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Abstract

We propose a new framework for monetary policy analysis to study monetary policy nor-

malization when exiting a liquidity trap. The optimal combination of reserves and interest rate

policy requires an increase in liquidity (reserves) a few quarters after the policy rate is set at the

effective lower bound. Removal of accommodation requires that quantitative tightening starts

before the liftoff of the policy rate. Moreover, the withdrawal of liquidity takes place at a very

slow pace relative to the normalization of the policy rate.

1 Introduction

The global financial crisis of 2008-09 and the recent pandemic shock have pushed major Cen-

tral Banks to reduce their offi cial policy rates to historically low levels embracing unconventional

monetary policies, including quantitative easing (QE), with purchases of government debt and, in

some instances, private-sector financial assets, to the end of providing monetary accommodation

and meeting their policy objectives. In engaging in QE operations, Central Banks finance the

purchases of government bonds by issuing bank reserves, thus increasing both the central banks’

assets and liabilities. With economic activity recovering and inflation peaking up, Central Banks

have started removing policy accommodation. Reducing the pace of asset purchases (tapering) is

the starting point in this process. Normalizing monetary policy consists in lifting the policy rate

and reducing the size of Central Banks’balance sheets (quantitative tightening, QT): this process

entails strategic choices in terms of the timing, the pace and the sequence of policy interventions

that potentially could be shaped by country-specific institutional features.

In particular, how should reserves be managed at the effective lower bound in conjunction with

interest rate policies? What is the optimal size of Central Banks’balance sheets (reserves)? How

does fiscal policy and in particular the fiscal capacity determine the supply of reserves and its

adjustment during the normalization process?

∗This work replaces a draft previously circulated under the title “Interest, Reserves and Prices.”We are grateful
to Luca Benati, Bezhad Diba, Nobuhiro Kiyotaki, Monika Piazzesi, Chris Sims, Jon Steinsson for useful discussion
and to seminar participants to the NBER Monetary Economics Summer Institute and to the 11th RCEA Money-
Macro-Finance Conference. We thank Stefano Corbellini for his excellent research assistance and Serge Tseytlin for
editing the text.
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In the reference framework for monetary policy analysis (the Neo-Wicksellian framework, see

Galì, 2008, and Woodford, 2003, for a general presentation of the model), the central bank can

have full control of inflation and output through movements in the policy rate: there is no role for

reserves and the size of Central Banks’balance sheets is irrelevant. Once the policy rate is specified,

it is a suffi cient policy tool to control aggregate demand, to influence prices and economic activity.

This key feature is a by-product of the fact that in that environment the policy rate coincides with

the nominal interest rate that consumers face when deciding on how much to save and consume.

To answer to the aforementioned policy questions, we propose a new framework for monetary

policy analysis that, while encompassing as a special case the standard approach, provides a novel

way to characterize the interaction between nominal interest rates and balance-sheet policies. First,

reserves are going to be an additional tool on top of the policy rate (e.g. interest rate on reserves)

that the central bank can use to control inflation and output. Second, the policy rate does not

coincide with the nominal rate relevant for the households’consumption/saving choice, which is

now influenced by a novel monetary transmission mechanism based on what we label the “liquidity

channel”.

In order to capture the salient aspects of recent Central Banks’ policy actions, we need to

consider an explicit role for the banking system (as the only holders of Central Banks’reserves), a

role for the fiscal authority (as the issuer of liquid government bonds) and a role for selected assets

(deposit and government bonds) as provider of liquidity services to the private sectors.

Within this rich context, we first explain why the policy rate does not necessarily coincide with

the nominal rate relevant for the consumption/saving choices. The gap between these interest rates

creates a role for reserve policy (QE or QT) in affecting aggregate demand. In our framework, the

only agents holding central bank reserves are banks, which use them to collateralize deposits. In

this way, the interest rate on deposit is going to depend on the interest rate the central bank sets

on its reserves. Since deposits provide liquidity services, the interest rate on deposits command

a liquidity premium with respect to other illiquid securities that households may hold. However,

it is exactly the interest rate on these illiquid securities that is the one that matters for their

consumption/saving choices and for aggregate demand. As such, it will be linked to the policy

rate only through the connection with the deposit rate and the liquidity premium. Via this new

monetary-policy transmission mechanism, central bank reserves become an additional tool available

for the monetary policymaker to control aggregate demand, since in general they can influence the

liquidity premium through the quantity of deposits that they back. An additional implication of the

new framework is that also fiscal policy can influence liquidity premia and, through them, aggregate

demand. In this general framework, inflation and output determination is achieved through a joint

interaction between monetary and fiscal policy, unlike in the conventional framework.

The standard Neo-Wicksellian paradigm is nested when reserves do not provide any non-

pecuniary benefits either to banks or directly to households or when, even if they do provide

such benefits, conditions are such that agents get zero marginal benefits from holding them, i.e.

liquidity is fully satiated. This occurs when taxation is high to back a suffi cient supply of govern-
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ment liquidity.

Our framework provides a novel aggregate demand equation that generalizes the one used in

standard New-Keynesian models. Output depends not only on the current and expected future real

rates but also on the supply of liquidity in the economy. A higher supply of liquidity, which lowers

liquidity premia, stimulates aggregate demand and therefore output. The connection between

output and real rates also changes. It is no longer the case that an increase in future real rates

lowers output by the same magnitude as movements in the current real rate do. Instead, in our

general analysis, it happens that future real rates count less for short-run aggregate demand and

output. The model is consistent with a reduced power of forward guidance in stimulating aggregate

demand.

We use our framework to study how to optimally manage interest rate and reserve policies in

an economy that faces a liquidity trap lasting for a finite duration of time. Given the connection

between liquidity and fiscal policy, this becomes a joint monetary and fiscal policy problem.

The optimal combination of reserves and interest rate policy, requires to increase liquidity

(reserves) few quarters after the policy rate is at the effective lower bound. Our analysis implies

also that the removal of accommodation requires quantitative tightening to start before the liftoffof

the policy rates. Moreover the withdrawal of liquidity takes place at a very slow pace relatively to

the normalization of the policy rate. Intuitively an active management of reserves help in reducing

the output losses by its effect on the liquidity premium and ultimately on aggregate demand.

In general, our results can also be read de-coupled along inflation-versus-output objectives: i)

to stabilize inflation at the target the increase in government liquidity should be moderate, peak

at the end of the trap, withdrawn just before the liftoff the policy rate and reabsorbed only very

slowly; the policy rate should stay at the zero-lower bound longer than the duration of the shock;

ii) to stabilize output, liquidity should increase more, peak during the middle of the liquidity trap

and completely be reabsorbed as policy rates normalize; the liftoff of the policy rate from zero

interest-rate policies may happen at the time the shock disappears. A higher weight on inflation

stabilization, as often the case in the welfare function of this class of models, implies i) to dominate

in the optimal policy problem.

This work is related to the literature that has studied the optimal interest rate policy in a

liquidity trap, e.g. Eggertsson and Woodford (2003, 2004) and Werning (2011). In these works,

reserves are irrelevant to determine optimal policy during a liquidity trap. When taxes are distor-

tionary, as in Eggertsson and Woodford (2004), the path of public debt matters, instead, but just

as a way to smooth the impact of distortionary taxes rather than as an instrument to stimulate

aggregate demand, through liquidity, like here.

Angeletos, Collard and Dellas (2022) is an important related work, which has studied an optimal

taxation problem when public debt provides liquidity services, though with a different modelling

strategy than here, showing that there is a departure from the standard tax smoothing result. They

also study the optimal supply of liquidity. Our framework has a broader focus by also considering

the interaction with monetary policy in a liquidity trap.
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Our analysis is also related to recent literature that has provided departures from the standard

New-Keynesian model. Benigno and Nisticò (2017) already present a model in which the central

bank has two policy instruments: the interest rate on reserves and their quantity. In their model

reserves provide liquidity services through a cash-in-advance constraint together with a privately

issued asset. They use their framework to study how an exogenous reduction in the liquidity

properties of private assets affects inflation and output, given different monetary policies. Their

banking model is stylized and they do not provide a general framework that nests the standard

Neo-Wicksellian paradigm, as we do here. More recently, Diba and Loisel (2020, 2021) have also

built a New-Keynesian model with the central bank having two policy instruments, like here. In

their framework, intermediaries demand reserves to reduce the costs associated with the supply

of loans, which are demanded by firms because of a working-capital constraint. Reserves enter

directly into the aggregate supply equation. Instead, in the framework proposed here, reserves are

held to collateralize deposits and the money-market channel in our model could also be disjoint

from the loans market. Diba and Loisel (2020) finds that the equilibrium can be determinate

even with interest-rate pegging because reserves are also an instrument of policy. Diba and Loisel

(2021) focuses on the quantitative properties of policies at the zero lower bound, showing that their

framework can be consistent with no significant deflation and little inflation volatility.

Piazzesi, Rogers and Schneider (2021) also emphasize the disconnection between money-market

rates and the interest rate relevant for consumption/saving choices. They present a banking model

in which monetary policy operates either through a corridor or a floor system. The main objective

of their work is to compare the pass-through of the policy rate to other money market rates across

the two systems. They show that equilibrium can be determinate even if the policy rate does not

follow a Taylor rule. Arce et al. (2020) also focus on the relationship between the size of the balance

sheet and the interbank rate. We instead focus on the floor system or alternatively on a corridor

system that shrinks to zero. However, we are interested in the transmission mechanism of policy

to inflation and output, emphasizing the specification of the monetary/fiscal policy regime, which

in our framework is critical to determine prices and inflation. We study the interaction between

fiscal policy, interest rates and reserves to determine equilibrium, which is novel with respect to

the above works. None of the above papers has analyzed how reserves and interest rates should be

set optimally during a liquidity trap episode.

Bigio and Sannikov (2021) integrate monetary policy analysis through a corridor system via

a banking model that displays a liquidity and a credit channel. However, in their case, when the

corridor around the policy rate shrinks to zero, the only policy instrument remains the interest

rate on reserves while the quantity of reserves becomes irrelevant. In our model, instead, reserves

are always a policy instrument and are relevant for inflation and economic activity even with a

zero corridor system, provided they supply some non-pecuniary benefits.

Bigio and Sannikov (2021) and Piazzesi, Rogers and Schneider (2021) distinguish between a

model in which reserves are scarce and the central bank conducts policy through a corridor system,

or a model in which reserves are abundant and the central bank conducts policy through a “floor
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system”.1 Our model is one in which there is no use of central bank settlement balances as a means

of clearing payments between banks. The corridor system shrinks to zero at the policy rate, i.e. the

interest rate on reserves.2 This is in line with what they label as the “floor system”, which, however,

works regardless the scarcity or abundance of reserves. Moreover, irrespective of the size of the

reserves, the central bank always has two independent tools to specify policy, the interest rate on

reserves and their quantity.3 We show that the quantity of reserves can be relevant for determining

inflation and economic activity, unless reserves do not provide any non-pecuniary marginal benefits.

If anything, the abundance of reserves may imply irrelevance of reserves for inflation or output

but, in general, the abundance or scarcity of reserves are not relevant dimensions to discriminate

between a corridor or a floor system.

Canzoneri et al. (2008) and Canzoneri, Cumby and Diba (2017) are early models in which there

is a disconnection between the policy rate and the interest rate relevant for consumption/saving

choices. Curdia and Woodford (2010, 2011) present models with borrowers and savers in which

credit spreads arise because of intermediation activity. However, in their context, the policy rate

is still the relevant factor for the savers’consumption/saving choices. The central bank’s balance

sheet is also an additional policy instrument when there are financial frictions, but it acts only on

credit spreads and not on the liquidity channel, like here.

