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Abstract

Nowcasting methods rely on timely series related to economic growth for
producing and updating estimates of GDP growth before publication of official
figures. But the statistical uncertainty attached to these forecasts, which is
critical to their interpretation, is only improved marginally when new data
on related series become available. That is particularly problematic in times
of high economic uncertainty. As a solution this paper proposes to model
common factors in scale and shape parameters alongside the mixed-frequency
dynamic factor model typically used for location parameters in nowcasting
frameworks. Scale and shape parameters control the time-varying dispersion
and asymmetry round point forecasts which are necessary to capture the
increase in variance and negative skewness found in times of recessions. It
is shown how cross-sectional dependencies in scale and shape parameters
may be modelled in mixed-frequency settings, with a particularly convenient
approximation for scale parameters in Gaussian models. The benefit of this
methodology is explored using vintages of U.S. economic growth data with a
focus on the economic depression resulting from the coronavirus pandemic.
The results show that modelling common factors in scale and shape parameters
improves nowcasting performance towards the end of the nowcasting window
in recessionary episodes.

Keywords: Nowcasting uncertainty, score driven models, dynamic common factors,

volatility, skewness
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1 Introduction

This paper proposes a novel means for deriving timely measures of GDP nowcast

uncertainty using forecasting errors observed in series related to economic growth.

Nowcasts can thus be communicated with an improved appreciation of the statistical

uncertainty attached to them. The approach relies on filtering and dynamic factor

techniques for exploiting dependencies in a panel of time series released on different

frequencies and asynchronously. While Gaussian dynamic factor models provide

a reliable and popular method for nowcasting, non-Gaussian techniques are used

increasingly to model the distribution of conditional GDP growth in a more flexible

way. This paper sets out new techniques for updating nowcasting uncertainty in

both Gaussian and non-Gaussian frameworks.
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As the leading measure of economic growth GDP is a key variable affecting

policy makers and economic agents’ decisions. But its comprehensiveness comes at

the cost of timeliness; it is published with a significant delay. Nowcasting methods

provide a means for forecasting current-quarter GDP starting from the beginning

of the quarter until its official release by using data related to economic growth

but released earlier and more frequently. By modelling the relationship between

these related series and GDP, the ‘targeted’ series, it is thus possible to update the

current-quarter GDP forecast, or nowcast, each time new observations on related

series become available.

For an efficient use of nowcasts the uncertainty attached to them should be

conveyed as well. But while nowcasting methods make use of data related to

economic growth to improve point forecasts, the signal on forecasting uncertainty

these related series carry is exploited only partially. The model capturing cross-

sectional dependencies in the data is typically applied only to conditional means

(or locations), whereas forecasting uncertainty is derived from scale and shape

parameters. While modelling dependencies in conditional means may be enough

for forecasting uncertainty to be propagated across series when related series have

dynamic variance parameters, this channel is incomplete and takes place with a

potential delay. The sharp downturn brought by the coronavirus pandemic and the

increase in forecasting uncertainty linked to it makes this issue particularly salient.

To make full use of the information that related series carry on GDP nowcasting

uncertainty this paper explores the benefit of using dynamic factor models for scale

and shape parameters, in addition to the one typically used for locations. Hence

new observations in the related series lead to timely updates in the point forecasts

through the common factor in the locations and, importantly, to the uncertainty

attached to them as well through the common factors in the scales and shapes.

Intuitively, if large prediction errors occur in a series related to GDP, and these

are associated with large prediction errors in GDP, then the dispersion attached to

the GDP nowcast should be adjusted accordingly. This is possible directly through

the common factor in the scales. On the other hand, modelling dependencies in the

shape parameters is useful to capture the asymmetry in prediction errors typically

observed at the onset of recessions : While there is an increase in the dispersion of

prediction errors, these are likely to be skewed towards negative values. The onset

of the Covid-19 pandemic is a good illustration of this fact. It was clear in April

2020 that the first-quarter GDP growth in the US would be negative or very close to

zero, but while the magnitude of the drop was uncertain, very large positive figures

were clearly improbable.

The motivation for modelling non-Gaussian features, and a shape parameter

in particular, is based on evidence that macroeconomic data in general are not

normally distributed (see for instance Haldane (2012) and Jensen et al. (2020)). The

features of GDP growth’s distribution when conditioning on macroeconomic and

financial variables are also likely to vary over the economic cycle. By conditioning

on financial variables, Adrian et al. (2019) and Delle-Monache et al. (2020) notably
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find increased negative skewness accompanying a rise in volatility in the predictive

distribution of US GDP growth in times of recessions. In normal times, however,

GDP growth is close to being conditionally normally distributed. These temporary

deviations from normality have important implications regarding the communication

of a model’s predictions. A forecaster should take into account the time-varying

shape of the uncertainty attached to a model’s forecast, with a particular attention

to downside risk.

To model openly non-Gaussian features in the conditional distribution of economic

data this paper adopts the score driven methodology of Harvey (2013) and Creal et al.

(2013). Score driven models provide a flexibility close to non-Gaussian state space

models while remaining easy to estimate and implement. They have been applied

successfully to economic forecasting problems notably by Delle-Monache and Petrella

(2017), Creal et al. (2014) and Gorgi et al. (2019). More recently, Delle-Monache

et al. (2020) use score driven methods to study macroeconomic downside risk by

estimating time-varying location, scale and shape parameters. They use a large

number of regressors related to financial conditions in a univariate setting. The

framework presented here can be seen as a mixed-frequency multivariate alternative

to their model.

Some nowcasting models allow variance parameters to change over time, notably

through stochastic equations or Markov-switching processes, but their dynamics

do not exploit cross-sectional information. Models with stochastic volatility (as in

Antolin-Diaz et al. (2017, 2020) for instance) can nevertheless give an improved

measure of nowcasting uncertainty through the common factor in conditional means.

A large prediction error in a related series increases the expected volatility of the

next prediction error in this series. The dynamic in the common factor comes from

these prediction errors; therefore, the larger their expected volatility, the larger

the expected volatility of the common factor. Since the common factor is the

main component of GDP nowcasts, their dispersion increases as well. Modelling

dependencies in the scale parameters provide a complementary and direct approach

for updating GDP nowcasting uncertainty.

Separately, models with volatility (or scale) common factors are not new but so

far have not been used in a mixed-frequency setting (see Carriero et al. (2016, 2018,

2020) and Huber (2016)). Gorgi et al. (2019) model a common scale component in a

score driven bivariate model, but they do so by constraining the scale to be identical

in both series and do not discuss the issue of temporal aggregation. The model

proposed here contributes to this literature on stochastic volatility by addressing

openly the temporal aggregation problem arising from modelling common volatility

components in mixed-frequency and possibly non-Gaussian frameworks. In doing so

it provides an approach specifically fitted for nowcasting which may be applied in a

wide range of dynamic factor models.

