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Approaches to the Lucas Critique

The Lucas (1976) Critique: We cannot use historical
relationships to draw reliable conclusions about the effects of a
shock under any other policy rule than that which held
historically.

▶ Cannot draw policy conclusions from semi-structural
models, since agents’ behaviour would differ under
alternative policy

1 Lucas Program: Micro-founded structural models that
match key moments in the data

2 Sims & Zha: Impose counterfactual rules in
semi-structural model ex post (e.g., “zeroing out”)
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Main idea

• Agents learn about policy rules and update expectations
ex ante: need to account for changes in expectations.

• Use not only contemporaneous shocks, but a full menu of
news shocks to impose the policy rule in expectation.

• Given contemporary shocks ν0,t and news shocks
νl ,t−l , ∀l = 1, . . .∞, can impose any policy rule.

• Use the impulse responses to such shocks to infer impulse
responses to a non-policy shock under some
counterfactual rule.
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Simple example: three-equation NK model

yt = yt+1 −
1

γ
(it − πt+1)

πt = κyt + βπt+1 + (εt + θεt−1)

it = ϕπt + ν0,t +
∞∑
l=1

νl ,t−l

it = ϕ̃πt (counterfactual rule)

Solve system of 2 eqns (2 horizons) for ν̃0,0, ν̃1,0:

iϕ(ε0) + Θi,ν0,ϕν̃0,0 +Θi,ν1,ϕν̃1,0︸ ︷︷ ︸
IR of i to ε0,ν̃0,0,ν̃1,0

= ϕ̃× [πϕ(ε0) + Θπ,ν0,ϕν̃0,0 +Θπ,ν1,ϕν̃1,0]︸ ︷︷ ︸
IR of π to ε0,ν̃0,0,ν̃1,0︸ ︷︷ ︸

counterfactual rule
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General theory
Two key assumptions on setting:

1 Linear DGP

2 Policy only affects private behaviour through instrument

Main result (Proposition 1): If invertiblity holds historically
and under the counterfactual, we can recover the
counterfactual IRs of observables and the policy instrument:

Ãx [xA(ε) + Θx ,ν,A × ν̃] + Ãz [zA(ε) + Θz,ν,A × ν̃] = 0,

(counterfactual policy rule) Ãxx + Ãzz = 0.

Best to think about the results as applying to perturbations of
policy, not equilibrium/steady state shifts.

Also no asymmetric information (more on this later).
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Shocks, not news shocks

The demands of the preceding slides look challenging!

1 Need news shocks for the policy instrument

2 Need news shocks at up to T horizons

Key point: In practice, the shocks do not need to be news
shocks, can just be linearly independent measurements of the
contemporaneous shock.

In practice, will not have T shock series, but will approximate
using ns shocks.
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Reframing as an IRF matching exercise

The paper focuses on a sequence of news shocks for
theoretical motivation, and having an adequate menu of
shocks to impose (or approximate) a rule.

Completely equivalent to focus instead on impulse responses:
find the linear combination of baseline IRs that comes closest
to aligning the IRs under the counterfactual rule:

min
s
∥Ãx(xA(ε) + Ωx ,A × s) + Ãz(zA(ε) + Ωz,A × s)∥ (OBJ)
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Regression in IR space

This problem constitutes a Regression in Impulse
Response Space, see Barnichon and Mesters (2020), Lewis
and Mertens (2022). Treat horizons as “observations”, and
regress a set of IRs on another.

(OBJ) is equivalent to estimating the OLS regression.(
Ãxx

h
A(ε) + Ãzz

h
A(ε)

)
= −

(
ÃxΩ

h
x ,A + ÃzΩ

h
z,A

)
× s + uh

IR ,

h = 0, . . . ,T − 1,

where the shock/weight ns-vector s is the “coefficient” vector.

Problem is similar to Lewis and Mertens (2022).
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Implications

Math will be a little different, but

1 Identification: Works with either external or internal
instruments

2 Inference: (robust) frequentist methods available

3 Weighting: Does it make sense to equally weight all
horizons, or improve efficiency?

4 Approximation error: Intuitive units for approximation
error available by recasting as “R2”?

5 Horizons: Does it make sense to include all horizons up
to T − 1?
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Useful applications?

The most obvious cases for application are monetary and fiscal
policy rules (see paper and Valerie Ramey’s NBER discussion).

• Potential to be extremely useful, particularly in policy
institutions (see paper’s MP rules)

• Which applications are accessible depends on how many
shock series really needed in practice: many available for
MP, fewer for fiscal.

• How linearly dependent are the available shocks?

• A well-scaled measure of error would help interpret and
compare applications.

• How much does historical variation in policy rules matter?
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Which shocks?

• Conceptual challenge: many simultaneously valid MP
shock series (Sims-Rudebusch)?

• Should really use internally consistent multi-dimensionsal
series like Swanson (2021).

• Central bank information effect presents a big challenge,
since it violates key assumption on the effects on policy
(e.g., Nakamura and Steinsson (2018) shocks).

• Lewis (2022) and Jarocinski (2022) separate info shocks
from the three dimensions Swanson identifies.



Overview Regressions in IRF space Applications and shocks

Conclusion

• Very helpful answer to Lucas critique without a structural
model for policy perturbations!

• Information requirements not as demanding as at first
glance - but more work needed to assess approximations.

• The approximation step reduces to an OLS problem, with
benefits!

• Need to think carefully about which shocks to use.
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