Our work is also related to the literature on the “forward-guidance puzzle” as elaborated by

Del Negro, Giannoni and Patterson (2013) in which the New-Keynesian model gives too much

power to forward guidance in affecting current demand. Recent works such as Werning (2015) and

McKay, Nakamura and Steinsson (2016) have tried to reconcile the puzzle by using incomplete

market models. Our framework, instead, delivers a new Aggregate-Demand equation in which

forward guidance is less powerful even when markets are complete. A similar result is obtained in

Diba and Loisel (2020).

Finally, our model, in the special case of a narrow-banking regime, is also related to the re-

cent literature that has studied central bank digital currency by allowing households to directly

hold deposits at the central bank (see the work of Niepelt, 2021, and again Piazzesi, Rogers and

Schneider, 2021).

The present work starts with Section 2, providing the main intuition for why our framework

departs from the standard Neo-Wicksellian paradigm. Section 3 presents a simple endowment

economy with a banking sector in a flexible-price environment. Section 4 studies the equilibrium

with some examples. Section 5 extends the model with price rigidities. Section 6 studies the

implications of this more general model in a log-linear approximation. Section 7 studies the optimal

policy in a liquidity trap and Section 8 concludes the work.

1De Fiore, Hoerova and Uhlig (2018) also present a banking model in which there are frictions in the money
market.

2Our analysis is in line with the discussion of Woodford (2001) on how the central bank can control money-market
interest rates when central bank settlement balances cease to be used to clear payments across banks.

3 In fact, there are three independent policy tools including the specification of central bank remittances policy.
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2 Reserve Effectiveness: the "Liquidity Channel"

In this section, we highlight the main difference between our model and the standard Neo-Wicksellian

paradigm. In the latter, the economy can be simply described by an AS-AD model in which the

policy rate acts directly on the AD equation. Consider a standard Euler equation in a perfect-

foresight model

Uc(Ct) = β
(1 + it)

Πt+1
Uc(Ct+1), (1)

in which Uc(·) is the marginal utility of consumption, Ct; β is the rate of time preference, with
0 < β < 1; it is the nominal interest rate at time t and Πt+1 is the gross inflation rate between time

t and t + 1. A key assumption in the baseline Neo-Wicksellian paradigm is that the policy rate

controlled by the central bank is the same as the nominal rate influencing the AD equation. Upward

movements in the policy rate cause a contraction in demand for the given future consumption and

inflation rate. More generally, by setting the policy rate, the central bank can control the path of

inflation and output.

Our framework builds upon the same Euler equation (1) but with no direct link between the

policy rate and the nominal interest rate. The latter identifies the risk-free rate on (private) illiquid

securities: we refer to it as the “natural nominal interest rate”, iB. For the sake of simplicity,

focusing on the perfect-foresight equilibrium, the household’s Euler equation becomes

Uc(Ct) = β
(1 + iBt )

Πt+1
Uc(Ct+1). (2)

In our novel framework, we allow households to hold other types of risk-free assets, which provides

also liquidity services. This class of securities might include bank deposits and/or treasury debt.

Portfolio optimization determines the links between the interest rate on liquid securities, iD, and

the natural nominal rate of interest, iB :

1 + iDt = (1− µt)(1 + iBt ), (3)

where µt, with µt ≥ 0, is the liquidity premium

µt = Vq

(
Qt
Pt

)
,

with Vq(·) being the marginal utility from holding liquid securities, and Qt the amount of liquid

securities held by households in their portfolio. It is assumed that Vq(Qt/Pt) = 0 for values of

Qt/Pt above a satiation level q̄ > 0, i.e. Qt/Pt ≥ q̄.
The last step to understand the novelty of the monetary transmission mechanism in our frame-

work relies on the explicit modelling of the banking sector. Financial intermediaries supply deposits

and raise equity to invest in central-bank reserves and privately-issued bonds. The banking equi-

librium implies that the deposit rate will be a weighted average of the policy rate (the interest rate
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on reserves, iR) and the natural nominal rate of interest, iB:

(1 + iDt ) = (1− ρ)(1 + iBt ) + ρ(1 + iRt ),

where ρ is the reserve/collateral requirement with 0 ≤ ρ ≤ 1 and Rt = ρDt; D denotes households’

deposits and R central-bank reserves. Moreover, the following inequality holds: (1+iBt ) ≥ (1+iRt ).

We can then combine the above three equations to obtain

(1 + iBt ) =
ρ

ρ− Vq
(

1
ρ
Rt
Pt

)(1 + iRt ),

showing the novel relationship between the policy rate and the rate directly influencing consump-

tion/saving choices. Relatively to the more general framework that we present below, we assume

here that the only asset that provides liquidity service to the households is bank deposit, so that

Qt = Dt = Rt/ρ.

Based on this simple structure, we can draw key implications on reserve effectiveness. Reserve

can be an independent stabilization tool from the policy rate, even away from the effective lower

bound. Variations in central bank reserves do affect the natural nominal interest rate independently

of the movements of the policy rate: an increase in reserves (↑ Rt), ceteris paribus, lowers the
liquidity services of deposits, lowering the natural nominal interest rate (iBt ↓) and having an
expansionary effect on the economy, as long as the economy is not satiated with liquidity, i.e.

Vq(Qt/Pt) > 0. Similarly, movements in the policy rate, iR, have amplifying effects on the natural

nominal rate of interest, everything else being equal.

Reserves become ineffective when

1. there is full satiation of liquidity, so that iBt = iRt = iDt , or

2. there are no securities available that provide liquidity services or

3. even if some securities provide liquidity services, reserves are not in this class, like in the case

in which they do not provide any collateral benefits (ρ = 0).

The further novel channel in our framework is that the supply of liquidity is bounded by, and

connected to, the fiscal capacity of the government. Therefore the problem of output and inflation

determination becomes a joint monetary and fiscal policy problem.

3 Model

We now present our model in a flexible-price endowment economy, underlining the transmission

mechanism of monetary policy through the banking sector, via money-market rates. The purpose

is to show how price and inflation determination results from the interaction between monetary
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and fiscal policy. Later, we add price rigidities and present the new framework in a log-linear

approximation to study the optimal exit from zero-lower bound policies.

In this Section, we present the model in blocks starting from the banking sector, then households

and, finally, the government, which includes the treasury and the central bank.

3.1 Banking Sector

At a generic time t, there is a potentially infinite number of intermediaries that can start interme-

diation activity without any entry cost. Each intermediary lives for two periods. Intermediaries

entering at time t face the following balance sheet constraint:

Rt +At = Dt +Nt, (4)

in which Rt are the holdings of central bank reserves which are remunerated at the rate iRt , At are

the holdings of short-term private debt that carries an interest rate iBt . Intermediaries can finance

their assets by issuing deposits Dt, at the interest rate iDt , and by raising equity Nt.
4

Banks are subject to a reserve/collateral requirement of the form Rt ≥ ρDt ≥ 0 with 0 ≤ ρ ≤ 1.

The two extremes of the interval characterize two interesting cases. When ρ = 1, intermediaries

need to back all deposits by reserves, like in a narrow banking system. When ρ = 0, there is no

reserve/collateral requirement, but reserves should be non-negative, Rt ≥ 0. Here we emphasize

that the collateral requirement should be interpreted to capture not only the traditional reserve

requirement but also other constraints that financial intermediaries may face.

Intermediaries can also invest in cash, which is going to be dominated by reserves. The economy

is cashless in equilibrium but not without cash as a store of value. The possibility that reserves

can be transformed into cash implies the existence of a zero-lower bound on the interest rate on

reserves, iRt ≥ 0.

Intermediaries’profits, Ψt+1, at time t+ 1 are given by

Ψt+1 = (1 + iBt )At + (1 + iRt )Rt − (1 + iDt )Dt. (5)

Intermediaries are subject to a limited-liability constraint, for their profits should be non-negative.

This constraint can be written as

Ψmin = (1 + iBt )At + (1 + iRt )Rt − (1 + iDt )Dt ≥ 0, (6)

which is independent of the contingency at time t+ 1.5 The banks’optimization problem consists

4We can also characterize a more general banking problem in which intermediaries supply also loans to the private
sector, which are used to finance capital for production, see Benigno and Benigno (2021). That more general model
would describe a credit channel, which would be orthogonal to the liquidity channel emphasized here, and ininfluential
for the analysis.

5With risky assets, the limited-liability constraint is state-contingent.
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in maximizing rents R (the expected discounted value of profits minus the value of equity)

Rt = Et {Mt+1Ψt+1} −Nt (7)

= Et
{
Mt+1

[
(1 + iBt )At + (1 + iRt )Rt − (1 + iDt )Dt

]}
−Nt.

with Mt+1 being the households’stochastic discount since consumers own financial intermediaries.

Intermediaries choose At, Rt, Dt to maximize (7) under the budget constraint (4), the limited-

liability constraint (6), and the collateral constraint Rt ≥ ρDt ≥ 0.

To solve the above-defined linear programming problem, first substitute the balance-sheet con-

straint (4) to replace At into (7) to obtain

Rt =

[
(1 + iRt )

(1 + iBt )
− 1

]
Rt −

[
(1 + iDt )

(1 + iBt )
− 1

]
Dt. (8)

In deriving equation (8), we have used Et
{
Mt+1(1 + iBt )

}
= 1, anticipating a result of the house-

hold’s problem.

The rent function (8) should be maximized under the limited-liability constraint (6) and the

collateral constraint. The first result is that raising equity bears no costs, which implies that the

limited liability constraint is not binding for equity can be raised to satisfy it.6

We now discuss the implications for the supply of deposits by combining (8) with the collateral

requirement Rt ≥ ρDt. We distinguish the following two cases:

1. When Rt > ρDt, then iBt = iRt otherwise rents will be positive in (8). Moreover, again the

zero-rent condition applied to (8) implies that also the deposit rate will be fixed at the rate

on reserves and, therefore, the Neo-Wicksellian framework is nested, i.e. iBt = iDt = iRt .

2. When Rt = ρDt, we can substitute it into (8) in place of Rt to obtain that

(1 + iDt ) = ρ(1 + iRt ) + (1− ρ)(1 + iBt ), (9)

when rents are zero.

In case 2), the deposit rate at which intermediaries are willing to supply deposit is a weighted

average of the policy rate and the natural nominal rate of interest, with a weight given by the

parameter ρ. The collateral requirement, ρ, becomes crucial for characterizing the equilibrium

relationship among the different interest rates.

• In a narrow banking regime, when ρ = 1, the deposit rate coincides with the policy rate,

iDt = iRt , but in general i
B
t > iDt = iRt .

• When ρ = 0 and reserves no longer provide non-pecuniary benefits, it follows that iDt = iBt

and iBt = iRt as long as reserves are positively supplied by the central bank. Therefore, when

6This result would also hold were intermediaries supplying risky loans.
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ρ = 0, all interest rates are equalized, iBt = iRt = iDt , and the Neo-Wicksellian regime is

nested again.