Modelling common components in series aggregated and sampled at different

frequencies raises temporal aggregation issues somewhat different for location, scale

and shape parameters. While Mariano and Murasawa (2003) popularised a precise
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approximation for conditional means which is applicable to location parameters,

similar solutions for scale and shape parameters have not been discussed in the

literature.

This paper explores two different strategies to tackle the temporal aggregation

problem of scale and shape parameters. First, it is shown how scale parameters may

be aggregated temporally in Gaussian models using a convenient approximation,

thus providing an approach for modelling volatility common factors in a wide

range of mixed-frequency dynamic factor models. The second approach consists

of aggregating monthly series into rolling-quarterly figures. The mismatch in the

frequency of aggregation is thus alleviated, and scale and shape common factors can

be modelled in a non-Gaussian setting.

The mixed-frequency dynamic factor model presented in this paper exploits four

US time series : GDP, industrial production, the index of working hours, and the

Weekly Economic Index. The first three series are derived from real-time vintages

provided by the Federal Reserve Bank of Philadelphia. The Weekly Economic Index

(Lewis et al. (2020)) is a recent indicator released by the New York Fed in the aim

of capturing and communicating the effect of the Covid-19 pandemic on the US

economic activity in a timely way. GDP is quarterly while the other series are

monthly.

Different specifications of the model are applied in a real-time setting to study

the effect of modelling common factors in scale and shape parameters on nowcasting

performance, with a particular interest in density forecasts and recessionary episodes.

The results show that models with common factors in their scale and shape paramet-

ers perform better than models with only location common factors towards the end

of the nowcasting window, while providing competitive performances in other times.

Scale and shape common factors prove to be particularly important to capture

the forecasting uncertainty generated by the coronavirus pandemic. Separately,

modelling fat tails in series related to economic growth complicates the identification

of turning points in activity.

2 A Mixed-Measurement Score Driven Approach for Now-
casting with Location, Scale and Shape Common Factors

A dynamic factor approach is used for exploiting dependencies across series in

location, scale and shape parameters. A popular method for estimating dynamic

factor models consists of writing the model in state space form and using the

Kalman filter to evaluate the model’s log likelihood. The Kalman filter provides

an efficient approach for estimating nowcasting models for two reasons. First, it

handles easily the missing values that arise from modelling jointly series aggregated

at different frequencies and released asynchronously. Secondly, predictions can be

decomposed into latent components, which notably can be used to capture secular

changes in addition to common factors (see Harvey (1989) and Durbin and Koopman

(2012)). A comprehensive presentation of dynamic factor and state space methods
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for nowcasting is given by Banbura et al. (2013).

A limitation of the Kalman filter, however, is that it relies on the data being

conditionally normally distributed. Non-Gaussian features can be introduced using

importance sampling methods but these can be computationally intensive. Alternat-

ively, Creal et al. (2013) and Harvey (2013) derive a new class of filters relying on

the conditional score where the conditional distribution of the observations can arise

from a wide range of families. An attractive feature of score driven models is that

they provide a general framework for introducing time-variation and latent states in

any parameter of the predictive distribution. But unlike state space models, score

driven models are fully deterministic conditional on past information. Apart from

this shortcoming they retain most of the flexibility of state space models, including

the ability to model unobserved components. This section extends the score driven

dynamic factor model of Creal et al. (2014) with dynamic factor structures for scale

and shape parameters. Hence new observations on related series lead to timely

updates in both the point forecasts and the uncertainty attached to them.

2.1 A Mixed-Measurement Approach

As in Creal et al. (2014) and Gorgi et al. (2019) each element of the observation

vector yt = (y1,t, ..., ym,t)
′, t = 1, ..., N can have a distinct conditional (or predictive)

density such that

yi,t ∼ pi(yi,t|Yt−1), i = 1, ...,m, (1)

where m is the number of time series. The set Yt−1 = {ft, Xt−1,Θ} includes the

information available at time t−1. All variables are modelled at a monthly frequency.

The GDP series, which is quarterly, shows a quarterly figure in the last month of

each quarter with missing values in other months. The vector ft includes the

dynamic states related to location, scale and shape parameters which are fully

deterministic conditional on past information. Θ is a set of fixed parameters such

as autoregressive coefficients and factor loadings. Importantly the observations are

assumed to be cross-sectionally independent conditional on past information. Hence

the log likelihood of the observations at time t can be written as

logp(yt|Yt−1) =
m∑
i=1

δi,tlogpi(yi,t|Yt−1), (2)

t = 1, ..., N , where δi,t is zero if observation yi,t is missing and one otherwise.

2.2 A Score Driven Dynamic for the Unobserved Components

Following Creal et al. (2013) and Harvey (2013) the dynamic in the vector of

time-varying parameters ft comes from the conditional score such that

ft+1 = Bft + Ast, (3)
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where st denotes the scaled first derivative of the log density with respect to the

vector ft:

st = St∆t, ∆t =
∂logp(yt|Yt−1)

∂ft
. (4)

The matrix A is a diagonal matrix of gains which are estimated via maximum

likelihood along the unknown elements of the matrix B and the initial vector f1.

The matrix St is a scaling matrix set to the Moore–Penrose inverse of the expected

information matrix1 given by

St =
[
diag(It)

]−1

, It = E
[
∆t∆

′
t|Yt−1

]
. (5)

Following Delle-Monache et al. (2020) and Lucas and Zhang (2016) only the diagonal

elements of the information matrix are used to improve estimation.

Since the observations are conditionally cross-sectionally independent the score

and the expected information matrix can be expressed conveniently as

∆t =
m∑
i=1

δi,t∆i,t, (6)

where ∆i,t = ∂logp(yi,t|Yt−1)/∂ft, while the information matrix becomes

E
[
∆t∆

′
t|Yt−1

]
=

m∑
i=1

δi,tE
[
∆i,t∆

′
i,t|Yt−1

]
. (7)

In score driven models time-varying parameters are fully deterministic conditional

on past information. Therefore, if all series are modelled contemporaneously the

GDP nowcast cannot be updated once related series become observable for the last

month of the quarter. To overcome this problem the related series are lead of one

period, as in Gorgi et al. (2019).

The next subsection details the dynamics of the components in ft.

2.3 Dynamic Factor Models for Location, Scale and Shape Parameters

Each location, scale and shape parameter is decomposed into a stochastic trend

representing idiosyncratic secular changes and a common component capturing

cyclical variations common to all series which take the following form

λji,t+1 = λji,t + Ajλis
j
λi,t, i = 1, ...,m, (8)

Φj(L)πjt+1 = Ajπs
j
π,t, (9)

for all periods t = 1, ..., T . Location parameters are indicated by j = µ, scale

parameters by j = σ and shape parameters by j = α.

