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Robustness

• Ideally, we would like forecasts to be robust against:
• model misspecification
• structural breaks
• outliers
• · · ·

• Robustness can be achieved by minimax considerations: try to guarantee good performance under
worst-case scenarios.

• Perennial problem: paranoia can lead to weak performance in regular periods.

• We will focus on a problem in which set identification generates bounds on the worst-case scenario.



Set identification and forecasting

• VAR and factor model intuition: only reduced-form matters for forecasting.

• In this paper, we consider a panel setting (large N, small T) in which
• the size of the reduced-form parameter space grows over time,
• the identified set shrinks over time,
• ex post some parameters in the identified set lead to better forecasts than others.



This paper: decision-theoretic approach to robust forecasting

• Forecaster wishes to forecast a discrete outcome Y with a model Pθ

• Forecaster is unable to discriminate among a set of plausible parameterizations Θ0

• Confront

1. model uncertainty: θ ∈ Θ0,
2. sampling uncertainty: estimate Θ0.

• This paper:

• Characterize robust forecasts which deal with model uncertainty
• Characterize efficient robust forecasts which deal with model uncertainty and sampling uncertainty
• Develop a suitable asymptotic efficiency theory
• Provide computationally efficient implementation based on linear/convex programming



General setup

• Forecaster wishes to forecast a discrete outcome Y with a model Pθ

• Prior to forecast, observe data Xn ∼ Fn,P where P ∈ P ⊆ Rk is point-identified, regularly estimable

• A model specifies the following.
• Xn and Y are linked via

Pθ(Y = y |Xn,P) = Pθ(Y = y |Xn), Xn|θ,P ∼ Fn,P .

• θ and P are linked via set-valued function P 7→ Θ0(P).

• For notational simplicity, we write

Pθ(Y = y) := Pθ(Y = y |Xn).



Running example: panel model for dynamic binary choice

Yit+1 = I [λi + βYit ≥ Uit+1] , P
(
Uit+1 ≤ u|Y t

i = y t , λi = λ
)

= Φ(u)

• Observe short panel: (Yit)
T
t=1, i = 1, . . . , n with T fixed, n→∞

• Yit could be employment status, health status, ...

• Objective: forecast outcome YiT+1 conditional upon a history Y T
i = yT

• Parameters: θ =
(
β,Πλ,y

)
where Πλ,y is the joint distribution for (λi ,Yi0) (cf. Honoré & Tamer, 2006)



Running example: panel model for dynamic binary choice

• Pθ denotes the conditional probability over Y ≡ YiT+1 given Y T
i = yT :

Pθ(Y = 1) =

∫
Φ(βyiT + λ)p(yT |y0, λ;β)dΠλ,y (λ, y0)∫

p(yT |y0, λ;β)dΠλ,y (λ, y0)
.

• Identified set is

Θ0(P) =
{
θ = (β,Πλ,y ) ∈ Θ : p(yT |β,Πλ,y )︸ ︷︷ ︸

model

= Pr(Y T
i = yT )︸ ︷︷ ︸
data

∀ yT ∈ {0, 1}T
}

• Reduced-form parameter: P = (Pr(Y T
i = yT ))yT∈{0,1}T , consistently estimable as n→∞



Why does partial identification matter for forecasting?

• Consider binary (classification) loss ` : {0, 1} × {0, 1} → R

`(y , d) = I[y 6= d ]

• The risk of a forecast d under any θ ∈ Θ0 is

Eθ[`(Y , d)] = d(1− Pθ(Y = 1)) + (1− d)Pθ(Y = 0)

• If θ were known, the optimal forecast would minimize risk:

d∗θ = argmin
d

Eθ[`(Y , d)] = I
[
Pθ(Y = 1) ≥ 1

2

]



Why does partial identification matter for forecasting?
Pθ(Y = 1|Y T

i = (0, 0))

• Honoré–Tamer (2006)
parameterization

• T = 2

• θ =
(
β,Πλ,y

)
• pU := supθ∈Θ0

Pθ(Y = 1)

• pL := infθ∈Θ0 Pθ(Y = 1)



Why does partial identification matter for forecasting?
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Robust forecasts (unknown θ, known Θ0(P0))

• Suppose that true P0 and hence Θ0 ≡ Θ0(P0) is known, but the true θ ∈ Θ0 is unknown

• Given a decision space D, outcome space Y , and loss function ` : Y ×D → R

• A minimax forecast solves
inf
d∈D

sup
θ∈Θ0

Eθ[`(Y , d)]