To conclude the characterization of the banking problem, the demand for equity, as discussed,

is such as to make the limited-liability constraint not binding. Therefore, using (4) in (6), we

obtain the following inequality:

Nt ≥
iDt − iBt
1 + iBt

Dt +
iBt − iRt
1 + iBt

Rt

Nt ≥ 0

in which we have used (9) in moving from the first to the second line. Equity can be also zero in

this simple model since there is no risk in the assets held by intermediaries.7

3.2 Households

We consider a representative consumer maximizing the following intertemporal utility:

Et0

{ ∞∑
t=t0

βt−t0U

(
Ct,

Qt
Pt

)}
, (10)

in which Et0 is the conditional-expectation operator at time t0; β, with 0 < β < 1, is the intertem-

poral discount factor in preferences, U(·, ·) is an increasing and concave function of their respective
arguments, with U(Ct, ·) reaching a satiation point at a generic value q̄; C is a consumption

good and Q are the nominal assets from which the households get non-pecuniary benefits (liquid-

ity services). Q includes two types of securities: deposits, D, and treasury debt, Bh, therefore

Qt = Dt +Bh
t ; P is the price level.

The household is subject to the following flow budget constraint:

PtCt + (Dt +Bh
t ) + (1 + iBt−1)Bt−1 +Nt + Tt ≤ (1 + iDt−1)(Dt−1 +Bh

t−1) +Bt + Yt + Ψt. (11)

She/He can invest its savings in two securities: D, deposit, and Bh, treasury notes, which are a

perfect substitute for providing liquidity services and they both pay an interest rate iD. She/He

can borrow or lend through private risk-free bonds, B, which pay an interest rate iB. All these

securities are risk free, but deposit and treasury’s notes provide liquidity services, whereas private

bonds are illiquid.8

There is a subtle justification for why we are assuming that some risk-free securities, such as

deposits and treasury debt, provide liquidity services while others do not. First note that central

bank reserves are always free of risk and repaid, since the central bank issues those liabilities

without being subject to a solvency constraint.9 In attributing a liquidity role to treasury debt,
7 If intermediaries supply risky loans, demand of equity is going to be positive to absorb the maximum loss on

loans.
8Note that in the household’s budget constraint a positive value for B denotes debt.
9See the discussion in Benigno (2020) and Woodford (2000).
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we are implicitly assuming that the central bank always “backs” the treasury by extending the

special risk-free properties of its liabilities to the treasury debt. For deposits, consider that they

are issued by intermediaries and backed, although partially, by reserves. Given this guarantee, we

also attribute a liquidity role to them. On the contrary, private debt needs to satisfy a solvency

condition to be risk free, which makes it different from central bank reserves and from all the other

securities that are implicitly backed by the central bank.

Households can finance intermediaries by supplying equity N ; T are lump-sum taxes levied by

the government. On the right-hand side of the budget constraint, households receive endowment

Y, and intermediaries’nominal profits, Ψ.

Households maximize utility (10) by choosing stochastic sequences
{
Ct, Bt, Dt, B

h
t

}∞
t=t0

subject

to the period budget constraint (11), an appropriate borrowing limit and initial conditions.

The following asset-pricing condition characterizes the choice with respect to the illiquid bonds,

Bt:

Et {Mt+1} =
1

1 + iBt
, (12)

whereMt+1, the nominal stochastic discount factor, is given byMt+1 = β(Uc(Ct+1, qt+1)/Pt+1)/(Uc(Ct, qt)/Pt)

with qt ≡ Qt/Pt. The expected value of the stochastic discount factor is equal to the price of the

illiquid bonds — the inverse of the gross nominal interest rate. As noted, we label this interest

rate, iB, as the natural nominal rate of interest since it is the one that directly affects the saving-

consumption choices.

The optimal choice with respect to the liquid securities, Dt and Bh
t , implies that

1 = µt + (1 + iDt )Et {Mt+1} , (13)

in which µt is the liquidity premium given by

µt =
Uq (Ct, qt)

Uc(Ct, qt)
,

with Uq(·, ·) and Uc(·, ·) the respective partial derivatives of the function U(·, ·), and 0 ≤ µt < 1.

Note that we can combine (12) and (13) to obtain

(1 + iDt ) = (1− µt)(1 + iBt ),

saying that the interest rate on deposit is lower, or almost equal, than the rate on illiquid bonds.

Only when the economy is satiated with liquidity the two rates coincide. The optimal supply of

equity, N , implies that its value is equal to the discounted value of intermediary profits:

Nt = Et {Mt+1Ψt+1} .

Finally, the intertemporal budget constraint of the consumer holds with equality at all times.
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3.3 Government

The government sector includes the treasury and the central bank. The treasury’s budget constraint

is

Bg
t = (1 + iDt−1)Bg

t−1 − Tt − T ct , (14)

in which the short-term debt issued by the treasury Bg carries the nominal interest rate iD, the

one on liquid securities; the treasury can pay debt via taxes, T , and use remittances, T c, received

from the central bank. The central bank has the following budget constraint:

Bc
t −Rt = (1 + iDt−1)Bc

t−1 − (1 + iRt−1)Rt−1 − T ct , (15)

since it can issue interest-bearing reserves R at the rate iR and it holds treasury notes as assets,

denoted by Bc. Note that the central bank is not subject to any solvency condition since its

liabilities define what a currency is. As mentioned, we are assuming that the central bank backs

the treasury, which is, therefore, not subject to a solvency condition, too.

4 Equilibrium

We discuss the equilibrium conditions.

Asset-market equilibrium requires that all bonds issued by the treasury are held by the central

bank and the households, therefore

Bg
t = Bc

t +Bh
t ; (16)

the debt issued by the private sector is held by intermediaries At = Bt; the supply and demand

of deposits are in equilibrium, as well as the market of central bank reserves. Goods market

equilibrium implies that output is equal to consumption

Yt = Ct.

The exogeneity of output allows us to focus more neatly on the determination of money market

rates, liquidity and inflation.

On the supply side of deposit, the banking equilibrium implies a link between the deposit rate,

iD, the policy rate, iR, and the natural nominal rate of interest, iB:

(1 + iDt ) = ρ(1 + iRt ) + (1− ρ) max
{

(1 + iBt ), (1 + iRt )
}
, (17)

with iBt ≥ iRt ≥ 0.

On the demand side, households hold deposits if the spread between deposit rate and natural

nominal rate of interest satisfies

(1 + iDt )

(1 + iBt )
=

(
1− Uq (Yt, qt)

Uc(Yt, qt)

)
. (18)
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Finally, equilibrium in demand and supply of illiquid securities relates the natural nominal rate of

interest with liquidity and inflation

1

1 + iBt
= Et

{
β
Uc(Yt+1, qt+1)

Uc(Yt, qt)

Pt
Pt+1

}
. (19)

The three equations above show already the complexity in determining prices and inflation in this

framework. Even abstracting from the issue of price determination, the policy rate, iR, alone

cannot determine the inflation rate without accounting for liquidity, q.

Note the three cases in which the Neo-Wicksellian framework is nested with the three money

market rates equalized:

• Reserves in the banking sector are in excess, Rt > ρDt, therefore iBt = iRt and from equation

(17) it follows iDt = iBt = iRt ;

• Reserves do not provide any non-pecuniary benefits to the banking sector, ρ = 0, therefore

iDt = iBt from equation (17), and iDt = iBt = iRt given a positive supply of reserves;

• Liquidity premia are zero, i.e. Uq(Yt, qt) = 0, and therefore iDt = iBt from equation (18) and

iDt = iBt = iRt from equation (17).

The first two cases follow from the banking equilibrium and depend on supply considerations on

deposits. The last case depends on demand considerations on deposits, from the side of households.

To complete the equilibrium description, we need to characterize the supply of liquidity. Note

that

qt =
Dt +Bh

t

Pt
, (20)

and

Dt ≤
Rt
ρ
. (21)

Supply of treasury’s debt and reserves depend on the flow budget constraints of the two authorities:

Bg
t = (1 + iDt−1)Bg

t−1 − Tt − T ct , (22)

Bc
t −Rt = (1 + iDt−1)Bc

t−1 − (1 + iRt−1)Rt−1 − T ct , (23)

which we have already described in details.

To complete the characterization of the equilibrium conditions, we need to state the intertem-

poral resource constraint of the economy, which holds in equilibrium as the mirror image of the

intertemporal budget constraint of the private sector

(1 + iRt−1)Rt−1 + (1 + iDt−1)Bh
t−1

Pt
= Et

{ ∞∑
T=t

βT−t
Uc(YT , qT )

Uc(Yt, qt)

[
TT
PT

+
iBt − iDt
1 + iBt

Bh
t

Pt
+
iBt − iRt
1 + iBt

Rt
Pt

]}
.

(24)
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The outstanding overall real liabilities of the whole government (treasury and central bank), with

respect to the private sector, should be equal, at each point in time, to the present-discounted

value of real taxes and of the seigniorage revenues the government gets by selling liabilities, either

reserves or treasury notes, at an interest rate lower than the natural nominal rate of interest.

Equilibrium is a set of stochastic sequences
{
iBt , i

D
t , i

R
t , qt, Pt, Dt, B

h
t , B

g
t , B

c
t , Rt, Tt, T

c
t

}∞
t=t0

sat-

isfying equilibrium conditions (16)—(24), for each t ≥ t0, with iBt ≥ iRt ≥ 0, given the stochastic

sequence {Yt}∞t=t0 and initial conditions i
D
t0−1, i

R
t0−1, B

g
t0−1, B

c
t0−1, Rt0−1. There are four degrees of

freedom to specify monetary and fiscal policy.

In the next Section, we characterize the equilibrium through simple examples, showing the

novel interaction between fiscal and interest-rate policies in determining prices and inflation.

4.1 Simple Examples

To understand the determination of prices and interest rates, we now make the simplifying as-

sumptions that the economy is deterministic and that output is constant at Yt = Y .

We discuss how monetary and fiscal policies are set. The central bank chooses the interest rate

on reserves and their quantity, i.e. iRt and Rt. Let us assume a constant interest-rate policy, i
R
t = iR

for each t ≥ t0, and an arbitrary positive sequences of reserves, Rt > 0 for each t ≥ t0. Consider

the flow budget constraint of the central bank (23). First, note that iDt is not under direct control

of the central bank. If iRt and Rt are set, there is still one degree of freedom to specify central

bank’s policy. We assume that the central bank rebates its profits to the treasury according to the

remittances rule T ct = iDt−1B
c
t − iRt−1Rt. It follows from (23) that Bc

t −Rt is constant over time.10

We assume that fiscal policy is set by the treasury according to the following rule

Tt
Pt

= (1− β)τ − (iBt−1 − iDt−1)
Bh
t−1

Pt
− (iBt−1 − iRt−1)

Rt−1

Pt
, (25)

rebating to households the revenues the government gets by issuing liabilities at a lower rate than

the natural rate of interest, in which τ is a positive parameter representing the fiscal policy stance.

Given the tax policy (25) and the remittances policy of the central bank, the supply of treasury

debt, Bg
t , is determined by the flow budget constraint of the treasury (22).

Specifying the tax policy as in (25) is interesting since it can determine the price level at time

t0. Insert (25) into (24) to obtain

(1 + iBt0−1)(Rt0−1 +Bh
t0−1)

Pt0
= τ , (26)

which shows that the price level Pt0 is determined by the fiscal policy stance, τ , given initial

conditions Rt0−1, Bh
t0−1 and i

B
t0−1.

Moreover, note that by aggregating the budget constraints of treasury (22) and central bank

10On the contrary, had policy been specified in terms of an exogenous path for Bct , Rt would have been endogenously
determined.
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(23), the consolidated government budget constraint can be written as

Bh
t +Rt = (1 + iDt−1)Bh

t−1 + (1 + iRt−1)Rt−1 − Tt.