1The information matrix needs to be inverted at each step of the recursion because its components
are dynamic which considerably slows down estimation. To overcome this technical issue the score
driven recursion (hence the log likelihood evaluation as well) is written in C++ (I am grateful to
Caterina Schiavoni for her help with this) while the optimisation and the remainder of the analysis
is carried in R.
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The common component in the location, πµt , is an AR(2) process as is commonly

specified for the business cycle; it is constrained to be stationary using the parameter

transformation of Osborn (1976). The common factor in the scales captures common

volatility shocks, like the one generated by the Covid-19 pandemic, and is specified as

a stationary AR(1). The common factor in the shapes captures simultaneous shifts

in the asymmetry of prediction errors, like those typically arising at the beginning

of recessions, and is also modelled as a stationary AR(1). Adding a second lag in

the common factors of scales and shapes has little effect on estimation.

The stochastic trend in each parameter, λji,t, is useful to capture long-term

deviations. Antolin-Diaz et al. (2017) notably demonstrate that random-walk

specifications for time-varying parameters are robust to discrete breaks. They also

stress the importance of capturing secular changes in economic growth, a finding

also discussed by Doz et al. (2020).

The next subsection discusses how trends and common components are related

to the location, scale and shape parameters.

2.4 A Mixed-Frequency Approach for Location, Scale and Shape Para-

meters

Each series follows the predictive model :

yi,t = µi,t + σi,tεi,t, (10)

for i = 1, ...,m, t = 1, ..., N , and where vi,t = σi,tεi,t is a prediction error (and εi,t
its standardised counterpart) following an arbitrary distribution with time-varying

location, scale and shape parameters (µi,t, σi,t and αi,t). These are decomposed into

latent states whose dynamics come from the scaled score as outlined in the previous

section. These latent states include a component common to all variables. However,

the data used for estimation are of different nature; while GDP is a quarterly variable,

the related series are monthly variables. It is important to account explicitly for

this mismatch in the frequency of aggregation when relating the latent states to the

parameters.

To address this temporal aggregation mismatch it is useful to start from the

accounting relationship between monthly and quarterly variables, specifically a

quarterly variable in levels Yi,t must be equal to the three-month sum of its monthly

sub-components Ỹi,t−i, i = 0, 1, 2 :

Yi,t = Ỹi,t + Ỹi,t−1 + Ỹi,t−2. (11)

To account for heteroskedasticity and multiplicative components, however, the data

are generally taken in logarithms, such that the variables modelled are Y ∗i,t = logYi,t,

and Ỹ ∗i,t = logỸi,t. Since the sum of the logarithms is not equal to the logarithm of

the sum, the accounting constraint takes a nonlinear form :

Y ∗i,t = log
[
expỸ ∗i,t + expỸ ∗i,t−1 + expỸ ∗i,t−2

]
. (12)
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This type of non-linearity becomes difficult to handle once the first differences

in logs are modelled. It is possible, however, to work from a linear approximation.

Salazar et al. (1997) and Mitchell et al. (2005) show that

2∑
i=0

h(zt−i) ≈ 3 h

(∑2
i=0 zt−i

3

)
, (13)

where h(.) is a non-linear transformation and zt a smooth variable. The approxima-

tion (13) is a second order approximation because the first order errors sum to zero.

When monthly values in a quarter are close to the monthly average over the quarter,

which is usually the case with seasonally adjusted figures, the approximation error

introduced is negligible. Using this approximation equation (12) can be written as

Y ∗i,t = log3 +
1

3
Ỹ ∗i,t +

1

3
Ỹ ∗i,t−1 +

1

3
Ỹ ∗i,t−2. (14)

Using approximation (14) it is possible to write the quarter-on-quarter log

difference yi,t = Y ∗i,t − Y ∗i,t−3 as a function of the monthly log differences ỹi,t−i =

Ỹ ∗i,t−i − Ỹ ∗i,t−h−1, h = 0, ..., 4 as

yt,i =
1

3
ỹi,t +

2

3
ỹi,t−1 + ỹi,t−2 +

2

3
ỹi,t−3 +

1

3
ỹi,t−4. (15)

Equation (15) is also discussed by Mariano and Murasawa (2003) who have popular-

ised its use in mixed-frequency dynamic factor models.

Location Parameters

There is a linear relationship between each variable and its location parameter

which makes it possible to split the location of a quarterly variable into monthly

components and relate them to the location with (15). Importantly this step does not

require any assumption about the distribution of the unobserved monthly variable.

Monthly locations are modelled as

µ̃i,t = λµi,t + Λµ
i (L)πµt , (16)

where the factor loading has a lag structure as in Doz et al. (2020), albeit limited to

one period only, specifically Λµ(L) = Λµ
i,0 + Λµ

i,1L. The lagged factor loading is used

only for series largely derived from employment data, that is the index of working

hours and the Weekly Economic Index. The factor loading is constrained to be one

for GDP.

Location parameters in quarterly series are related to the monthly model using

approximation (15) as

µi,t =
1

3
µ̃i,t +

2

3
µ̃i,t−1 + µ̃i,t−2 +

2

3
µ̃i,t−3 +

1

3
µ̃i,t−4, (17)

while for monthly series it is simply

µi,t = µ̃i,t. (18)
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Scale and Shape Parameters

Diverging from the normal distribution is useful to capture the features of the data

in a flexible way, but it also creates challenges in a mixed-frequency framework.

Notably, while location parameters can be disaggregated temporally without making

any statistical assumptions on the monthly sub-components, that is not possible

for scale and shape parameters. This is problematic because the sum of two non-

normally distributed variables with known distributions has a distribution which is

difficult to evaluate and in many cases unknown. Linking the monthly model to the

quarterly model is therefore difficult.

When working in a non-Gaussian framework it is preferable to model the de-

pendencies across series in scale and shape parameters using quarterly models. To

do so related series exhibiting common factors in their scale and shape parameters

are aggregated into rolling quarterly observations (quarter-on-quarter deviations

observed monthly). This introduces serial correlation in these series which is ad-

dressed by modelling monthly location components, as outlined above. The temporal

aggregation strategies for modelling jointly quarterly and monthly observations and

modelling rolling quarterly observations (quarterly observations observed monthly)

are essentially the same; in both cases it is necessary to go back to the underlying

monthly model. Labonne and Weale (2020) show that when rolling quarterly series

are not subject to important measurement errors it is possible to interpolate the

monthly path very precisely with (14). Hence there should be little loss of information

when using rolling quarterly observations instead of monthly observations.

Separately, while locations can take any real value, scale parameters are positive

and shape parameters can take values only in (0;1) in the distribution used below.

