicator of Systemic Stress index ECB other financial variable

STP Dow Jones Euro Stoxx Price Index index ECB other financial variable

HP Residential property price index index ECB other financial variable

CRSPR Corporate bond spread (IG-3M Euribor) percentage pointsECB interest rate spread

YC Slope of the Yield Curve: 10Y gov. bond yield - 3M Euriborpercentage pointsECB interest rate spread

LRHHSPR Mortgate lending rate minus 3M Euribor percentage pointsECB interest rate spread

LRNFCSPR NFC lending rate minus 3M Euribor percentage pointsECB interest rate spread

10



Table B2: Main properties of the euro area HICP inflation

Whole Sample

1990Q1-2019Q4

Pre-Great Recession

1990Q1-2007Q2

Post-Great Recession

2007Q3-2019Q4

Summary Statistics

Observations 116 69 47

Mean 1.7 2.1 1.1

Standard deviation 1.0 1.0 0.4

Maximum 0.3 0.6 0.3

Minimum 54.5 4.5 1.9

Empirical Quantiles

τ=0.05 0.66 0.87 0.50

τ=0.10 0.78 1.09 0.66

τ=0.90 3.35 4.03 1.72

τ=0.95 4.17 4.25 1.84

Skewness and fat tails (Test Statistics)

Skewness 4.988∗∗∗ 3.029∗∗∗ 0.145

Kurtosis 2.357∗∗∗ 0.247 1.004

Normality 0.695∗∗∗ 0.784∗∗∗ 0.644∗∗∗
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C Additional Results

Table C1: Average relative scores by group of models for euro area core HICP inflation: 4-
quarters ahead

QScore5 Qscore10 QScore90 Qscore95 PL
TVP-AR-SV 1.496 1.449 0.956 0.896 1.158
TVI-SV 1.654 1.461 0.922 0.914 1.314
TVP-QAR 0.988 1.243 0.901 0.839 1.218
TVI-QR 1.025 1.279 0.865 0.853 1.260

PC-SV 1.519 1.534 1.045 0.974 1.077
TVP-PC-SV 0.909 1.006 0.920 0.938 1.245
QPC 2.383 1.817 1.266 1.543 1.204
TVP-QPC 1.129 1.225 1.042 0.926 1.308

PC-SV-X 1.560 1.574 1.093 1.039 1.051
TVP-PC-SV-X 0.973 1.044 0.976 0.963 1.214
QPC-X 2.411 1.859 1.304 1.583 1.175
TVP-QPC-X 1.152 1.291 1.060 0.994 1.285

AR-SV-X 1.166 1.230 0.897 0.905 1.095
TVP-AR-SV-X 1.388 1.367 0.945 0.908 1.180
QAR-X 1.440 1.247 0.876 0.921 1.261
TVP-QAR-X 1.023 1.229 0.885 0.843 1.243

Notes: The quantile score refers to the average of the QSj
t (τ) over all forecasting periods relative to the AR(2)

benchmark, as an average across across all competing models with the specific model specification. The table
reports the ratios of the quantile score of the models described in each row to that of the AR(2) model. For
the four quantiles shown, any value below 1 signals an improvement of the forecast relative to the benchmark
model and the lower the value of such ratio the larger the improvement. For the Predictive Likelihood (PL) (last
column), any value above 1 signals an improvement of the forecast relative to the benchmark model and the
higher the value of such ratio the larger the improvement.
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Table C2: Average relative scores by group of models for euro area core HICP inflation: 12-
quarters ahead

QScore5 Qscore10 QScore90 Qscore95 PL
TVP-AR-SV 2.423 1.785 0.774 0.752 1.202
TVI-SV 2.412 1.670 0.786 0.691 1.210
TVP-QAR 1.144 1.368 0.783 0.852 1.245
TVI-QR 1.235 1.383 0.737 0.826 1.234

PC-SV 1.823 1.815 0.912 0.935 0.888
TVP-PC-SV 2.495 2.217 1.246 1.244 0.804
QPC 3.356 2.254 0.834 0.782 1.066
TVP-QPC 3.652 3.323 1.011 0.959 0.928

PC-SV-X 2.222 1.907 0.951 0.951 0.890
TVP-PC-SV-X 2.362 2.029 1.228 1.231 0.820
QPC-X 3.413 2.287 0.965 0.989 1.070
TVP-QPC-X 2.614 2.790 0.985 0.922 0.976

AR-SV-X 1.412 1.278 0.921 0.923 1.030
TVP-AR-SV-X 2.181 1.681 0.886 0.873 1.099
QAR-X 2.161 1.566 0.886 0.892 1.168
TVP-QAR-X 1.163 1.378 0.832 0.895 1.194