By inserting the tax rule (25), we get

Bh
t +Rt
Pt

= (1 + iBt−1)
Bh
t−1 +Rt−1

Pt
− (1− β)τ

and therefore, using (26), that
Bh
t +Rt
Pt

= βτ (27)

at all times t ≥ t0. The real value of government liabilities at any point in time is also proportional
to the parameter τ of the fiscal policy rule.

Having determined the price level at time t0, we now move to determine inflation and interest

rates using equations (17) to (19). Recall them and exploit the simplifying assumption stated in

this section to write

(1 + iDt ) = ρ(1 + iRt ) + (1− ρ) max
{

(1 + iBt ), (1 + iRt )
}
. (28)

(1 + iDt )

(1 + iBt )
=

(
1− Uq (Y, qt)

Uc(Y, qt)

)
, (29)

1 + iBt =
1

β

Pt+1

Pt
, (30)

with the further restriction that iBt ≥ iRt ≥ 0. Note that, given that the price level at time t0 is

determined by the fiscal policy, the natural nominal rate of interest, iB, determines the inflation

rate through equilibrium condition (30). However, this rate is not directly controlled by the central

bank. To determine the inflation path, one needs to understand how the policy rate passes into

the natural nominal rate of interest to affect the inflation rate. For this mechanism, it also key to

account for the real value of the total liquidity in the economy, q, and its relationship with fiscal

policy. Note that

qt =
Dt +Bh

t

Pt
≤ Rt/ρ+Bh

t

Pt
,

where for the inequality we have used the collateral constraint Rt ≥ ρDt. We proceed by studying

the problem by means of three distinct cases: ρ = 0, ρ = 1 and 0 < ρ < 1.

4.1.1 Case I: ρ = 0

We start with the simple case in which there is no reserve/collateral requirement. In Section 3.1, we

have already shown that when ρ = 0 all money-market rates are equalized, iBt = iRt = iDt . Reserves

are supplied in a positive amount, even negligible, and held by banks.11 By moving the policy

11See also Woodford (2000) on how the central bank can control money-market rates with a negligible supply of
reserves.
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rate iR, the central bank can control in a direct way the rate relevant for the consumption/saving

choices of households, iB. The Neo-Wicksellian paradigm emerges. There are no liquidity premia

and deposits will be supplied and demanded to satiate liquidity in the economy.

Concerning deposits, we have assumed that they provide liquidity to households on the grounds

that they have some backing from reserves. However, when ρ = 0 there is no such backing. There

are two possible ways to interpret this case. One is to assume that intermediaries maintain special

powers to transform illiquid risk-free securities into liquid deposits, since in any case iBt = iDt .

Alternatively, we could assume that deposits do not provide any liquidity services in contrast with

treasury bills, which are still backed by the central bank. In this case, the banking model would

still implies that iBt = iRt = iDt but, the interest rate on treasury debt could be lower if the supply

of this debt is not enough to satiate liquidity. This result is interesting since it shows that the

existence of securities carrying a convenience yield is not per se a suffi cient condition for breaking

the link between the policy rate and the natural nominal rate of interest. What matters is the

transmission mechanism of the policy rate through the banking sector.

4.1.2 Case II: "Narrow" banking or central bank digital currency, ρ = 1

We now focus on the special case of full backing of deposits by reserves, i.e. ρ = 1. This framework

is isomorphic to one in which households directly hold accounts at the central bank, a case that

mimic ‘central bank digital currency’.

Start by observing that

qt =
Dt +Bh

t

Pt
≤ Rt +Bh

t

Pt
= βτ (31)

where we have used Rt ≥ Dt and (27). From (28), assuming ρ = 1 implies iDt = iR.

The full characterization of the equilibrium depends critically on the fiscal policy stance, that

in our simple example is given by τ .

• When τ ≥ q̄/β, where q̄ is the satiation level of liquidity, then the Neo-Wicksellian equilibrium
arises with iBt = iR = iD.

To be in the Neo-Wicksellian equilibrium, liquidity should be enough to satisfy the inequality

qt ≥ q̄. Using (31), we obtain the restriction on τ for such an equilibrium to exist, τ ≥ q̄/β. Taxes
should be set at a suffi ciently high level to satiate liquidity. In this case, using equation (30), the

inflation rate is determined at the constant Π = Pt+1/Pt = β(1 + iR) given the policy rate iR.

• When τ < q̄/β there is a disconnect between the policy rate and the natural nominal rate of

interest. Using equations (29), (30) and (31), we obtain that

1 + iB =
1 + iR

1− Uq(Y,βτ)
Uc(Y,βτ)

,
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Π =
β(1 + iR)

1− Uq(Y,βτ)
Uc(Y,βτ)

.

The spread between the natural nominal rate of interest and the policy rate decreases with

τ .12 A similar negative relationship also arises between the equilibrium inflation rate and the

tax rate. The inflation rate is going to be higher than under the Neo-Wicksellian regime.

The final remark is on the irrelevance of reserves for the equilibrium inflation rate and the

natural nominal rate of interest, irrespective of whether the policy rate coincides or not with the

latter. For a given τ , the size of the central bank’s balance sheet, or reserves, does not influence

directly the inflation rate, although reserves remain an additional instrument of monetary policy.

What matters is the overall government’s balance sheet and the fiscal capacity, captured by the

parameter τ . Reserves policy does matter, however, as shown in (26), to determine the initial price

level, and will matter to pin down the price in each future contingency in a stochastic economy.

Nevertheless, they will not matter to determine the expected inflation rate.

4.1.3 Case III: 0 < ρ < 1

When 0 < ρ < 1, reserves are going to be effective to determine inflation rate along with the policy

rate. Rewrite total liquidity in the economy as

Dt +Bh
t

Pt
≤ (ρ−1 − 1)Rt +Rt +Bh

t

Pt
= (ρ−1 − 1)

Rt
Pt

+ βτ,

using Rt ≥ ρDt and (27). As previously derived, the real value of the total government liabilities

is determined by the fiscal stance, τ , as

Rt +Bh
t

Pt
= βτ,

at each point in time. When Bh
t ≥ 0,the previous equation implies that the real value of reserves

is bounded by βτ and therefore

qt =
Dt +Bh

t

Pt
≤ (ρ−1 − 1)

Rt
Pt

+ βτ ≤ βτ

ρ
(32)

showing now a higher upper bound on the real value of the total liquidity in the economy.13 Note

again that total liquidity is bounded by the fiscal policy stance, τ , but, when ρ < 1, the bound is

higher than in the case reserves fully back deposits, ρ = 1.

When τ is suffi ciently low with τ ≤ ρq̄/β, reserves do not satiate the economy, but their

variation influences the interest rates and the inflation rate. To see this, consider the relevant

equilibrium conditions (28) —(30) and combine them under the assumption of no full satiation of

12We are assuming that liquidity and consumption are complements in utility.
13We are assuming that treasury’s debt in the hand of the private sector is non-negative or equivalently that the

treasury is not accumulating private assets.
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liquidity to obtain

(1 + iBt ) =
ρ

ρ− Uq(Y,qt)
Uc(Y,qt)

(1 + iR),

Πt = β(1 + iBt ).

The first equation shows that given the policy rate, the real value of liquidity influences the natural

nominal rate of interest. An increase in the real value of liquidity, which can come now from two

sources (a higher τ or an increase in reserves), as shown in (32), lowers the spread between the

natural nominal rate of interest and the policy rate and, therefore, lowers the inflation rate. This

simple example shows then a richer interaction between monetary and fiscal policy in determining

prices and inflation. We elaborate more on it through an extension of the above model in the next

Section.

5 Modeling Nominal Rigidities

We extend the benchmark model presented in the previous analysis to allow for endogenous pro-

duction and nominal price rigidities. Since the purpose here is to study the role of reserves and

interest-rate policies in a liquidity trap, we keep the analysis as simple as possible to compare

the new framework with the existing literature, e.g. Eggertsson and Woodford (2003). Firms use

labor, supplied by households, to produce goods. We set a simple stochastic structure of the model

by considering a preference shock, such to bring the economy to the zero-lower bound.

Preferences of the household are now given by

Et0

{ ∞∑
t=t0

βt−t0ξt

[
U (Ct) + V

(
Qt
Pt

)
−
∫ 1

0

(Ht(j))
1+η

1 + η
dj

]}
,

where ξ is the preference shock, C is a Dixit-Stiglitz aggregator of a variety of measure one of

goods produced by firms; H(j) is labor of variety j, used by firm of type j; η, with η ≥ 0, denotes

the inverse of the Frisch elasticity of labor supply. The function U(·) is concave and increasing;
V (·) is concave and non-decreasing, having a satiation level at a finite level q̄ > 0; Vq(qt) = 0 for

qt ≥ q̄. Moreover, to have a well-defined demand of liquidity when qt approaches q̄ from below, we

assume that Vqq(qt) remains negative in the limit.14

From the firms’side, we allow firms to be distributed on a unitary mass on the segment [0, 1];

firms use labor to produce goods according to the technology Yt(j) = Ht(j) facing a demand

function of the form Yt(j) = (Pt(j)/Pt)
−θYt in which P (j) is the price of good j and θ is the

elasticity of substitution among the variety of goods produced, with θ > 1. Prices are sticky

following the Calvo model in which a fraction 1 − α is allowed to change its prices maximizing
the expected present discounted value of its profits. Firms that are not adjusting prices index

them to the target Π. As it is standard in the literature, the described framework delivers an

14Appendix A.1 presents the model and all derivations in the general case of non-separable utility between goods
and real liquidity.
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Aggregate-Supply equation of the form

(
1− α

(
Πt
Π

)θ−1

1− α

) 1+θη
θ−1

=
Ft
Kt
,

in which Ft and Kt are given by

Ft = ξtUc(Yt)Yt + αβEt

{(
Πt+1

Π

)θ−1

Ft+1

}
,

Kt = ξtY
1+η
t + αβEt

{(
Πt+1

Π

)θ(1+η)

Kt+1

}
.

The complete set of equilibrium conditions is presented in Appendix A.1. In the next Section, we

discuss its novel features through a log-linear approximation.

6 A New Framework for Monetary Policy Analysis

In this Section, we present the general model with nominal rigidities through a log-linear approxi-

mation around the steady state, to compare it with the benchmark New-Keynesian Neo-Wicksellian

model. Details of the log-linear approximation are left to Appendix A.3 while the steady state is

analyzed in Appendix A.2.

Aggregate Supply

The aggregate supply (AS) block is the same as in the New-Keynesian framework with

πt − π = κŶt + βEt(πt+1 − π), (33)

for a positive parameter κ; πt ≡ lnPt/Pt−1 and π ≡ ln Π. Inflation deviations from the target

depend positively on output Ŷt and on the one-period ahead inflation expectations. As a general

notation, variables with a hat denote log-deviations of the variable with respect to the steady state.

Aggregate Demand

The aggregate demand block is characterized by the same Euler equation as in the New Key-

nesian framework. The key difference is that in our framework the relevant nominal rate is the

natural nominal rate of interest, iB, and not the policy rate, see equation (19). In a log-linear

approximation, we obtain

Ŷt = EtŶt+1 − σ(̂ıBt − Et(πt+1 − π)− rnt ), (34)

in which rnt is the natural real rate of interest, which is a function of the preference shock.
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Banking Sector and Money Market

From the banking sector we obtain the relationship among the relevant money-market rates

ı̂Bt = ı̂Rt +
1− ν
ρ− ν (̂ıBt − ı̂Dt ), (35)

as a first-order approximation to equation (17).15

The non-negative parameter v is given by the ratio of the marginal utility of liquidity versus

that of consumption evaluated at the steady state, v = Vq/Uc. In a steady state in which liquidity

is fully satiated, v = 0.

