Robust Forecasting

Timothy Christensen¹ Hyungsik Roger Moon² Frank Schorfheide³

¹New York University ²University of Southern California ³University of Pennsylvania, CEPR, NBER, and PIER

June 2021

Robustness

• Ideally, we would like forecasts to be robust against:

- model misspecification
- structural breaks
- outliers
- • •
- Robustness can be achieved by minimax considerations: try to guarantee good performance under worst-case scenarios.
- Perennial problem: paranoia can lead to weak performance in regular periods.
- We will focus on a problem in which set identification generates bounds on the worst-case scenario.

Set identification and forecasting

- VAR and factor model intuition: only reduced-form matters for forecasting.
- In this paper, we consider a panel setting (large N, small T) in which
 - the size of the reduced-form parameter space grows over time,
 - the identified set shrinks over time,
 - ex post some parameters in the identified set lead to better forecasts than others.

This paper: decision-theoretic approach to robust forecasting

- Forecaster wishes to forecast a discrete outcome Y with a model \mathbb{P}_{θ}
- Forecaster is unable to discriminate among a set of plausible parameterizations Θ_0
- Confront
 - 1. model uncertainty: $\theta \in \Theta_0$,
 - 2. sampling uncertainty: estimate Θ_0 .
- This paper:
 - Characterize robust forecasts which deal with model uncertainty
 - Characterize efficient robust forecasts which deal with model uncertainty and sampling uncertainty
 - Develop a suitable asymptotic efficiency theory
 - · Provide computationally efficient implementation based on linear/convex programming

General setup

- Forecaster wishes to forecast a discrete outcome Y with a model \mathbb{P}_{θ}
- Prior to forecast, observe data $X_n \sim F_{n,P}$ where $P \in \mathcal{P} \subseteq \mathbb{R}^k$ is point-identified, regularly estimable
- A model specifies the following.
 - X_n and Y are linked via

$$\mathbb{P}_{\theta}(Y = y | X_n, P) = \mathbb{P}_{\theta}(Y = y | X_n), \quad X_n | \theta, P \sim F_{n,P}.$$

- θ and P are linked via set-valued function $P \mapsto \Theta_0(P)$.
- For notational simplicity, we write

$$\mathbb{P}_{\theta}(Y = y) := \mathbb{P}_{\theta}(Y = y | X_n).$$

Running example: panel model for dynamic binary choice

 $Y_{it+1} = \mathbb{I}\left[\lambda_i + \beta Y_{it} \ge U_{it+1}\right], \quad \mathbb{P}\left(U_{it+1} \le u | Y_i^t = y^t, \lambda_i = \lambda\right) = \Phi(u)$

- Observe short panel: $(Y_{it})_{t=1}^T$, i = 1, ..., n with T fixed, $n \to \infty$
- Y_{it} could be employment status, health status, ...
- Objective: forecast outcome Y_{iT+1} conditional upon a history $Y_i^T = y^T$
- Parameters: $\theta = (\beta, \Pi_{\lambda,y})$ where $\Pi_{\lambda,y}$ is the joint distribution for (λ_i, Y_{i0}) (cf. Honoré & Tamer, 2006)

Running example: panel model for dynamic binary choice

• \mathbb{P}_{θ} denotes the conditional probability over $Y \equiv Y_{iT+1}$ given $Y_i^T = y^T$:

$$\mathbb{P}_{ heta}(Y=1) = rac{\int \Phi(eta y_{i au}+\lambda) p(y^{ op}|y_0,\lambda;eta) \mathrm{d}\Pi_{\lambda,y}(\lambda,y_0)}{\int p(y^{ op}|y_0,\lambda;eta) \mathrm{d}\Pi_{\lambda,y}(\lambda,y_0)}\,.$$

Identified set is

$$\Theta_{0}(\boldsymbol{P}) = \left\{ \boldsymbol{\theta} = (\boldsymbol{\beta}, \boldsymbol{\Pi}_{\lambda, y}) \in \Theta : \underbrace{\boldsymbol{p}(\boldsymbol{y}^{T} | \boldsymbol{\beta}, \boldsymbol{\Pi}_{\lambda, y})}_{\text{model}} = \underbrace{\Pr(\boldsymbol{Y}_{i}^{T} = \boldsymbol{y}^{T})}_{\text{data}} \quad \forall \boldsymbol{y}^{T} \in \{0, 1\}^{T} \right\}$$

• Reduced-form parameter: $P = (\Pr(Y_i^T = y^T))_{y^T \in \{0,1\}^T}$, consistently estimable as $n \to \infty$

Why does partial identification matter for forecasting?