To incorporate these constraints during estimation, trends and common factors are

related to scale and shape parameters as

σi,t = exp(λσi,t + Λσ
i φ

σ
t ), αi,t = 1/(1 + exp(λαi,t + Λα

i φ
α
t )), (19)

with the factor loadings constrained to one for the GDP series (i = 1).

The Special Case of a Normal Distribution

In a Gaussian setting it is possible to link monthly variances to quarterly variances

using an approximation close to (15) as shown below.

If yi,t is conditionally normally distributed, its conditional variance is equal to

the variance of the prediction error such that

V ar(yi,t|Yt−1) = E[(yi,t − E(yi,t|Yt−1))2] = E(v2
i,t) = V ar(vi,t).

Assuming that series i is observable quarterly, the quarterly prediction error can be

split into its monthly components using approximation (15) as

vi,t =
1

3
ṽi,t +

2

3
ṽi,t−1 + ṽi,t−2 +

2

3
ṽi,t−3 +

1

3
ṽi,t−4,
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where ṽi,t is a monthly prediction error. Using this approximation the variance of

the prediction error can be decomposed into monthly variances as

V ar(vi,t) =
1

9
V ar(ṽi,t) +

4

9
V ar(ṽi,t−1) + V ar(ṽi,t−2) +

4

9
V ar(ṽi,t−3) +

1

9
V ar(ṽi,t−4),

(20)

since, assuming that the monthly errors ṽi,t are i.i.d, the covariance terms are zero.

This step is possible only if the prediction errors are normally distributed. The

rolling quarterly scale parameter σi,t can thus be written as a function of the monthly

scale parameter σ̃i,t as

σi,t =

√
1

9
σ̃2
i,t +

4

9
σ̃2
i,t−1 + σ̃2

i,t−2 +
4

9
σ̃2
i,t−3 +

1

9
σ̃2
i,t−4. (21)

It is thus possible to specify a monthly model for all scale parameters where the

monthly components are related to the quarterly scale parameter of GDP using (21)

with σ̃1,t = exp(λσ1,t + Λσ
1φ

σ
t ).

2.5 A Generalised Asymmetric Student-t Model

Each series’ conditional density comes from the family of asymmetric student-t

(AST) density of Zhu and Galbraith (2010). The distinctive features of the AST

are its shape parameter, or skewness parameter, which controls the asymmetry

round the central part of the distribution, and its tail parameters which control tail

behaviours independently on each side.

The log AST density of observation t of series i takes the form

logpi(yi,t|Yt−1) =− lnσi,t −
ν1,i + 1

2
ln
[
1 +

1

ν1,i

( yi,t − µi,t
2αi,tσi,tK(ν1,i)

)2]
1(yi,t ≤ µi,t)

− ν2,i + 1

2
ln
[
1 +

1

ν2,i

( yi,t − µi,t
2(1− αi,t)σi,tK(ν2,i)

)2]
1(yi,t > µi,t),

(22)

where σi,t is the scale parameter, αi,t is the shape parameter which can take values in

(0, 1), and ν1,i and ν2,i are respectively the left and right tail parameters which take

positive values. K(ν) = Γ((ν + 1)/2)/(
√
νπΓ(ν/2)) (Γ(.) is the Gamma function)

and 1(x) is an indicator variable equal to one if statement x is true and zero otherwise.

The distribution is skewed towards positive values if αi,t < 0.5 and towards negative

values if αi,t > 0.5. When the tail parameters are constrained to be very large

and the skewness parameter to 0.5 the AST is equivalent to a (scaled) normal

distribution.

Figure 1 illustrates the effects that scale, shape and tail parameters have on the

density function. The solid red line shows the AST density when σ = 1 while other

parameters are constrained to be Gaussian (α = 0.5, ν1 = ν2 = ∞). The dotted

blue line shows the AST density when either the scale, tail or shape parameters

are varying. The density at the location changes when the scale parameter is
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altered but is independent to variations in the tail and shape parameters. This

is a particular feature of this version of the AST distribution (given in equation

(5) of Zhu and Galbraith (2010)) where the random variable is scaled with Bi,t =

αi,tK(νi,1) + (1− αi,t)K(νi,2).
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Figure 1: Illustration of the density functions from AST distributions with different
set of parameters. With shape parameter = 0.5 and tail parameters = ∞ the AST
distribution reduces to a (scaled) normal distribution (red solid line).

Graph (a) shows the effect of increasing the scale parameter, specifically to σ = 2.

The dispersion increases symmetrically on both sides and can be interpreted as a

general (or symmetric) increase in forecasting uncertainty when the model is applied

to conditional GDP growth.

Graph (b) shows the effect of lowering both tail parameters to three. The

probability in the tails increases which can be used to account for extreme events.

Graph (c), on the other hand, illustrates asymmetric tails; specifically an heavy tail

on the left side and Gaussian tail on the right side (ν1 = 3 while ν2 = ∞). This

increases the probability of extreme negative events while leaving the probability

of large positive extreme events unaffected. This asymmetric tail behaviour can

be particularly useful for conditional GDP if, as Jensen et al. (2020) argue, the

business cycle has become more asymmetric in the last thirty years. They find that

contractions have become more violent while recoveries remain smooth.

Finally, graph (d) shows the effect of negative skewness (α = 0.8) on the density

function. The central part of the density becomes skewed heavily toward negative

values. This statistical behaviour should be especially useful to capture the onset

of recessions when coupled with an increase in dispersion : while general economic

uncertainty increases, the likelihood of a positive outcome decreases. The real-time

analysis of US GDP in the first quarter of 2020 shown in section 7 validates this

intuition.

Figure 2 illustrates the response function of the scaled score for location, scale

and shape parameters with the prediction error as input.2 These are useful for

2The components of the score and information matrix are shown in appendix A
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illustrating two important properties of the scale score. First, introducing a skewness

parameter yields a discontinuity round zero. For instance, a distribution skewed

towards positive values downweights the effect of positive prediction errors and

amplify the effect of positive ones. Secondly and most importantly, the scale score

downweights the effect of large prediction errors when tail parameters are small (low

rates of decays in the tails). The Gaussian and skewed models, on the other hand,

yield linear or increasing responses when prediction errors increase.
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Figure 2: Plots of the density and score functions for an asymmetric student-t (AST)
distribution with σ = 1. X-axes show prediction errors. With shape parameter
α = 0.5 and tail parameters ν1 = ν2 =∞ the AST is equivalent to a (scaled) normal
distribution.