Notes: The quantile score refers to the average of the QSj
t (τ) over all forecasting periods relative to the AR(2)

benchmark, as an average across across all competing models with the specific model specification. The table
reports the ratios of the quantile score of the models described in each row to that of the AR(2) model. For
the four quantiles shown, any value below 1 signals an improvement of the forecast relative to the benchmark
model and the lower the value of such ratio the larger the improvement. For the Predictive Likelihood (PL) (last
column), any value above 1 signals an improvement of the forecast relative to the benchmark model and the
higher the value of such ratio the larger the improvement.
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Table C3: Best financial indicators and models for the prediction of core HICP inflation tail
risks: 4-quarters ahead

Measure Ranking Indicator Specification Score

1st loans to private sector TVP-PC-SV-X 0.891
QScore5 2nd M1/GDP TVP-QAR-X 0.900

3rd house prices TVP-QAR-X 0.900

1st loans to firms TVP-PC-SV-X 0.913
QScore10 2nd loans to firms TVP-QAR-X 0.949

3rd loans to private sector TVP-PC-SV-X 0.969

1st loans to private sector TVP-QAR-X 0.788
QScore90 2nd private sector credit/GDP QAR-X 0.799

3rd credit spread QAR-X 0.800

1st credit to private sector AR-SV-X 0.761
QScore95 2nd loans to private sector TVP-QAR-X 0.767

3rd credit to private sector TVP-QAR-X 0.780

1st M1/GDP TVP-QAR-X 1.474
PL 2nd loans to private sector TVP-QAR-X 1.429

3rd house prices QAR-X 1.383

Notes: PC stands for Phillips curve, QAR for quantile autoregression with two lags, AR for mean autoregression
with two lags, TVP for time-varying parameters and SV for stochastic volatility. Low inflation tail risks are
captured by the 5th and 10th percentiles (Q5 and Q10, respectively) while high inflation tail risks are captured
by the 90th and 95th percentiles (Q90 and Q95, respectively). The lower block reports the Predictive Likelihood
(PL) which provides an evaluation of the forecast of the whole distribution of inflation. The last column reports
the ratios of the predictive quantile score of the models described in each row to that of the AR(2) model. For
the quantiles, a value below 1 signals an improvement of the forecast relative to the benchmark and the lower
the value the larger is the improvement. For the PL, any value above 1 signals an improvement of the forecast
relative to the benchmark model and the higher the value of such ratio the larger the improvement.
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Table C4: Best financial indicators and models for the prediction of core HICP inflation tail
risks: 12-quarters ahead

Measure Ranking Indicator Specification Score

1st private sector loans/GDP TVP-QAR-X 0.951
QScore5 2nd private sector credit/GDP TVP-QAR-X 0.962

3rd yield curve TVP-QAR-X 0.963

1st house prices AR-SV-X 0.969
QScore10 2nd M1 AR-SV-X 0.977

3rd private sector credit/GDP AR-SV-X 1.054

1st loans to households TVP-QPC-X 0.675
QScore90 2nd lending rate to firms TVP-QAR-X 0.706

3rd loans to households/GDP QR-X 0.715

1st loans to households TVP-QPC-X 0.635
QScore95 2nd private sector credit/GDP QAR-X 0.685

3rd loans to households/GDP QAR-X 0.692

1st loans to households TVP-QPC-X 1.552
PL 2nd loans to households QAR-X 1.336

3rd loans to households/GDP QAR-X 1.295

Notes: PC stands for Phillips curve, QAR for quantile autoregression with two lags, AR for mean autoregression
with two lags, TVP for time-varying parameters and SV for stochastic volatility. Low inflation tail risks are
captured by the 5th and 10th percentiles (Q5 and Q10, respectively) while high inflation tail risks are captured
by the 90th and 95th percentiles (Q90 and Q95, respectively). The lower block reports the Predictive Likelihood
(PL) which provides an evaluation of the forecast of the whole distribution of inflation. The last column reports
the ratios of the predictive quantile score of the models described in each row to that of the AR(2) model. For
the quantiles, a value below 1 signals an improvement of the forecast relative to the benchmark and the lower
the value the larger is the improvement. For the PL, any value above 1 signals an improvement of the forecast
relative to the benchmark model and the higher the value of such ratio the larger the improvement.
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Figure C1: Calibration tests of Rossi and Sekhposyan (2019) for the best models

Figure C2: Conditional Distributions of euro area HICP Core inflation quarter-on-quarter
growth rate for the best and benchmark models: 4-quarter ahead
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Figure C3: Conditional Distributions of euro area HICP Core inflation quarter-on-quarter
growth rate for the best and benchmark models: 12-quarter ahead
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