- Consider binary (classification) loss $\ell:\{0,1\}\times\{0,1\}\to\mathbb{R}$

 $\ell(y,d) = \mathbb{I}[y \neq d]$

• The risk of a forecast d under any $\theta \in \Theta_0$ is

$$\mathbb{E}_{ heta}[\ell(Y,d)] = d(1-\mathbb{P}_{ heta}(Y=1)) + (1-d)\mathbb{P}_{ heta}(Y=0)$$

• If θ were known, the optimal forecast would minimize risk:

$$d^*_ heta = rgmin_d \mathbb{E}_ heta[\ell(Y,d)] = \mathbb{I}\left[\mathbb{P}_ heta(Y=1) \geq rac{1}{2}
ight]$$

Why does partial identification matter for forecasting? $\mathbb{P}_{\theta}(Y = 1 | Y_i^T = (0, 0))$

Honoré–Tamer (2006)
 parameterization

•
$$T = 2$$

• $\theta = (\beta, \Pi_{\lambda, y})$

•
$$p_U := \sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}(Y = 1)$$

•
$$p_L := \inf_{\theta \in \Theta_0} \mathbb{P}_{\theta}(Y = 1)$$

Why does partial identification matter for forecasting? $\mathbb{P}_{\theta}(Y = 1 | Y_i^T = (1, 1))$

Honoré–Tamer (2006)
 parameterization

•
$$T = 2$$

• $\theta = (\beta, \Pi_{\lambda, y})$

•
$$p_U := \sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}(Y = 1)$$

•
$$p_L := \inf_{\theta \in \Theta_0} \mathbb{P}_{\theta}(Y = 1)$$

Robust forecasts (unknown θ , known $\Theta_0(P_0)$)

- Suppose that true P_0 and hence $\Theta_0 \equiv \Theta_0(P_0)$ is known, but the true $\theta \in \Theta_0$ is unknown
- Given a decision space \mathcal{D} , outcome space \mathcal{Y} , and loss function $\ell: \mathcal{Y} \times \mathcal{D} \to \mathbb{R}$
- A minimax forecast solves

 $\inf_{d\in\mathcal{D}}\sup_{\theta\in\Theta_0}\mathbb{E}_{\theta}[\ell(Y,d)]$

• A minimax regret forecast solves

$$\inf_{d \in \mathcal{D}} \sup_{\theta \in \Theta_0} \left(\underbrace{\mathbb{E}_{\theta}[\ell(Y, d)] - \inf_{d' \in \mathcal{D}} \mathbb{E}_{\theta}[\ell(Y, d')]}_{\text{regret}} \right)$$

Example: binary/classification loss

- Let $\mathcal{D}=\{0,1\},$ $\mathcal{Y}=\{0,1\},$ and

$$\ell(y, d) = \mathbb{I}[y = 1, d = 0] + \mathbb{I}[y = 0, d = 1]$$

$$p_L := \inf_{\theta \in \Theta_0} \mathbb{P}_{\theta}(Y = 1), \qquad p_U := \sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}(Y = 1)$$

Minimax forecast

$$d_{mm} = \mathbb{I}\left[1 \leq p_L + p_U\right]$$

• Minimax regret forecast

$$d_{mmr} = \mathbb{I}\left[\left(\frac{1}{2} - \boldsymbol{p}_{L}\right)_{+} \leq \left(\boldsymbol{p}_{U} - \frac{1}{2}\right)_{+}\right]$$

• Minimax (regret) forecasts under other loss functions depend similarly on p_U and p_L (see paper)