• A minimax regret forecast solves

inf
d∈D

sup
θ∈Θ0

(
Eθ[`(Y , d)]− inf

d′∈D
Eθ[`(Y , d ′)]︸ ︷︷ ︸

regret

)



Example: binary/classification loss

• Let D = {0, 1}, Y = {0, 1}, and

`
(
y , d

)
= I[y = 1, d = 0] + I[y = 0, d = 1]

• Define
pL := inf

θ∈Θ0

Pθ(Y = 1) , pU := sup
θ∈Θ0

Pθ(Y = 1)

• Minimax forecast
dmm = I [1 ≤ pL + pU ]

• Minimax regret forecast
dmmr = I

[(
1

2
− pL

)
+

≤
(
pU −

1

2

)
+

]

• Minimax (regret) forecasts under other loss functions depend similarly on pU and pL (see paper)



Robust forecasts in numerical example
Pθ(Y = 1|Y T

i = (0, 0))

• Wide set of forecast probabilities
{Pθ(Y = 1) : θ ∈ Θ0}: pL = 0.2997
and pU = 0.6803.

• For θ ∈ Θ0 such that Pθ(Y = 1) < 1
2

⇒ d∗b,θ = 0.
• For θ ∈ Θ0 such that Pθ(Y = 1) > 1

2

⇒ d∗b,θ = 1.

• As pL + pU < 1, minimax and
minimax regret forecasts are
db,mm = db,mmr = 0.



Robust forecasts in numerical example
Pθ(Y = 1|Y T

i = (1, 1))

• Wide set of forecast probabilities
{Pθ(Y = 1) : θ ∈ Θ0}: pL = 0.3775
and pU = 0.7320

• Here pL + pU > 1 so
db,mm = db,mmr = 1.



Efficient robust forecasts (unknown θ, unknown Θ0)

• Now dispense with the assumption that P0, and hence Θ0(P0), is known

• We can learn about P , and therefore Θ0(P), from the data Xn

• What’s the best way to do this? We will use an asymmetric approach:

• Use posterior distribution to handle uncertainty about P
• Use minimax (regret) do handle uncertainty about θ ∈ Θ0(P).



Efficient robust forecasts (unknown θ, unknown Θ0)

• Forecast is a function dn : Xn → D

• Forecaster has a prior Π over P

• Evaluate dn by its integrated maximum risk (or regret):

Bn
mm(dn;π) =

∫
P

(∫
Xn

sup
θ∈Θ0(P)

Eθ[`(Y , dn(Xn))]dFn,P(Xn)

)
dΠ(P)

=

∫
Xn

(∫
P

sup
θ∈Θ0(P)

Eθ[`(Y , dn(Xn))]dΠn(P|Xn)

)
︸ ︷︷ ︸

posterior maximum risk

dFn(Xn)

• Efficient robust forecast minimizes posterior maximum risk (or regret) for each realization Xn



Example: binary/classification loss
• Let D = {0, 1}, Y = {0, 1}, and

`
(
y , d

)
= I[y = 1, d = 0] + I[y = 0, d = 1]

• Lower and upper probabilities are functions of P :

pL(P) := inf
θ∈Θ0(P)

Pθ(Y = 1) , pU(P) := sup
θ∈Θ0(P)

Pθ(Y = 1) ,

• Recall: minimax forecast with known Θ0:

dmm = I [1 ≤ pL + pU ]

• Efficient robust forecast (minimax) with unknown Θ0:

dmm(Xn) = I
[

1 ≤
∫

pL(P)dΠn(P|Xn) +

∫
pU(P) dΠn(P|Xn)

]



Asymptotic efficiency
• Benchmark: oracle forecast do

mm(P) (minimax forecast if P were known)

• Excess maximum risk (or regret) of dn(Xn) is

∆Rmm(dn;P,Xn) = sup
θ∈Θ0(P)

Eθ[`(Y , dn(Xn))]− sup
θ∈Θ0(P)

Eθ[`(Y , do
mm(P))]

• Integrated excess maximum risk (or regret) at P0

∆Bn
mm(dn;P0, π) =

∫
EPn,h

[√
n∆Rmm (dn,Pn,h;Xn)

]
π (Pn,h) dh , Pn,h = P0 + n−1/2h

• Forecast rule {dn}n≥1 is asymptotically efficient-robust if it minimizes

lim
n→∞

∆Bn
mm(dn;P0, π) = π(P0)