Equilibrium in the money market, see equation (18), implies that the real value of liquidity is

positively related with output and negatively with respect to the liquidity premium through the

relationship

q̂t = qyŶt − qi(̂ıBt − ı̂Dt ), (36)

in which the elasticity of the demand of liquidity with respect to output is given by qy = σq/σ and

that with respect to the money-market spread is qi = σq(1−v)/v; σq is the intertemporal elasticity

of substitution in liquidity, defined as σq = −Vq/(Vqqq).

We briefly discuss two cases.

1. When v = 0, liquidity is fully satiated in steady state, iBt = iDt = iRt and the aggregate

demand equation becomes

Ŷt = EtŶt+1 − σ(̂ıRt − Et(πt+1 − π)− rnt ), (37)

in which the policy rate directly affects the real rate relevant for the consumption/saving

choices like in the New Keynesian framework.

2. When v > 0, then we combine (35) and (36) into (34) to obtain

Ŷt = (1− ρ−1v)EtŶt+1 − σ(1− ρ−1v)(̂ıRt − Et(πt+1 − π)− rnt ) + q−1
y ρ−1vq̂t. (38)

There are two important novel features shown by the AD equation: first, there is a role

for liquidity in affecting the aggregate demand equation (liquidity channel); second, the

coeffi cient (1 − ρ−1v) in front of the expected level of output is positive and less than the

unitary value, which has implications for the effectiveness of forward guidance.

To gauge the difference with respect to the standard AD equation, solve equation (38) forward

Ŷt = −(1−ρ−1v)σEt

∞∑
T=t

(1−ρ−1v)T−t(̂ıRT −(πT+1−π)−rnt )+q−1
y ρ−1vEt

∞∑
T=t

(1−ρ−1v)T−tq̂T . (39)

15Note that a requirement for the equilibrium, discussed in the Appendix, is that ν < ρ.
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Not only the current real rate has less impact on output, for given intertemporal elasticity of

substitution in consumption σ, but also movements in the expected future rates influence current

output less and with a decaying weight. A similar argument applies to the effectiveness of the supply

of liquidity in affecting current aggregate demand. Note that a rise in the supply of liquidity has

an expansionary effect on output. Consistently with the discussion of Section 4.1.3, movements in

liquidity can originate from variations in central-bank reserves or treasury’s debt.

7 Optimal Monetary Policy Normalization

In this Section, we analyze how interest rate and reserve policies should be managed when the

economy faces shocks that bring it to a liquidity trap. We study optimal policy using a linear-

quadratic approach. We proceed through two steps. First, we analyze the model in which lump-sum

taxes are available, then we consider the case of only distortionary taxation. As we have already

discussed in previous section, fiscal policy and government constraints are key to determine inflation

and output.

7.1 With lump-sum taxes

We first consider the case in which the government uses lump-sum taxes. To simplify the derivation

of the loss function, we assume that a tax subsidy completely offset the monopolistic distortions

in the steady state. Regarding liquidity, we assume that in the steady state the economy is close

to the satiation level, i.e. Vq is non zero but of a small order. In the limit in which Vq becomes

small, the demand of liquidity will be still of the same form as (36) with parameters qy = 0 and

qi = −Uc/(Vqqq).16

We show in the Appendix A that under these assumptions the second-order approximation of

the utility of the consumers implies the following loss function

Et0

{
+∞∑
t=t0

βt−t0
[

1

2
Ŷ 2
t +

1

2
µ (q̂t − q∗)2 +

1

2

θ

κ
(πt − π)2

]}
, (40)

for some positive parameter µ defined in the Appendix. The policymaker should weigh deviations

of output, real liquidity and inflation from their respective targets. The parameter q∗ captures the

liquidity distortions in the steady state, since liquidity is not fully satiated; q∗ is such that q∗ = vqi

showing that it is of the same order as v. When liquidity is satiated we have that q̂t = q∗.17

We establish the following proposition

Proposition 1 When lump-sum taxes are available, it is always optimal to increase liquidity (i.e.

manage reserves) to reach satiation. This holds independently of the policy rate being or not being

16This corresponds to an economy in which the parameter v is of small order. As discussed before, we assume
that as qt approaches from below the satiation level q̄, the limiting value of Vqq from below is negative. The latter
assumption corresponds to the existence of a well-defined interest-rate semi-elasticity of liquidity demand for values
of qt below the satiation level. See Woodford (2003, ch. 6, p.422) for an analysis in which cash provides utility.
17The loss function considers deviations of qt which are bounded above by q̄.
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at the zero lower bound.

Proof. We start by considering first the case in which the economy is away from the zero lower

bound, ı̂Rt > − ln(1 + iR) in which iR is the steady-state value of the policy rate. In this case

the optimization problem consists in minimizing (40) by choosing {Ŷt, πt, q̂t}∞t=t0 subject to the AS
equation

πt − π = κŶt + βEt(πt+1 − π). (41)

When feasible, there is no trade-off between stabilizing inflation and output to their targets.18 In

the first best, liquidity should satiate the economy and therefore q̂t = q∗. Absent any constraint

on the nominal interest rate, this first best can be achieved, and therefore the central bank can

reach all three objectives in (40).

When the policy rate hits the zero-lower bound, the aggregate demand block becomes relevant

to evaluate the trade-offs embedded in the optimal policy problem. Moreover, as stated, when v

is of a small order, the equilibrium in the market of liquidity is still of the same form as in (36).

The functional form of (34) is also unchanged while (35) holds imposing that v is equal to zero in

a first-order approximation.

As shown in the Appendix, in the limit ν → 0, the AD equation (38) becomes

Ŷt = EtŶt+1 − σ(̂ıRt − Et(πt+1 − π)− rnt ) + ρ−1q−1
i σq̂t. (42)

The optimal policy problem solves the minimization of the loss function (40) under the con-

straints (41) and (42) by choosing the sequences {yt, πt, ı̂Rt , q̂t}∞t=t0 given the inequality constraints
ı̂Rt ≥ − ln(1 + iR) and q̂t ≤ q∗. First-order conditions of the optimal policy problem are given by:

Ŷt − κϕ1,t + ϕ2,t − β−1ϕ2,t−1 = 0 (43)

θ

κ
(πt − π) + ϕ1,t − ϕ1,t−1 − σβ−1ϕ2,t−1 = 0 (44)

µ(q̂t − q∗)− ρ−1q−1
i σϕ2,t + ϕ3,t = 0 (45)

with the following Kuhn-Tucker conditions

ϕ2,t(̂ı
R
t + ln(1 + iR)) = 0

ϕ3,t(q̂t − q∗) = 0

with ı̂Rt ≥ − ln(1 + iR) , qt ≤ q∗, ϕ2,t ≥ 0, ϕ3,t ≥ 0, and ϕ1,t is the Lagrange multiplier associated

with (41), ϕ2,t is the one associated with (42), and ϕ3,t with constraint q̂t ≤ q∗.19

18A similar loss function can be derived when goods and liquidity are not separable in utility, as shown in Appendix
A, in which case the target for output shifts with liquidity. However, in this case, this is exactly the same shifter that
affects the AS equation, so that there is no trade-off between stabilizing inflation at the target and an appropriately-
defined output gap.
19We are analyzing optimal policy from a timeless perspective, see Woodford (2003).
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Figure 1: Optimal policy responses following a negative shock to the natural rate of interest, which brings it to -4%
at annual rates for 12 quarters. Output gap is in %, Inflation and interest rates are in % and at annual rates. Real
liquidity is in % deviations from the steady state. When q̂t = 0, real liquidity does not move. In the other cases,
real liquidity moves optimally and the parameter ρ, the reserve-to-deposit ratio, is calibrated to the values 0.2, 0.5
and 1, respectively.

The first-order conditions (43)—(45) show formally the result that when the zero-lower bound

constraint is never binding, i.e. ϕ2,t = 0 at all times, the first best can be achieved and liquidity is

set to satiate the economy, see equation (45) which is validated by q̂t = q∗ and ϕ3,t = 0. We now

prove that this result holds even when the economy is at the zero lower bound. Consider first-order

condition (45), which can be written as

µ(q̂t − q∗) =
σ

ρqi
ϕ2,t − ϕ3,t. (46)

To prove that constraint qt ≤ q∗ is going to bind at the zero-lower bound, suppose by contradiction
that ϕ3,t = 0 and q̂t < q∗, then since ϕ2,t > 0 equation (46) implies q̂t > q∗, which contradicts the

assumption made. Therefore ϕ3,t > 0 and q̂t = q∗.

Our proposition establishes that, no matter whether the economy is or is not at the zero-lower

bound, it is always optimal to increase liquidity to reach satiation and mimic the Neo-Wicksellian

equilibrium in which there are no spreads in the money market. We note that reserves are still a

tool of policy but, once they are supplied to satiate the economy, any increase becomes irrelevant

for the equilibrium inflation and output, and this irrelevance result is again independent of whether

the policy rate is or is not at the zero-lower bound. Clearly, reserves and tax policy, the drivers of

q, become relevant for output and inflation determination, when satiation is not reached.

Figure 1 shows the equilibrium outcome for inflation, output, interest rate and the path of

real liquidity in an economy which is hit by a negative shock to the natural rate of interest that
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pushes it to negative values, at -4% for twelve quarters. The calibration is discussed in Appendix

C. The Figure displays the optimal policy when liquidity satiates the economy for the following

values {0.2, 0.5, 1} of the parameter ρ, and compares it with the optimal policy constrained on
no variations of liquidity. In the latter case, it is optimal to set the policy rate to stay at the

zero-lower bound for 15 quarters, 3 quarters beyond the duration of the shock. As in Eggertsson

and Woodford (2003), inflation overshoots the target at the time the natural real rate returns to

normal values while the economy experiences a boom after the initial contraction.20 With liquidity

set optimally, the economy recovers early, fluctuations of output and inflation with respect to their

targets are smaller, the stay at the zero-lower bound is shorter. The increase in liquidity pushes

aggregate demand up, requiring less need of forward guidance and, therefore, lower overshoot of the

inflation rate with respect to the target. When ρ is small, the zero lower bound constraint is even

overcome by the increase in real liquidity, still the nominal interest rate falls to fully accommodate

the drop in the natural rate of interest.

The AD equation (42) is useful to get intuition for the latter result. The increase in liquidity

can offset the negative shock to the natural real rate of interest.21 When q̂t = q∗ = vqi in (42), the

drop in the natural rate of interest rnt is lowered by a factor ρ
−1ν. The offsetting force is higher

the lower ρ is. Indeed, considering a lower ρ, the equilibrium in money markets

ı̂Bt − ı̂Dt = ρ(̂ıBt − ı̂Rt ),

requires the spread in the liquidity market, ı̂B − ı̂D, see equation (36), to be only a fraction of the
spread between the natural nominal rate of interest, ı̂B, and the policy rate, ı̂R. Therefore, for the

same increase in liquidity to reduce the spread in the liquidity market (̂ıB − ı̂D), a larger drop in
the natural nominal rate of interest, ı̂B, with respect to the policy rate, ı̂R, is required, which is

therefore more stimulative on aggregate demand.