Robust forecasts in numerical example $\mathbb{P}_{\theta}(Y = 1 | Y_i^T = (0, 0))$

- Wide set of forecast probabilities $\{\mathbb{P}_{\theta}(Y=1): \theta \in \Theta_0\}: p_L = 0.2997$ and $p_U = 0.6803$.
- For $\theta \in \Theta_0$ such that $\mathbb{P}_{\theta}(Y = 1) < \frac{1}{2}$ $\Rightarrow d_{b,\theta}^* = 0.$
- For $heta \in \Theta_0$ such that $\mathbb{P}_{\theta}(Y = 1) > \frac{1}{2}$ $\Rightarrow d^*_{b,\theta} = 1.$
- As $p_L + p_U < 1$, minimax and minimax regret forecasts are $d_{b,mm} = d_{b,mmr} = 0$.

Robust forecasts in numerical example $\mathbb{P}_{\theta}(Y = 1 | Y_i^T = (1, 1))$

Efficient robust forecasts (unknown θ , unknown Θ_0)

- Now dispense with the assumption that P_0 , and hence $\Theta_0(P_0)$, is known
- We can learn about P, and therefore $\Theta_0(P)$, from the data X_n
- What's the best way to do this? We will use an asymmetric approach:
 - Use posterior distribution to handle uncertainty about P
 - Use minimax (regret) do handle uncertainty about $\theta \in \Theta_0(P)$.

Efficient robust forecasts (unknown θ , unknown Θ_0)

- Forecast is a function $d_n : \mathscr{X}_n \to \mathcal{D}$
- Forecaster has a prior Π over $\mathcal P$
- Evaluate *d_n* by its integrated maximum risk (or regret):

$$\mathcal{B}_{mm}^{n}(d_{n};\pi) = \int_{\mathcal{P}} \left(\int_{\mathscr{X}_{n}} \sup_{\theta \in \Theta_{0}(P)} \mathbb{E}_{\theta}[\ell(Y,d_{n}(X_{n}))] dF_{n,P}(X_{n}) \right) d\Pi(P)$$
$$= \int_{\mathscr{X}_{n}} \underbrace{\left(\int_{\mathcal{P}} \sup_{\theta \in \Theta_{0}(P)} \mathbb{E}_{\theta}[\ell(Y,d_{n}(X_{n}))] d\Pi_{n}(P|X_{n}) \right)}_{\text{posterior maximum risk}} dF_{n}(X_{n})$$

• Efficient robust forecast minimizes posterior maximum risk (or regret) for each realization X_n

Example: binary/classification loss

- Let $\mathcal{D}=\{0,1\},$ $\mathcal{Y}=\{0,1\},$ and

$$\ell(y, d) = \mathbb{I}[y = 1, d = 0] + \mathbb{I}[y = 0, d = 1]$$

• Lower and upper probabilities are functions of *P*:

$$p_L(P) := \inf_{ heta \in \Theta_0(P)} \mathbb{P}_ heta(Y=1), \qquad p_U(P) := \sup_{ heta \in \Theta_0(P)} \mathbb{P}_ heta(Y=1),$$

• Recall: minimax forecast with known Θ_0 :

$$d_{mm} = \mathbb{I}\left[1 \leq p_L + p_U\right]$$

• Efficient robust forecast (minimax) with unknown Θ_0 :

$$d_{mm}(X_n) = \mathbb{I}\left[1 \leq \int p_L(P) \,\mathrm{d}\Pi_n(P|X_n) + \int p_U(P) \,\mathrm{d}\Pi_n(P|X_n)\right]$$

Asymptotic efficiency

- Benchmark: oracle forecast $d_{mm}^{o}(P)$ (minimax forecast if P were known)
- Excess maximum risk (or regret) of $d_n(X_n)$ is

 $\Delta \mathcal{R}_{mm}(d_n; P, X_n) = \sup_{\theta \in \Theta_0(P)} \mathbb{E}_{\theta}[\ell(Y, d_n(X_n))] - \sup_{\theta \in \Theta_0(P)} \mathbb{E}_{\theta}[\ell(Y, d_{mm}^o(P))]$