On the importance of high tail parameters for identifying turning points

Downweighting the effect of large prediction errors is usually a desirable feature of

score driven models because it leads to a more robust estimation. However, economic

crises, and the Covid-19 period in particular, are examples of cases where outliers

most likely have important and long-lasting effects on means and variances of time

series. If the related series’ distributions are allowed to have fat tails, the effect of

large swings in the economic activity on the time-varying parameters are likely to

be downweighted. Consequently the model might not capture turning points in the

economic activity and the concurrent increase in the dispersion of prediction errors

in a timely way.

To investigate thoroughly the effects of fat tails on estimation and forecast-

ing performance in recessionary episodes the empirical analysis compares models

with unconstrained tail parameters with models constrained to have Gaussian tail

parameters in the related series.

12



3 A Weighted Maximum Likelihood Estimator

The estimation strategy relies on the weighted maximum likelihood method of

Blasques et al. (2016), notably applied in a score driven framework by Gorgi et al.

(2019). It accounts explicitly for the fact that, while related series are used for

estimation, the primary objective here is to forecast GDP growth, not the related

series; these are used solely to improve GDP nowcasts.

To see this more clearly it is helpful to look at the model’s log likelihood at

period t, given by (2), which is the sum of each observation’s log likelihood at time

t. In a misspecified setting the parameters that maximise the total log likelihood

are not necessarily those that maximise the log likelihood of GDP. This issue is

even more prominent in a mixed-frequency framework where GDP is observed once

every three months whereas the related series are observed monthly. Indeed when

an observation is missing the series it relates to has no impact on the model’s log

likelihood for this period. The log likelihood associated to GDP has consequently

less weight on the total log likelihood than those of the related series.

Using the weighted maximum likelihood approach the vector of unknown para-

meters Θ which includes the distributions’ parameters, the initial values of the

time-varying parameters, the autoregressive coefficients and the gains is estimated

as

Θ̂ = arg max
Θ

N∑
t=1

logpw(yt|Yt−1), (23)

where logpw(yt|Yt−1) is the weighted log likelihood defined as

logpw(yt|Yt−1) = δi,tlogp1(y1,t|Yt−1) +W
m∑
i=2

δi,tlogpi(yi,t|Yt−1). (24)

The weight W is applied to the related series’ log likelihood and diminish

their contribution to the total log likelihood. It cannot be estimated alongside

the other parameters and Blasques et al. (2016) suggest selecting it via cross-

validation techniques. Alternatively, Gorgi et al. (2019) set the weight to zero.

This complicates the identification of the scale parameters in the related series; a

problem they overcome by modelling a unique scale parameter for all series. This

would be problematic here since the modelling approach proposed relies on a flexible

specification for scale parameters. Furthermore, in their out-of-sample nowcasting

exercise Gorgi et al. (2019) do not find that the score driven approach yields a clear

benefit when the contribution of the indicator series is null.

Here the weighting factor is set to one third to compensate for the implicit

downweighting of the GDP series coming from its lower frequency of observation

compared to the related series. The indicator series’ log likelihood contributions are

not downweighted further because that might deteriorate excessively the model’s

capacity to predict related series in real time. This could yield to prediction errors

loosing their economic meaning and with it their ability to indicate period of

economic depressions and uncertainty, which is the focus of this paper.
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4 Real-Time Data on US Economic Growth

This study is centred on quarterly GDP which is the leading measure of economic

growth and the data are taken from the United States. The estimate of GDP

analysed is the Advance Estimate, the timeliness estimate of GDP in the US.

Three monthly series related to economic growth are used to improve GDP now-

casts: Industrial production, the index of working hours and the Weekly Economic

Index (Lewis et al. (2020)). Industrial production is a component of GDP but is

more frequent and timely. The index of working hours is a very timely indicator of

employment and notably reflected the effect of the Covid-19 restrictions from the

onset of the pandemic. The Weekly Economic Indicator has been created specifically

to capture the effect of the pandemic in US in a timely way.

GDP and industrial production are regularly subject to benchmark changes

which affect the entire series, such as changes in indexation. To deal with these

changes all series are taken in first differences in logs. The sample includes data

from January 1973 up to June 2020 for GDP, industrial production and the index

of weekly hours whereas the Weekly Economic Index is used from June 2010 up to

June 2020. The series are illustrated in figure 3 using the vintage available at the

end of July 2020.
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(a) GDP (b) IP (c) Index of Working Hours (d) Weekly Economic Index

Figure 3: Quarterly data (calendar quarters) from January 1973 up to June 2020.
Industrial production, the index of working hours and the Weekly Economic Index
are aggregated into quarterly figures for comparison with GDP. Data from the most
recent vintage. Shaded areas indicate the US recessions classified by the NBER.

GDP, industrial production and the index of working hours are regularly revised

over time because the data used for their compilation accrue gradually. Therefore,

to investigate the forecasting performance of the model in real time it is necessary to

estimate the model recursively using successive vintages of the data. Such vintages

are produced by the Federal Reserve Bank of Philadelphia. The Weekly Economic

14



Indicator, on the other hand, is revised only marginally.

The most timely series are the index of working hours and the Weekly Economic

Index which are released at the beginning of each month and relate to the previous

month. Industrial production is released in the middle of each month and relate to the

previous month while GDP is released at the end of the month following the quarter

it relates to. Hence, two series (the index of working hours, the Weekly Economic

Index) are approximately released simultaneously while industrial production and

GDP follow different publication schedules. This yields seven rounds of revisions in

between GDP releases, that is seven nowcasting steps.

The first nowcasting step is at the end of the first month in the quarter, when

the previous-quarter GDP figure is released. The second step is at the beginning

of second month in the quarter when monthly figures for the index of working

hours and the weekly economic index are released. The next five steps are each

approximately two-weeks apart, when figures for either industrial production or the

index of working hours and the Weekly Economic Index are released.

5 Model Specifications

The primary objective of this paper is to investigate the potential gains of modelling

common factors in scale and shape parameters on dynamic factor models’ nowcasting

performance. For this it is useful to compare a range of model specifications.

The most flexible specification is model (a) which is an asymmetric student-t

dynamic factor model (DFM) with common factors in location, scale and shape

parameters. While GDP follows an unrestricted AST distribution, IP and IWH are

constrained to have a unique tail parameter and effectively follow skewed Student-t

distributions. Model (b) is derived from model (a) but tail parameters in the related

series are constrained to be Gaussian; the related series consequently have skewed

normal distributions. This means that more attention is placed on sharp movements

in the related series.

Separately, model (c) is Gaussian DFM with stochastic volatilities (SV) and a

common factor in scale parameters. Since model (c) is Gaussian, the common scale

component can be modelled at a monthly frequency and related to the quarterly

scale in GDP using (21). Comparing model (c) to the non-Gaussian models (a)

and (b) is useful to understand if the gains from modelling non-Gaussian features

outweigh the loss in precision resulting from the necessary aggregation of the related

series featuring scale and shape common factors.