∫ (
lim

n→∞
EPn,h

[√
n∆Rmm (dn,Pn,h;Xn)

])
dh︸ ︷︷ ︸

ranking is independent of Π

for each P0 ∈ P



Asymptotic efficiency

• Say {dn}, {d̃n} ∈ D are asymptotically equivalent if dn(Xn) and d̃n(Xn) have the same asymptotic
distribution under Fn,Pn,h for all P0 ∈ P and h ∈ Rk

Theorem
(i) Let {d̃n} ∈ D be asymptotically equivalent to the minimax efficient robust forecast (ERF).
Then: for all P0 ∈ P ,

lim
n→∞

∆Bnb,mm(d̃n;P0, π) = inf
{dn}∈D

lim inf
n→∞

∆Bnb,mm(dn;P0, π) .

(ii) If pL(P) and pU(P) are directionally—but not fully—differentiable at P0, then for any {d̃n} ∈ D that is
not asymptotically equivalent to the minimax ERF, we have

lim inf
n→∞

∆Bnb,mm(d̃n;P0, π) > inf
{dn}∈D

lim inf
n→∞

∆Bnb,mm(dn;P0, π)

for some P0 ∈ P .



Implications

• Asymptotic efficient-robustness extends to:
• ERFs under any positive, smooth prior (not nec. subjective)
• ERFs under misspecified likelihoods (provided asymptotically correct)
• Bagged forecasts

• Plug-in rules do
mm(P̂), do

mmr (P̂) are inefficient under directional differentiability of pL(P), pU(P)

• pL(P), pU(P) typically linear programs or min-max programs
• Directional differentiability is the rule, rather than the exception (e.g. Milgrom and Segal, 2002)



Simple illustration of plug-in inefficiency
• Suppose P = (0, 1), pL(P) = P , and

pU(P) =

[
1
2

P < 1
2
,

(2P − 1
2
) ∧ 1 P ≥ 1

2

• Oracle forecast under symmetric binary (classification) loss: do
mm(P) = I[1 ≤ pL(P) + pU(P)]

• Suppose that efficient estimator P̂ satisfies

P̂
Pn,h∼ N(Pn,h, n

−1) , P|Xn ∼ N(P̂, n−1)

• ERF

dmm(P̂) = I

[
√
n(P̂ − 1

2
) ≥ −

2φ(
√
n(P̂ − 1

2
))

1 + 2Φ(
√
n(P̂ − 1

2
))

]

• Cf. plug-in rule
do
mm(P̂) = I[

√
n(P̂ − 1

2
) ≥ 0]



Simple illustration: asymptotic excess maximum risk
Asymptotic excess maximum risk as a function of h at P0 = 1

2

Solid lines: Efficient robust forecast. Dashed lines: Oracle plug-in rule.



Extensions: structural breaks
Three types of breaks in the running example:

Yit+1 = I [λi + βYit ≥ Uit+1] , P
(
Uit+1 ≤ u|Y t

i = y t , λi = λ
)

= Φ(u)

1. A break in the distribution of the Uit+1:
suppose Φt = Φ for dates t = 1, . . . ,T , but ΦT+1 ∈ N (Φ). Identified set:

Θ0 =
{
θ = (β,Πλ,y ,ΦT+1) ∈ Θ : p(yT |β,Πλ,y ) = p(yT ) ∀ yT ∈ {0, 1}T and ΦT+1 ∈ N (Φ)

}
,

2. A break in the λi :
can be viewed as a location shift of the distribution Φt

3. A break in β:
can be handled by defining

Θ0 =
{
θ = (β, βT+1,Πλ,y ) ∈ Θ : p(yT |β,Πλ,y ) = p(yT ) ∀ yT ∈ {0, 1}T and |β − βT+1| ≤ δ

}
,



Extensions

• Multinomial forecasts

• Sensitivity analysis:
generalize certain aspects of the model, e.g., corr. random effects Πλ,y = Π(λ, y0, ξ) for ξ ∈ Ξ.

• Counterfactuals in structural models:
predict an outcome Y (e.g., firm entry/exit) under an intervention

• Statistical treatment assignment:
predict optimal treatment Y for individual n + 1 having observed data on n individuals.
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Conclusion

• Robust forecasts (minmax risk or minimax regret) to deal with uncertainty about the forecast distribution

• Efficient robust forecasts that deal with estimation of the set of forecast distributions

• Develop a suitable asymptotic efficiency theory

• Provide computationally efficient implementation based on linear/convex programming

• Basic idea is applicable in a wide variety of applications