In the Appendix, we also discuss the case in which liquidity and goods are complement in

utility, showing that the first-order condition (45) depends also on the lagged value of the Lagrange

multiplier ϕ2. In general, it does not change the main message from this Section, that, when lump-

sum taxes are available, liquidity should be set to satiate the economy. Starting from a situation

in which it is sub-optimally supplied, its increase can shorten the stay at the zero lower bound

and alleviate the costs in terms of inflation and output for the economy. Next Section considers

the case when only distortionary taxes are available, a feature that implies an optimal supply of

liquidity below full satiation and costs of varying liquidity.

7.2 With only distortionary taxation

We now consider the case in which lump-sum taxes are not available. For simplicity we focus on

the case in which deposits are fully backed by reserves, i.e. Dt ≤ Rt. This implies that the deposit
rate coincides with the policy rate, iD = iR, but not necessarily with the natural nominal rate of
20With a sub-optimal policy, inflation and output will fall by more.
21Note that since q∗ = qiν, the calibration of the parameter qi is ininfluential for the results.
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interest. Moreover, the overall liquidity, qt, coincides with the consolidated government liquidity

in the hands of the households, i.e.

qt =
Rt +Bh

t

Pt
.

It follows that the supply of liquidity, qt, is now directly related to fiscal policy through the

intertemporal budget constraint of the government:

(1 + iRt−1)

Πt
qt−1 = Et

∞∑
T=t

Rt,T

[
(τTYT − TrT ) +

iBT − iRT
1 + iBT

qT

]
. (47)

In equilibrium the outstanding real value of government debt should be equal to the present

discounted value of revenues from taxes less exogenous government transfers, Tr, the first term on

the right-hand side of (47), and “seigniorage", the last term on the right-hand side of (47).22 The

latter represents the revenues the government gets by issuing debt at lower cost with respect to

the natural nominal rate of interest, iR rather than iB, because government debt provides liquidity

benefits.

Supplying liquidity entails now distortions in terms of taxation that can affect welfare. In

this context, we study the optimal policy problem using again linear-quadratic approximations

following the method expounded in Benigno and Woodford (2003). The approximation is taken

around an optimal steady state. Details are in Appendix B.

In the steady state, the optimal supply of liquidity is determined by the following condition:

Vq(q) = −
φq

1 + φq
(Vqq(q)q) (48)

in which φq is a non-negative Lagrange multiplier associated to the constraint (47). The Lagrange

multiplier is zero when lump-sum taxes are available, therefore Vq = 0. It is optimal to supply

liquidity up to the point of satiating the economy and driving the marginal benefit of liquidity

to zero, consistently with the analysis of Section 7.1. With distortionary taxation, instead, it

is optimal to reduce liquidity below its satiation level, consistently with a well-behaved liquidity

demand in the limiting case Vq → 0. As mentioned, Vqq should remain negative as q approaches

the satiation level from below. Under this assumption, equation (48) shows that, in the steady

state, the optimal supply of liquidity is below the satiation level.

We now discuss the optimal policy problem. In Appendix B, we show that a quadratic approx-

imation of the loss function has the following form

Lt0 = Et0

∞∑
t=t0

βt−t0
{

1

2
λyy

2
t +

1

2
λπ(πt − π)2 +

1

2
λq q̂

2
t

}
(49)

for positive parameters λy, λπ and λq. The policymaker should care about deviations of an

appropriately-defined output gap, y, inflation, π, and real liquidity, q̂, from their steady state

22See also Benigno and Woodford (2003) and Eggertsson and Woodford (2004) for similar specification in which
they allow for real (lump-sum) government transfers Tr, exogenously given.
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values. The optimal policy problem is subject to a modified aggregate supply equation

(πt − π) = κ[y + ψ(τ̃ t − τ̃∗t )] + βEt(πt+1 − π),

which accounts for the time-varying effects of the distortionary tax on firm’s revenue, for a positive

parameter ψ discussed in the Appendix. The variable τ̃ t is defined as τ̃ t = τ t − τ in which τ is
the steady state value of the tax rate, whereas τ̃∗t represents a combination of the shocks such that

when τ̃ t achieves that value, output and inflation can be stabilized at their respective targets.

Under the assumption (on the collateral requirement) ρ = 1, the AD equation (38) simplifies

to:

yt = (1− v)Etyt+1 − σ(1− v)(̂ıRt − Et(πt+1 − π)− rnt ) + σσ−1
q vq̂t, (50)

for an appropriately defined natural real rate of interest, rnt .

An additional constraint of the optimal policy problem is the first-order approximation of (47),

which can be written as

q̂t−1 − (πt − π)− σ−1yt + (̂ıRt−1 − rnt−1) = −ft + Et

∞∑
T=t

βT−t[byyt + bτ (τ̃ t − τ̃∗t ) + bq q̂t], (51)

for parameters by, bτ and bq defined in Appendix B; the variable f , as in Eggertsson and Woodford

(2004), captures the “fiscal stress,”which measures the extent to which full stabilization of output,

inflation and liquidity at their targets implied by the loss function (49), is not compatible with

the intertemporal budget constraint of the government. When ft = 0 at all times, it is feasible to

reach all three targets provided the movements in the natural real rate of interest, rn, do not imply

violation of the zero-lower bound for the nominal interest rate.23 Indeed, when all targets in (49)

are achieved ı̂Rt = rnt all times. When the natural real rate of interest, r
n, falls substantially, there

could be violation of the zero-lower bound for the policy rate, iR, therefore a trade-off emerges

between stabilizing the relevant variables.

We consider, therefore, how policy should be set when the only constraint on the full stabiliza-

tion of the relevant variables in (49) is given by the existence of the zero-lower bound on the policy

rate.24

We consider a shock that brings the natural real rate of interest, rn, from the steady-state level

of 2% to -4% at annual rates for twelve quarters. Given that the steady-state policy rate is set at

4% accounting for a 2% inflation target, the shock to the natural rate of interest could be fully

accommodated only if the policy rate could fall at −2%. The zero-lower bound prevents this fall

and creates an interesting trade-off among stabilizing the relevant macroeconomic variables.

23 In this reasoning, we are considering zero values for the initial conditions q̂t0−1, ı̂
R
t0−1,r

n
t0−1. We could also allow

for different initial conditions requiring, in the case, ft0 to adjust appropriately.
24Note that when the optimal supply of liquidity is close to eliminate the distortions in the money market, i.e.

v → 0, the problem collapses to exactly that analyzed by Eggertsson and Woodford (2004) in the standard New-
Keynesian model with absence of lump-sum taxes. Indeed, the AD equation boils down to the standard one in which
liquidity does not affect, directly, aggregate demand. The AS equation is already the same as in their framework, as
well as the parameters λy and λπ in the loss function (49). With v → 0, λq goes instead to zero as well as bq in the
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Figure 2: Comparison between optimal policy when taxes are distortionary and sub-optimal rules. Impulse re-
sponses following a negative shock to the natural rate of interest, which brings it to -4% at annual rates for 12
quarters. Output gap is in %, Inflation and interest rates are in % and at annual rates. Real liquidity is in %
deviations from the steady state. Tax rate is in percentage points and in deviations from the steady-state value.

In Figure 2 we compare the optimal policy with sub-optimal policies in which (i) the central

bank sets inflation at the target, i.e. πt = π, whenever it is feasible, otherwise it sets the policy

rate to zero and (ii) the fiscal authority keeps the tax gap τ̃ t − τ̃∗t at a level that it expects to
maintain indefinitely without violating the intertemporal government budget constraint; that is,

an expected path of the tax gap such that Et(τ̃T − τ̃∗T ) = τ̃ t − τ̃∗t for all T ≥ t is consistent with

(51).25

The Figure shows the costs of the sub-optimal policy with respect to the optimal in terms of

contraction in the output gap and inflation below the target. The liftoff of the policy rate from the

zero-lower bound occurs exactly at the time in which the shock vanishes. Optimal policy, instead,

succeeds to stabilize inflation while keeping moderate variations in the output gap.

There are three important features of the optimal policy that we discuss. First, in line with

the literature, optimal policy requires a stay at the zero-lower bound longer with respect to the

duration of the shock. In the Figure, the interest rate remains at the zero-lower bound for two

additional quarters. What is interesting to note is that the liquidity channel in the AD equation

does not imply a shorter stay at the zero-lower bound. We are going to elaborate more on this

soon. The second result, as well in line with Eggertsson and Woodford (2004), is the use of the

tax policy to stabilize the economy. Note that in the case of disturbances not severe enough for

the zero lower bound to bind, the tax gap, τ̃ − τ̃∗ would not move at all. Instead, in the case of a

constraint (51); by and bτ also approach same values as in Eggertsson and Woodford (2004).
25Appendix C provides details on the calibration used.
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larger shock, optimal policy involves raising tax rates during the liquidity trap, while committing

to cut them after the shock has vanished. As in Eggertsson and Woodford (2004), the tax rate

operates through the AS equation and its increase acts to push up inflation at the early stage of

the liquidity trap, when the deflationary pressures are stronger, while putting downward pressure

when the shock vanishes. The last feature of optimal policy is the path followed by liquidity. As

it is shown in the Figure, optimal policy requires a lower increase in liquidity with respect to the

sub-optimal policy. The main reason for this counter-intuitive result is in the success of the optimal

policy in stabilizing inflation and output. Indeed, the fall in the output gap under the sub-optimal

rules produces lower revenues from taxes, which lead to a large accumulation of public liabilities.

An interesting feature of the path of liquidity under optimal policy is its rise towards the end of

the liquidity trap with a pick just after the shock ends and around the time of the liftoff of the

policy rate. The withdrawal starts already before the liftoff of rates and then proceeds very slowly.

The return to the initial optimal steady state happens only after a very long period of time, not

shown in the picture. In contrast to Eggertsson and Woodford (2004), public liabilities do return

to the initial steady state in this framework, but at a very slow pace so that the increase in the

public sector balance sheet remains for long, and definitely longer than the return to normal of

conventional policies. Such a slow return of liabilities to their initial steady state is also responsible

of their limited rise at the beginning of the trap, since in any case deviations from the initial steady

state are costly according to the loss function (49).
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Figure 3: Comparison between optimal policy when taxes are distortionary, optimal policies when liquidity is kept
constant and optimal policy when the expected tax gap is constant. Impulse responses following a negative shock
to the natural rate of interest, which brings it to -4% at annual rates for 12 quarters. Output gap is in %, Inflation
and interest rates are in % and at annual rates. Real liquidity is in % deviations from the steady state. Tax rate is
in percentage points and in deviations from the steady-state value.

We now elaborate more on the characteristics of the optimal policy by comparing it with two
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other sub-optimal policies, but of a special kind. In the first policy, that we label “constant tax

policy”, we assume that the fiscal authority is able to move the tax gap τ̃ t − τ̃∗t in a way that it
expects to maintain it in the future, i.e. Et(τ̃T − τ̃∗T ) = τ̃ t − τ̃∗t for all T ≥ t and consistently

with the intertemporal budget constraint (51). At the same time, we assume that the monetary

authority minimizes the loss function (49) under the same constraints as in the general optimal

policy problem, but considering as given the path of the fiscal variables τ̃ − τ̃∗ and the fact that
the intertemporal solvency of the government is ensured by the tax policy. In this way, we aim to

characterize the equilibrium outcome when the tax gap acting on the AS equation is expected to

be constant. This combination of policies is going to emphasize the role of the interest-rate policy

in managing the shock.