These three models, which are designed to make full use of the cross-sectional

information in the data, are compared to benchmark models which do not feature

scale and shape common factors. Model (d) is an asymmetric Student-t model

comparable to model (b) but without scale and shape common factors. This

specification is closer to the non-Gaussian models of Delle-Monache et al. (2020)

(their model is a univariate model with many regressors to improve estimation of

time-varying parameters whereas model (d) is a dynamic factor model).
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Specification (e) is a Gaussian DFM with stochastic volatilities which is a proxy

for current dynamic factor models. It is derived from model (c) but does not feature

a common scale component. The relative performance of model (c) compared to

model (e) provides an indication of the gains stemming from augmenting dynamic

factor models with a scale common factor.

Finally, model (f) extends model (e) to Student-t distributions. Comparing

model (e) and (f) is useful for understanding the effect that low tail parameters may

have on the ability of the model to capture turning points.

All specifications except (a) and (b) . The Weekly Economic Index, on the

other hand, has a normal distribution with constant scale parameter because of

the short sample of available observations. Consequently WEI remains monthly

which is a common feature in all models. A table summarising the different model

specifications is shown in appendix B.

6 In-Sample Analysis

First the models are analysed using the vintage available at the end of July 2020,

the latest available vintage in this study.

Modelling common scale and shape components significantly improves

in-sample fit

The first two columns of Table 1 show the log likelihood of each model and the log

likelihood of the GDP series only, while the third and fourth columns show the AIC

and BIC information criteria. The total log likelihood and information criteria of

the first two models ((a) and (b)) cannot be compared to the other models because

they are estimated with different data. For these two models industrial production

and the index of working hours are rolling quarterly whereas they are monthly in

the other models.

Table 1: Comparison of the model specifications using the full-sample results.

Model L.L. L.L. GDP AIC BIC
(a): AST DFM with Scale+Shape CFs -381.4 -124 854.7 1097.5
(b): AST DFM (Sk Covs) with Scale+Shape CFs -402.3 -124.6 892.7 1124.9
(c): DFM with SV and Scale CF -548.9 -135.9 1159.8 1323.4
(d): AST DFM (Sk Covs) with SV and TV shape -578.1 -136.3 1220.2 1389.1
(e): DFM with SV -580.1 -138 1212.1 1349.4
(f): St-t DFM with SV -569 -139.4 1196 1349.1

Note: L.L. refers to the model’s total log likelihood. L.L. GDP refers to the log likelihood
of the GDP series only. AIC = −2× Log Lik. + 2× p; BIC = −2× Log Lik. + logN × p;
N is the number of observations and p the number of parameters estimated.

The results from model (a), (b) and (c) show that modelling common factors

in scale and shape parameters yields to large improvements in the log likelihood
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of GDP, with a particularly large benefit when modelling a shape common factor.

Separately, the Gaussian model with scale common factor (model (c)) does better,

in all metrics, than the benchmark models which do not feature a scale common

factor. This highlights the importance of capturing cross-sectional dependencies in

scale parameters.

Modelling fat tails does not necessarily improve the log likelihood of

GDP

Modelling covariates with fat tails in the AST model improves the total log likelihood,

the log likelihood of GDP (albeit marginally) and the information criteria. But while

modelling fat tails in a dynamic factor model with stochastic volatility (specification

(f)) improves the total log likelihood and information criteria compared to a model

featuring Gaussian series, the likelihood of GDP deteriorates.

The decline in the predictive capacity of GDP when related series are allowed to

have fat tails can be explained from the downweighting of large prediction errors

in the related by the score functions. These prediction errors provide a signal on

unforeseen turning points in the economic activity, and low tail parameters prevent

this signal to be propagated to the GDP predictions. This result is consistent with

the real-time analysis below which shows that fat-tails in the related series increase

GDP nowcasting performance in normal times but reduce it in recessions.

The common scale component provides a consistent historical picture of

forecasting uncertainty

Figure 4 shows the estimated common scale components. All three models featuring

a common scale component yield broadly similar estimates. First, they reflect an

overall decrease in volatility starting in the second half of the eighties which has

been documented extensively in the macroeconomics literature since McConnell

and Perez-Quiros (2000). Secondly, they feature sharp spikes during the recessions

triggered by the 2007 financial crisis and lately by the coronavirus pandemic. While

the common scale component at the time of the financial crisis reaches levels not

seen since the seventies and early eighties, its level in the first two quarters of

2020 is unprecedented. This reflects the stark forecasting uncertainty generated

by the government lockdown policies in response to the pandemic. Overall the

common volatility factor carries economic meaning and gives a consistent picture of

forecasting uncertainty historically and across different model specifications.

Recessions are generally associated with rising negative skewness

Location, scale and shape parameters derived from all models are compared in Figure

(5). Unlike scale and shape parameters, location parameters show little divergence

across models except at the time of the Covid-19 pandemic. All models feature a

decrease in forecasting uncertainty starting in the mid-eighties. Interestingly the
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Figure 4: Scale common factors. Rolling quarterly estimate for model (a) and
(b) and monthly estimate for model (c). Shaded areas indicate the US recessions
classified by the NBER.. DFM = Dynamic Factor Model. SV = Stochastic Volatility;
CF = Common Factor.

increase in forecasting uncertainty in recessions is generally associated with a sharp

increase in the skewness parameter: the probability of negative prediction errors

increases while positive prediction errors become less likely.

The results from the model with dynamic shape components are consistent

with the findings of Carriero et al. (2020) and Delle-Monache et al. (2020) who

show that, while statistical evidence for skewness in GDP growth is generally weak,

this masks an erratic behaviour with periods of positive and negative skewness.

While skewness fluctuates round zero until the mid-eighties, it becomes increasingly

negative afterwards when overall volatility decreases. The financial crisis marks a

change with a period of positive skewness.

Analysing the different model specifications using the entire sample is useful to

understand the statistical features of the models but cannot be used to infer their

effectiveness in real time. The next section shows the results from a recursive

estimation simulating a real-time environment.

7 Real-Time Out-of-Sample Analysis

In this section the models are estimated recursively over a 20-year period from June

2000 up to June 2020 using historical vintages. Thus it is possible to analyse their

performances in pseudo3 real-time.

3It is not in exactly in real-time because the analysis was carried in August 2020 when all GDP
figures were already released.
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Figure 5: Quarterly figures corresponding to calendar quarters. Shaded areas
indicate the US recessions classified by the NBER. SV = Stochastic Volatility; CF
= Common Factor.