• Integrated excess maximum risk (or regret) at P_0

$$\Delta \mathcal{B}_{mm}^{n}(d_{n};P_{0},\pi)=\int \mathbb{E}_{P_{n,h}}\left[\sqrt{n}\Delta \mathcal{R}_{mm}\left(d_{n},P_{n,h};X_{n}\right)\right]\,\pi\left(P_{n,h}\right)\,\mathrm{d}h\,,\quad P_{n,h}=P_{0}+n^{-1/2}h$$

• Forecast rule $\{d_n\}_{n\geq 1}$ is asymptotically efficient-robust if it minimizes

$$\lim_{n \to \infty} \Delta \mathcal{B}_{mm}^{n}(d_{n}; P_{0}, \pi) = \pi(P_{0}) \underbrace{\int \left(\lim_{n \to \infty} \mathbb{E}_{P_{n,h}} \left[\sqrt{n} \Delta \mathcal{R}_{mm}(d_{n}, P_{n,h}; X_{n})\right]\right) \, \mathrm{d}h}_{\text{ranking is independent of } \Pi}$$

for each $P_0 \in \mathcal{P}$

Asymptotic efficiency

Say {*d_n*}, {*d̃_n*} ∈ D are asymptotically equivalent if *d_n*(*X_n*) and *d̃_n*(*X_n*) have the same asymptotic distribution under *F<sub>n,P_{n,h}* for all *P*₀ ∈ *P* and *h* ∈ ℝ^k
</sub>

Theorem

(i) Let $\{\tilde{d}_n\} \in \mathbb{D}$ be asymptotically equivalent to the minimax efficient robust forecast (ERF). Then: for all $P_0 \in \mathcal{P}$,

$$\lim_{n\to\infty}\Delta\mathcal{B}^n_{b,mm}(\tilde{d}_n;P_0,\pi)=\inf_{\{d_n\}\in\mathbb{D}}\liminf_{n\to\infty}\Delta\mathcal{B}^n_{b,mm}(d_n;P_0,\pi).$$

(ii) If $p_L(P)$ and $p_U(P)$ are directionally—but not fully—differentiable at P_0 , then for any $\{\tilde{d}_n\} \in \mathbb{D}$ that is **not asymptotically equivalent to the minimax ERF**, we have

$$\liminf_{n\to\infty}\Delta\mathcal{B}^n_{b,mm}(\widetilde{d}_n;P_0,\pi)>\inf_{\{d_n\}\in\mathbb{D}}\liminf_{n\to\infty}\Delta\mathcal{B}^n_{b,mm}(d_n;P_0,\pi)$$

for some $P_0 \in \mathcal{P}$.

Implications

- Asymptotic efficient-robustness extends to:
 - ERFs under any positive, smooth prior (not nec. subjective)
 - ERFs under misspecified likelihoods (provided asymptotically correct)
 - Bagged forecasts
- Plug-in rules $d_{mm}^{\circ}(\hat{P})$, $d_{mmr}^{\circ}(\hat{P})$ are inefficient under directional differentiability of $p_L(P)$, $p_U(P)$
 - $p_L(P)$, $p_U(P)$ typically linear programs or min-max programs
 - Directional differentiability is the rule, rather than the exception (e.g. Milgrom and Segal, 2002)

Simple illustration of plug-in inefficiency

• Suppose $P = (0, 1), p_L(P) = P$, and

$$p_U(P) = \left[egin{array}{cc} rac{1}{2} & P < rac{1}{2}\,, \ (2P - rac{1}{2}) \wedge 1 & P \geq rac{1}{2} \end{array}
ight.$$

- Oracle forecast under symmetric binary (classification) loss: $d_{mm}^{\circ}(P) = \mathbb{I}[1 \le p_L(P) + p_U(P)]$
- Suppose that efficient estimator \hat{P} satisfies

$$\hat{P} \stackrel{P_{n,h}}{\sim} N(P_{n,h}, n^{-1}), \qquad P|X_n \sim N(\hat{P}, n^{-1})|$$