In the second policy, that we label “constant liquidity policy”, fiscal policy moves the tax gap

to fully stabilize liquidity at the steady state while the monetary authority minimizes the loss

function (49) under the same constraints as in the general optimal policy problem, but considering

as given the path of the fiscal variables τ̃ − τ̃∗ and the fact that the intertemporal solvency of the
government is ensured by the tax policy. In this way, we aim at characterizing how optimal policy

would cope with the shock when liquidity is not used.
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Figure 4: Comparison between optimal policy when taxes are distortionary, optimal policy with constant liquidity
and sub-optimal rules, when money-market spread is high. Impulse responses following a negative shock to the
natural rate of interest, which brings it to -4% at annual rates for 12 quarters. Output gap is in %, Inflation and
interest rates are in % and at annual rates. Real liquidity is in % deviations from the steady state. Tax rate is in
percentage points and in deviations from the steady-state value.

Figure 3 compares the three policies. Let’s start from the comparison between optimal policy

and the “constant tax policy”. Figure 3 shows the importance of moving the tax rate under the

optimal policy to stabilize inflation at the target, avoiding the disinflation at the onset of the trap

and the overshooting at the end. Under the “constant tax policy”, the interest rate is forced to
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stay one quarter longer at the zero lower bound to be able to mitigate, alone, the disinflationary

pressure of the shock and, after its liftoff, it also overshoots the long-run level for a while. The

comparison between optimal policy and the “constant liquidity policy”shows again the imperfect

inflation stabilization of the latter with respect to the former but less than with a “constant tax

policy”, since taxes here move in the right direction. There are, however, larger losses in terms

of output gap. What is interesting is that the liftoff of the policy rate occurs at the same time

as under optimal policy, but with a larger first hike that is responsible of pushing down inflation

below the target.

Higher spread in money markets

In the previous analysis, the parameter ν, which captures the spread in money markets between

liquid and illiquid securities, has been calibrated to the average, in the sample 1971-2005, of

the spread between the three-month commercial paper rate and the same maturity treasury bills

rate for the US economy. This value corresponds to a sixty basis point spreads at annual rates.

According to the AD equation (50) a one-percent once-and-for-all increase in liquidity raises output,

everything else being equal, by σσ−1
q v percentage points. Since σ = 0.5, σq = 0.2 and v = 0.0015, it

corresponds to an increase of output of just 0.00375 percentage points. Figure 4 considers instead

a 4% spread, more in line with what observed at the onset of the 2007-2008 financial crisis through

several indicators in money markets, and compares the optimal policy with the sub-optimal rules of

Figure 1 and the “constant liquidity policy”. The important difference in the optimal policy, with

respect to previous Figures, is in the path of liquidity, which now increases even at the beginning

of the trap supported by a fall in the tax rate rather than the hike of Figure 1. Then, liquidity

gradually increases to peak at the time in which the shock vanishes. Its withdrawal occurs before

the liftoff of rates and, after that, in a very gradual way. The increase in liquidity is now larger but

still moderate, reflecting two contrasting forces with respect to a lower calibration of the parameter

ν. On the one side, a higher value of ν implies a stronger liquidity channel in the AD equation

(50); on the other side, the relative cost of varying liquidity rises in the loss function. The ratio

λq/λπ is now 6.5 times higher than in the previous case.

Figure 4 confirms that there are some output costs (line “constant liquidity policy”), but

moderate in size, of a non-active use of liquidity with respect to the optimal policy. This result

might depend on the fact that the benefits of an increase in liquidity are still relatively small,

captured by the combination of parameters σσ−1
q v in the AD equation (50), with respect to the

costs of raising liquidity and with respect to the benefits of stabilizing the output gap. As it is

common in the literature, our calibration implies a high costs of inflation stabilization with the ratio

λy/λπ taking a value of 0.0021. Indeed, in all Figures optimal policy is geared towards stabilizing

inflation at the target rather than closing the output gap.

Larger weight on output-gap stabilization

Consider now an extreme case in which the ratio λq/λπ is fifty times higher than the one
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Figure 5: Comparison between optimal policy when taxes are distortionary, optimal policy with constant liquidity
and sub-optimal rules, when λy/λπ is fifty times higher than the benchmark calibration and money-market spread is
high. Impulse responses following a negative shock to the natural rate of interest, which brings it to -4% at annual
rates for 12 quarters. Output gap is in %, Inflation and interest rates are in % and at annual rates. Real liquidity
is in % deviations from the steady state. Tax rate is in percentage points and in deviations from the steady-state
value.

calibrated in Figure 4, maintaining a higher value for v. Figure 5 shows the impulse responses

in this case. There are several important features to underline. The optimal policy now stabilize

more the output gap and the difference with respect to the “constant liquidity policy” is larger.

Optimal stabilization happens with a sizeable rise of liquidity, which picks in the middle of the

liquidity trap. The withdrawal starts earlier than the end of the trap and liquidity is completely

absorbed once policy rates are normalized. Liquidity injection lowers the stay at the zero lower

bound, two quarter less than when liquidity is not used and exactly at the time in which the shock

vanishes. There is no need of communicating a longer stay at zero interest rate, in contrast with

other cases. Instead, in a “constant liquidity policy”a longer stay compensates for the non-use of

liquidity, but it does not help much to stabilize the output gap. Note also that inflation, which is

less costly in terms of welfare, stays above the target for all the duration of the trap.

Summing up

The analysis would then suggest that when the aim is to stabilize inflation at the target, this

could be better achieved by a combination of an appropriate interest-rate policy, which implies

a longer stay at the zero-lower bound than the duration of the shock, and a tax policy in which

taxes are raised at the beginning of the trap and lowered at the end. An active liquidity policy is

optimal but with marginal benefits on the output gap, except for when spreads in money market

are higher. Liquidity should peak at the end of the trap and withdrawn before the liftoff of the
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policy rates, but only gradually. Instead, when the aim is to reduce the fluctuations in the output

gap, liquidity policies are more desirable and the policy rate does not need to stay longer at the

zero-lower bound than the duration of the shock. Liquidity should peak during the middle of the

liquidity trap and then withdraw at a faster pace to be completely absorbed as policy rates are

normalized.

8 Conclusion

We have proposed a new framework for monetary policy analysis that encompasses, as a special

case, the Neo-Wicksellian paradigm. The nominal interest rate relevant for saving/consumption

decisions can only be controlled by the central bank’s simultaneous targeting of the interest rate on

reserves and their quantity. The Neo-Wicksellian model is nested when liquidity is fully satiated.

The new framework shows an important interaction between monetary and fiscal policy in

controlling inflation and output. We have applied it to the study of optimal policy in a liquidity

trap, showing the role of tax policy and liquidity in influencing the optimal response of the policy

rate to a natural real interest rate shock.

In this version, we have focused on the liquidity channel as the key mechanism through which

reserve policies are effective. In subsequent research it would be interesting to study the interplay

between the credit channel, as in Benigno and Benigno (2021), and the liquidity one emphasized

in this work.

Finally, the model has been kept as simple as possible for tractability and to compare it with

existing analysis in the literature. It requires thorough extension in order to provide realistic

quantitative analysis.
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A Model with lump-sum taxation

We describe in a compact way the general model of Section 5. Moreover, we also generalize the

assumption of that Section using the following household’s preference specification

Et0

∞∑
t=t0

βt−t0ξt

U(Ct, qt)−
1∫

0

(Ht(j))
1+η

1 + η
dj

 ,
which has non-separability between consumption goods and real liquidity.

A.1 Equilibrium conditions

Starting from the household problem, we have the following equilibrium conditions derived from

the optimal consumption/saving decisions:

Et

{
β
ξt+1Uc(Yt+1, qt+1)

ξtUc(Yt, qt)

Pt
Pt+1

}
=

1

1 + iBt
(A.1)

1 =
Uq (Yt, qt)

Uc (Yt, qt)
+

1 + iDt
1 + iBt

. (A.2)

From the intermediary sector we obtain that the spread between the deposit rate, the policy rate

and the natural nominal rate of interest is

(1 + iDt ) = ρ(1 + iRt ) + (1− ρ) max((1 + iBt ), (1 + iRt )), (A.3)

with iRt ≥ 0. Turning to the production side, we have the following AS equation derived from the

problem of the final-good producer:

(
1− α

(
Πt
Π

)θ−1

1− α

) 1+θη
θ−1

=
Ft
Kt
, (A.4)

in which Ft and Jt are given by

Ft = (1− τ)ξtUc (Yt, qt)Yt + αβEt

{(
Πt+1

Π

)θ−1

Ft+1

}
, (A.5)

Kt = µθξtY
1+η
t + αβEt

{(
Πt+1

Π

)θ(1+η)

Kt+1

}
, (A.6)

with µθ ≡ θ/(θ − 1). Note that we have defined

qt =
Dt +Bh

t

Pt
(A.7)
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and that

Dt ≤
1

ρ
Rt. (A.8)

Finally, the consolidated budget constraint of the government implies that

Bh
t +Rt
Pt

=
(1 + iDt−1)

Πt

Bh
t−1

Pt−1
+

(1 + iRt−1)

Πt

Rt−1

Pt−1
− Tt
Pt
− τYt. (A.9)

The above set of nine equilibrium conditions determine the equilibrium allocation for the following

variables, Yt, iBt , i
D
t , i

R
t , qt, Dt/Pt, B

h
t /Pt,Πt,Kt, Ft, Rt/Pt, Tt, considering also that a transversality

condition holds with respect to the overall government liabilities as a mirror image of the transver-

sality condition of households.

A.2 Steady state

We consider a steady state in which the interest rate on reserves is constant at iRt = iR and the

real value of reserves and government liabilities are also constant. First, note that in the steady

state

1 + iB =
Π

β

1 + iD

1 + iB
= 1− Uq (Y, q)

Uc(Y, q)

1 + iD = ρ(1 + iR) + (1− ρ) max
(
1 + iB, 1 + iR

)
.

In what follows, we define

ν ≡ Uq (Y, q)

Uc(Y, q)

with ν ≥ 0; ν = 0 when there is full satiation of liquidity. Therefore, we can also write

1 + iB

1 + iR
=

ρ

ρ− ν

and

Π =
βρ

ρ− ν (1 + iR).

Note that it should be the case that ν ≤ ρ.
The following equation determine the steady-state values of Y

1− τ
µθ

Uc (Y, q) = Hl = Y η,

given q.When lump-sum taxes are available, we assume that τ is set to eliminate the monopolistic

distortions, i.e. τ = 1− µθ.
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A.3 Approximation of equilibrium conditions

Considering first the AD demand side of the model, we have the following first-order approximations

of the equilibrium conditions (A.1), (A.2) and (A.3)

EtŶt+1 = Ŷt + σ(̂ıBt − Et(πt+1 − π)− rnt )− σχ(q̂t − Etq̂t+1) (A.10)

q̂t = qyŶt − qi(̂ıBt − ı̂Dt ) (A.11)

(1− v)̂ıDt = (ρ− v)̂ıRt + (1− ρ)̂ıBt (A.12)

in which we have defined variables with hat as the log-deviations of the respective variables with

respect to the steady state; πt ≡ lnPt+1/Pt, rnt = ξ̂t − Etξ̂t+1 π ≡ ln Π, σ ≡ −Uc/(UccY ),

σq ≡ −Uq/(Uqqq), χ ≡ Ucqq/Uc, δ ≡ Y/q, qy ≡ (vσ−1 +δχ)/(v(σ−1
q +χ)), qi = (1−v)/(v(σ−1

q +χ)).

Note that we have defined qt = [(ρ−1 − 1)Rt +Rt +Bh
t ]/Pt.