Deriving multi-step ahead density nowcasts

The GDP density nowcast in the last step of the nowcasting window is directly

given by the one-step ahead prediction error density of GDP. But for earlier steps

it is important to account for the uncertainty induced by missing values in the

related series. This is done by drawing vectors of observations for each period with
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missing observations and using the score driven recursion to retrieve the time-varying

parameters in the next period for each draw, which are then used to generate new

observations. Specifically, if the target is the GDP nowcast in period t, but related

series are missing from t− 2, then the one-step ahead densities of the related series

at t− 2 are used to draw vectors of prediction errors (a vector is composed of a draw

for each related series) centred round the set of location estimates in t− 2. When

observations in related series are only missing partially the draws are replaced by

the observed prediction errors for the related series which have been released. The

score driven recursion is used on each vector of prediction errors which yields sets of

scale, shape and location parameters for period t− 1. These new sets of scale and

shape parameters yield new sets of one-step ahead densities which are used to draw

vectors of prediction errors round the vector of locations in t− 1. Eventually, each

vector of prediction errors in t − 1 yields a GDP nowcast for t through the score

driven recursion (related series are modelled with a lead of one period compared

to GDP). The density nowcast is given by the empirical density attached to these

GDP nowcasts.

Average Log Score

The accuracy of probabilistic predictions, or density nowcasts, is analysed using the

average log score at each nowcasting step. The log score of a given nowcast is given

by the nowcasted log density at the observed value. The better the probabilistic

forecast, the higher the log score.

Forecasters and policy makers are particularly interested in the performance

of forecasting methods in times of economic troubles. To address this question

the results are analysed over five samples which cover the Covid-19 pandemic, the

great financial crisis (GFC), all recessions taken from the NBER classifications since

2000, normal times (all periods except recessions) and finally a sample covering all

quarters.

As more data accrue during the nowcasting quarter the average log score should

increase monotonically. However, while the average log score is generally higher

towards the end of the nowcasting window, it does not exhibit a monotonic improve-

ment. This can be explained by the relatively low numbers of series modelled and

the resulting low numbers of release dates during the quarters. Nevertheless this

statistic remains useful to compare the models’ predictive capacities.

First, scale and shape common factors improve the forecasting performance

during recessions with a particularly large benefit at the end of the nowcasting

window. Up until the last nowcasting step the Gaussian DFM with scale common

factor performs especially well. The common factor in the scales captures sharp

increases in forecasting uncertainty in a timely way, and unlike with the AST models

featuring both scale and shape common factors, all related series can remain monthly;

hence there is no loss in precision at the beginning of the nowcasting window. At the

end of the nowcasting window, however, there is a benefit in modelling non-Gaussian
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Figure 6: Average log score. Higher values imply better density forecasts. x-axes
show the numbers of steps towards the release of the GDP number in the nowcasting
window. New data are released at each step. DFM = Dynamic Factor Model. SV =
Stochastic Volatility; CF = Common Factor. Covs = Covariates.

features and a common factor in the shape parameters in particular.

Both Gaussian models yield relatively similar performances up until the last

nowcasting step, where the benefit of modelling a scale common factor clearly gives

an advantage. The uncertainty attached to the GDP nowcast in both models can

be updated through the dispersion of the common factor in the locations. But this

mechanism takes place with a lag of one period because the dispersion of the location

common factor is derived from the expected dispersion of the related series’ forecast

errors. Therefore, the uncertainty attached to the GDP nowcast is not updated once

all related series have been observed in the quarter, unless there is a common factor

in the scale parameters.

Separately, in the first half of the nowcasting window the AST models with scale

and shape common factors (model (a) and (b)) perform less well than the other

models excluding the Student-t DFM model (f). This most likely represents the

cost of aggregating the related series featuring scale and shape common factors

into rolling quarterly figures. However, AST models with scale and shape common

factors do consistently better at the end of the nowcasting window.

The Student-t model performs especially poorly during recessions. This stems

from the model’s inability to capture turning points in both the location and scale

parameters due to the downweighting of prediction errors by the score function when
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tail parameters are low, as illustrated in figure 2. This downweighting is subdued in

the AST model (a) because the related series feature larger tail parameters when

aggregated quarterly. In normal times, however, this downweighting is beneficial

because the central part of GDP density nowcasts is not affected by relatively large

errors in the related series. In fact the Student-t DFM model does consistently

better in normal times.

Figure 7 makes it easier to compare the accuracy of density nowcasts across

models when considering both recessions and normal times. It shows the average log

score at each nowcasting step for each model. The darker the colour, the higher log

score and thus the better the density nowcast. Model (c), the Gaussian DFM with

scale common factor, is the only model to perform well during the entire nowcasting

window. It is only out-performed by the AST models with scale and shape common

factors in the last nowcasting step.

Figure 7: Average log score across all periods at each nowcasting step. The lower
the nowcasting step the closer the release. The higher the log score the better the
density forecast. And the darker the background colour the higher the log score.

7.1 The Covid-19 Pandemic

To understand why models with a scale common factor or both scale and shape

common factors do better as more data accrue during the quarter and the GDP

release gets closer, it is useful to analyse a period of stark economic uncertainty and

the first two quarters of 2020 provide a good illustration for this.

Figure 8 shows the density nowcasts for the first quarter of 2020 starting from

the March release of the industrial production figure relating to February. The effect

of Covid-19 started to appear in the related series in March, and it was clear at the

time that the economic environment was growing more uncertain. But the models

with cross-sectionally independent stochastic volatilities (model (d) and (e) and (f))

show a relatively stable nowcasting uncertainty. Although this is counter-intuitive it

is an inevitable feature of these models.

In normal times, the uncertainty attached to a nowcast should decline gradually

as more data accrue during the quarter. This is because the uncertainty attached

to each coming release is alleviated once the figures are published. In other words,

the forecast horizon of the related series decreases after each release, and since
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(f): St−t DFM with SV
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Figure 8: Real-time density nowcasts of US GDP Q1. The dashed line indicates the
published figure. DFM = Dynamic Factor Model. SV = Stochastic Volatility; CF =
Common Factor. TV = Time Varying.

the scale parameters remains relatively stable in normal times (or changes very

moderately due to the expanding sample), forecast uncertainty decreases naturally. A

shortcoming of models with constant variance parameters is that this reasoning also

applies to periods of economic stress. As the forecast horizon decreases, nowcasting

uncertainty can only decrease, and this even if the economic environment becomes

more uncertainty.

Economic uncertainty is generally signalled by increasing prediction errors in

series related to economic growth. By modelling stochastic scale parameters in these

related series, larger prediction errors can be translated into greater conditional

variances (the one-step ahead forecast error variances) in the related series.

Importantly, changes in the related series’ forecast uncertainty also affect the

uncertainty attached to the GDP nowcast, albeit with a lag. A greater forecast

uncertainty in the related series, or more precisely an increase in the one-step ahead

forecast error variances, increases the dispersion of the two-step ahead estimate of

the common location component. Since the common location component is shared by

all series, the dispersion in the GDP forecast increases as well. Hence, even though

the scale parameters in stochastic volatility models are contemporaneously cross-

sectionally independent, forecast error variances are related through the location
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common factor.