• ERF

$$d_{mm}(\hat{P}) = \mathbb{I}\left[\sqrt{n}(\hat{P} - \frac{1}{2}) \geq -\frac{2\phi(\sqrt{n}(\hat{P} - \frac{1}{2}))}{1 + 2\Phi(\sqrt{n}(\hat{P} - \frac{1}{2}))}\right]$$

Cf. plug-in rule

 $d^o_{mm}(\hat{P}) = \mathbb{I}[\sqrt{n}(\hat{P} - \frac{1}{2}) \ge \mathbf{0}]$

Simple illustration: asymptotic excess maximum risk

Solid lines: Efficient robust forecast. Dashed lines: Oracle plug-in rule.

Extensions: structural breaks

Three types of breaks in the running example:

 $Y_{it+1} = \mathbb{I}\left[\lambda_i + \beta Y_{it} \ge U_{it+1}\right], \quad \mathbb{P}\left(U_{it+1} \le u | Y_i^t = y^t, \lambda_i = \lambda\right) = \Phi(u)$

1. A break in the distribution of the U_{it+1} :

suppose $\Phi_t = \Phi$ for dates t = 1, ..., T, but $\Phi_{T+1} \in \mathcal{N}(\Phi)$. Identified set:

$$\Theta_{0} = \left\{ \theta = (\beta, \Pi_{\lambda, y}, \Phi_{T+1}) \in \Theta : p(y^{T} | \beta, \Pi_{\lambda, y}) = p(y^{T}) \ \forall y^{T} \in \{0, 1\}^{T} \text{ and } \Phi_{T+1} \in \mathcal{N}(\Phi) \right\},$$

2. A break in the λ_i :

can be viewed as a location shift of the distribution Φ_t

3. A break in β :

can be handled by defining

 $\Theta_{0} = \left\{ \theta = (\beta, \beta_{\mathcal{T}+1}, \Pi_{\lambda, y}) \in \Theta : p(y^{\mathcal{T}} | \beta, \Pi_{\lambda, y}) = p(y^{\mathcal{T}}) \ \forall y^{\mathcal{T}} \in \{0, 1\}^{\mathcal{T}} \text{ and } |\beta - \beta_{\mathcal{T}+1}| \leq \delta \right\},$

Extensions

- Multinomial forecasts
- Sensitivity analysis:

generalize certain aspects of the model, e.g., corr. random effects $\Pi_{\lambda,y} = \Pi(\lambda, y_0, \xi)$ for $\xi \in \Xi$.

• Counterfactuals in structural models:

predict an outcome Y (e.g., firm entry/exit) under an intervention

• Statistical treatment assignment:

predict optimal treatment Y for individual n + 1 having observed data on n individuals.

Some related literature

- Binary forecasting: e.g., Elliott and Lieli (2013), Lahiri and Yang (2013), and Elliott and Timmermann (2016)
- Partial identification in nonlinear panels: e.g., Honore and Tamer (2006), Chernozhukov, Fernandez-Val, Hahn, Newey (2013)
- Short panels: Baltagi (2008), Gu and Koenker (2016), Liu (2019), Liu, Moon, Schorfheide (2018,2020)
- Decision theory: Wald (1950), Robbins (1951), Berger (1985), ..., Manski (2007, 2011), Stoye (2011)
- Robustness: Gilboa and Schmeidler (1989), Hansen and Sargent (2001), ..., Chamberlain (2000, 2001)
- Robustness/sensitivity analysis in econometrics: Chamberlain (2000, 2001), Kitagawa (2012), Andrews, Gentzkow, Shapiro (2017), Giacomini and Kitagawa (2018), Armstrong and Kolesar (2018), Bonhomme and Weidner (2019), Christensen and Connault (2019)

Conclusion

- Robust forecasts (minmax risk or minimax regret) to deal with uncertainty about the forecast distribution
- Efficient robust forecasts that deal with estimation of the set of forecast distributions
- Develop a suitable asymptotic efficiency theory
- Provide computationally efficient implementation based on linear/convex programming
- Basic idea is applicable in a wide variety of applications