But there is a lag of a one period before forecast errors in the related series affect

the forecast error variance of GDP; the uncertainty attached to the one-step ahead

GDP forecast is not affected.4 The progress of the Covid-19 pandemic in the US

provides an important illustration of this fact.

Modelling a common factor in the scale parameter alleviates this problem because

the one-step ahead forecast error variances are now related directly. In the Gaussian

model with scale common factor and the AST models with scale and shape common

factors the uncertainty attached to the GDP nowcast for March increases gradually

following the release of the related series. This increase in uncertainty is necessary

to generate realistic probabilistic forecasts for March.

Moreover, the AST models with a shape common component can capture the

asymmetry in the uncertainty attached to the nowcast in addition to a greater

dispersion. Negative prediction errors are significantly more likely than positive

ones. However, the AST model with fat tails (model (a)) produces a poorer density

nowcast compared to the AST model with Gaussian tail parameters in the related

series. Low tail parameters downweight the signal from the related series’ prediction

errors; hence the location, scale and shape parameters do not adjust enough to yield

a satisfactory density nowcast.

The analysis of the June nowcast shown in figure 9 is more complicated because of

the erratic behaviour of the projections in this quarter coming from the unprecedented

downturn in the activity and resulting magnitude of the prediction errors in the

related series. However, it is the AST model with scale and shape common factor

and Gaussian tail parameters in the related series (model (b)) that yields the best

probabilistic forecast at the end of the nowcasting window. Again the Gaussian

model with common volatility component and the AST models with scale and shape

common factors capture the uncertainty arising late in the nowcasting window which

the other models do not identify.

8 Conclusion

This paper has shown how common components in scale and shape parameters may

be modelled in Gaussian (scale only) and non-Gaussian mixed-frequency dynamic

factor models. The empirical application in pseudo real time using US economic

growth data shows that modelling scale and shape common factors yields better

density nowcasts towards the end of the nowcasting window in recessionary episodes.

While this paper uses a score driven approach for estimation, the gains in real-time

performance stemming from modelling a common volatility factor should arise in

other modelling strategies such as mixed-frequency vector auto-regressions and state

space models which allow for stochastic volatility specifications.

4This is not necessarily true for models where unobserved states have their own sources of
errors. But modelling the dependencies in conditional variances directly though scale parameters
should nevertheless improve nowcast uncertainty in these models.
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(f): St−t DFM with SV
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Figure 9: Real-time density nowcasts of US GDP Q1. The dashed line indicates the
published figure. DFM = Dynamic Factor Model. SV = Stochastic Volatility; CF =
Common Factor. TV = Time Varying.
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Appendix A Elements of the score and information matrix

The score with respect to location parameters is

∆µ
i,t =

∂logp(yi,t|Yt−1)

∂µi,t
=

νi,1 + 1

1 + 1
νi,1

(
yi,t−µi,t

2αi,tσi,tK(νi,1)

)2 .
yi,t − µi,t

νi,1(2αi,tσi,tK(νi,1))2
1(yi,t ≤ µi,t)

+
νi,2 + 1

1 + 1
νi,2

(
yi,t−µi,t

2(1−αi,t)σi,tK(νi,2)

)2 .
yi,t − µi,t

νi,2(2(1− αi,t)σi,tK(νi,2))2
1(yi,t > µi,t).

(25)

The elements of the information matrix corresponding to location parameters

are given by

Iµi,t = E
[
∆µ
i,t∆

µ′

i,t|Yt−1

]
=

1

σ2
i,t

[ νi,1 + 1

αi,t(νi,1 + 3)K2(νi,1)
+

νi,2 + 1

(1− αi,t)(νi,2 + 3)K2(ν2,i)

]
.

(26)

The score with respect to scale parameters is

∆σ
i,t =

∂logp(yi,t|Yt−1)

∂σi,t
=
[ (νi,1 + 1)

1 + (
yi,t−µi,t

2αi,tK(νi,1)σi,t
√
νi,1

)2

× (
yi,t − µi,t

2αi,tσi,tK(νi,1)
√
νi,1

)2 − 1
]
/σi,t 1(yi,t < µi,t),

+
[
(νi,2 + 1)

1

1 + (
yi,t−µi,t

2(1−αi,t)K(νi,2)σi,t
√
νi,2

)2

× yi,t − µi,t
2(1− αi,t)σi,tK(νi,2)

√
νi,2

)2 − 1
]
/σi,t 1(yi,t > µi,t).

(27)

The elements of the information matrix corresponding to scale parameters are given

by

Iσi,t = E
[
∆σ
i,t∆

σ′

i,t|Yt−1

]
=

2

σ2
i,t

[ αi,tνi,1
νi,1 + 3

+
(1− αi,t)νi,2
νi,2 + 3

]
. (28)

The score with respect to shape parameters is

∆α
i,t =

∂logp(yi,t|Yt−1)

∂αi,t
=
νi,1 + 1

νi,1

1

1 + (
yi,t−µi,t

2αi,tK(νi,1)σi,t
√
νi,1

)2

× ((
yi,t − µi,t

2σi,tK(νi,1)
√
νi,1

)2 1

α3
i,t

1(yi,t < µi,t),

+
νi,2 + 1

νi,2

1

1 + (
yi,t−µi,t

2(1−αi,t)K(νi,2)σi,t
√
νi,2

)2

× ((
yi,t − µi,t

2σi,tK(νi,2)
√
νi,2

)2 1

(1− αi,t)3
1(yi,t > µi,t).

(29)

The elements of the information matrix corresponding to shape parameters are given

by

Iαi,t = E
[
∆α
i,t∆

α′

i,t|Yt−1

]
= 3
[ νi,1 + 1

αi,t(νi,1 + 3)
+

νi,2 + 1

(1− αi,t)(νi,2 + 3)

]
. (30)
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The formulae for the information matrix can be found in Zhu and Galbraith (2010).

Finally, by defining the vector ai,t = (µi,t, σi,t, αi,t)
′, the score with respect to the

time-varying parameters of series i is:

∆i,t =
∂logp(yi,t|Yt−1)

∂ft
=
∂logp(yi,t|Yt−1)

∂ai,t
.
∂ai,t
∂ft

(31)

while the information matrix is

E
[
∆i,t∆

′
i,t|Yt−1

]
=
(∂ai,t
∂ft

)′ I
µ
i,t 0 Iµ,αi,t

0 Iσi,t 0

Iµ,αi,t 0 Iαi,t

 ∂ai,t
∂ft

. (32)

Appendix B Summary of the model specifications
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