We now turn to the approximation of the AS equation, given by (A.4) to (A.6). We obtain

πt − π = κ

(
Ŷt −

χ

(σ−1 + η)
q̂t

)
+ βEt(πt+1 − π), (A.13)

with

k ≡ (1− α)(1− αβ)(σ−1 + η)

α(1 + θη)
.

Equations (A.10), (A.11), (A.12), (A.13), are four equations in the following six stochastic se-

quences
{
πt, Ŷt, ı̂

B
t , ı̂

R
t , ı̂

D
t , q̂t

}
, given the stochastic process {rnt } .

A.4 Derivation of the loss function

Consider the expected utility of the consumers

Ut0 = Et0

{
+∞∑
t=t0

βt−t0ξt [(U(Yt, qt)−H(Yt)∆t)]

}
,

in which

H(Yt) =
Y 1+η
t

1 + η
,

and

∆t ≡
∫ 1

0

(
pt(j)

Pt

)−θ(1+η)

dj.
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Note the following second-order Taylor approximation around the steady state

U(Yt, qt) = U(Y, q) + Uc(Yt − Y ) + Uq(qt − q) +
1

2
Uqq(qt − q)2

+Ucq(qt − q)(Yt − Y ) +
1

2
Ucc(Yt − Y )2 +O(||ξ||3)

= U(Y, q) + UcY Ŷt + Uqqq̂t +
1

2
UcY

(
1− 1

σ

)
Ŷ 2
t +

+UcqqY q̂tŶt +
1

2
Uqq

(
1− 1

σq

)
q̂2
t +O(||ξ||3) (A.14)

where O(||ξ||3) collects terms of order higher than the second and where, in the second line, we

have used the following approximation:(
Yt − Y
Y

)
= Ŷt +

1

2
Ŷ 2
t +O(||ξ||3),

and similarly for qt − q. We have also used the definition σ = −Uc/UccY and σq = −Uq/Uqqq,
which are evaluated at the steady state.

Similarly, we can write

H(Yt)∆t = H(Y ) +Hl(Yt − Y ) +
1

2
Hll(Yt − Y )2 +

+H(Y )(∆t − 1) +O(||ξ||3)

= H(Y ) +HlY Ŷt +
1

2
HlY (1 + η) Ŷ 2

t +

+H(Y )(∆t − 1) +O(||ξ||3), (A.15)

having used the definition η ≡ HllY/Hl and already used the fact that the expansion of ∆t is of

second-order magnitude, as it will be shown.

Combining (A.14) and (A.15), we obtain

U(Yt, qt)−∆tH(Yt) = U(Y, q)−∆H(Y ) + UcŶt +
1

2
UcY

(
1− 1

σ

)
Ŷ 2
t

+Uqqq̂t +
1

2
Uqq

(
1− 1

σq

)
q̂2
t + χUcY q̂tŶt −HlY Ŷt

−1

2
HlY (1 + η) Ŷ 2

t −H(Y )(∆t − 1) +O(||ξ||3), (A.16)

and therefore

U(Yt, qt)−∆tH(Yt) = UcY

[
Ŷt +

1

2

(
1− 1

σ

)
Ŷ 2
t + χq̂tŶt

]
+ Uqq

[
q̂t +

1

2

(
1− 1

σq

)
q̂2
t

]
+

−HlY

[
Ŷt +

1

2
(1 + η)Ŷ 2

t

]
−H(Y )(∆t − 1) +O(||ξ||3),

by neglecting constant terms.

We consider a steady-state in which output is at the effi cient level, and therefore UcY = HlY
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while we consider that liquidity is just close to be fully satiated, meaning that Uq is positive but

small and of the same order as O(||ξ||). We assume, however, a well-defined demand of liquidity
in the limit, by assuming that Uqq remains non-negligible. Therefore Uq ·σ−1

q for small v converges

to −Uqqq. Assuming UcY = HlY and Uq = O(||ξ||), we can simplify the above expression by also
neglecting all terms independent of policy to

U(Yt, qt)−∆tH(Yt) = UcY

[
− ∆̂t

1 + η
− σ−1 + η

2
Ŷ 2
t + χq̂tŶt +

1

2

Uqqq
2

UcY
q̂2
t +

Uqq

UcY
q̂t

]
+O(||ξ||3),

Use now (A.11), which boils down to

−Uqqq
Uc

q̂t = δŶt − (̂ıBt − ı̂Dt ),

when v is of order O(||ξ||). Therefore, qi = −Uc/Uqqq and qy = δχqi and we can write:

U(Yt, qt)−∆tH(Lt) = UcY

[
− ∆̂t

1 + η
− σ−1 + η

2
Ŷ 2
t + χq̂tŶt −

1

2

1

δqi
q̂2
t +

v

δ
q̂t

]
+O(||ξ||3),

which can be written as

U(Yt, qt)−∆tH(Lt) = UcY

[
− ∆̂t

1 + η
− σ−1 + η

2
(Ŷt − Ŷ ∗t )2 − 1

2
z (q̂t − q∗)2

]
+

+O(||ξ||3) (A.17)

in which

Ŷ ∗t =
χ

σ−1 + η
q̂t

q∗ =
v

zδ

and

z ≡ 1

qiδ
− χ2

σ−1 + η
.

Consider now the following approximation

ξt[U(Yt, qt)−∆tH(Yt)] = (ξt − ξ)[U(Y, q)−∆H(Y )] + ξ[U(Yt, qt)−∆tH(Yt)]
2nd +

(ξt − ξ)[Uc(Yt − Y ) + Uq(qt − q)−Hl(Yt − Y )] +O(||ξ||3)

in which the second addendum on the right-hand side of the first line is meant to represent

the second-order approximation found above. Given the steady-state assumptions made above, it

follows that

ξt[U(Yt, qt)−∆tH(Yt)] = [U(Yt, qt)−∆tH(Yt)]
2nd + t.i.p.+O(||ξ||3)
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Recall the law of motion of ∆t

∆t ≡ α∆t−1

(
Πt

Π

)θ(1+η)

+ (1− α)

(
1− α

(
Πt
Π

)θ−1

1− α

) θ(1+η)
θ−1

(A.18)

and take a second-order Taylor expansion around the steady state in which ∆t = 1 and Πt = Π to

obtain

∆̂t = α∆̂t−1 +
α

1− αθ(1 + η)(1 + ηθ)
(πt − π)2

2
+ t.i.p.+O(||ξ||3).

Now note that

∆̂t = αt−t0+1∆̂t0−1 +
1

2

αθ

(1− α)
(1 + η)(1 + ηθ)

t∑
s=t0

αt−s (πs − π)2 +O(||ξ||3)

and therefore

∞∑
t=t0

βt−t0∆̂t =
1

2

αθ(1 + η)(1 + ηθ)

(1− α)(1− αβ)

∞∑
t=t0

βt−t0(πt − π)2 +O(||ξ||3), (A.19)

neglecting initial condition ∆̂t0−1.

Combining and inserting this result into the expected discounted value of the approximated

utility flow, (A.17), we finally obtain

Ut0 = −(σ−1 + η)Y 1+ηEt0

{
+∞∑
t=t0

βt−t0
[

1

2
(Ŷt − Ŷ ∗t )2 +

µ

2
(q̂t − q∗)2 +

1

2

θ

κ
(πt − π)2

]}
+O(||ξ||3),

where

µ ≡ z

σ−1 + η

from which loss function (40) follows.

A.5 Optimal Policy

First consider the constraints of the optimal policy problem (A.10) —(A.12) under the assumption

of a small v. They respectively imply that

EtŶt+1 = Ŷt + σ(̂ıBt − Et(πt+1 − π)− rnt )− σχ(q̂t − Etq̂t+1) (A.20)

q̂t = qyŶt − qi(̂ıBt − ı̂Dt ) (A.21)

ı̂Dt = ρı̂Rt + (1− ρ)̂ıBt . (A.22)
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Combining equation (A.22) with (A.21), we can write

ı̂Bt = ı̂Rt +
qy
qiρ

Ŷt −
1

qiρ
q̂t,

which we can be substituted into (A.20) to get

EtŶt+1 =

(
1 +

σqy
qiρ

)
Ŷt −

σ

qiρ
q̂t + σ(̂ıRt − Et(πt+1 − π)− rnt )− σχ(q̂t − Etq̂t+1).

We now define

yt ≡ Ŷt − Ŷ ∗t = Ŷt −
χ

σ−1 + η
q̂t

to re-write the above equation as

Etyt+1 =

(
1 +

qyσ

qiρ

)
yt+

(
qyσ

qiρ

χ

σ−1 + η
− σ

qiρ

)
q̂t+σ(̂ıRt −Et(πt+1−π)−rnt )− ηχ

σ−1 + η
(q̂t−Etq̂t+1).

Note that

qy = δχqi

and therefore we can write:

Etyt+1 =

(
1 +

σδχ

ρ

)
yt −

σδz

ρ
q̂t + σ(̂ıRt − Et(πt+1 − π)− rnt )− σηχ

1 + ση
(q̂t − Etq̂t+1).

The Lagrangian of the optimal policy problem is given by

Lt0 = Et0

{ ∞∑
t=t0

βt−t0
[

1

2

(
y2
t + µ(qt − q∗)2 +

θ

κ
(πt − π)2

)
+ ϕ1,t (πt − π − κyt − β(πt+1 − π)) +

+ϕ2,t

(
−yt+1 +

(
1 +

σδχ

ρ

)
yt −

σδz

ρ
q̂t + σ(̂ıRt − Et(πt+1 − π)− rnt )− σηχ

1 + ση
(q̂t − Etq̂t+1)

)
+

+ϕ3,t(qt − q∗)
]}

The first-order conditions with respect to yt, πt and q̂t are given respectively by

yt − κϕ1,t +
(
1 + ρ−1σδχ

)
ϕ2,t − β−1ϕ2,t−1 = 0

θ

κ
(πt − π) + ϕ1,t − ϕ1,t−1 − σβ−1ϕ2,t−1 = 0

µ(qt − q∗)− ρ−1σδzϕ2,t −
ηχσ

1 + ση
(ϕ2,t − β−1ϕ2,t−1) + ϕ3,t = 0

with the following Kuhn-Tucker conditions

ϕt(̂ı
R
t + ln(1 + iR)) = 0
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γt(qt − q∗) = 0

with ı̂Rt ≥ − ln(1 + iR), qt ≤ q∗, ϕt ≥ 0 and γt ≥ 0.

A nice way to characterize the optimal policy in this case, as in Eggertsson and Woodford

(2003), is to define a time-varying price target p∗t . Optimal policy sets the target variable p̃t,

defined as a combination of the price index and the output gap p̃t ≡ θpt + Ŷt, at p∗t whenever it is

feasible, otherwise the policy rate is set to zero. The target price p∗t adjusts following the law of

motion

p∗t+1 = π + p∗t +
(1 + κσ)

βς
(p∗t − p̃t)−

1

βς
(p∗t−1 − p̃t−1),

in which we have defined ς ≡
(
1 + ρ−1σδχ

)
. We can also write the last first-order condition of the

optimal policy problem as

µ(q̂t − q∗) =
σ

ρqiς
(p∗t − p̃t)−

ηχ

β(1 + ση)ς
(p∗t−1 − p̃t−1) + ϕ3,t. (A.23)

By inspection, we can derive the following results. If the economy is out of the liquidity traps for

two periods, the current and previous one, then it is optimal to set q̂t = q∗. Indeed in this case,

p̃t = p∗t at t and t− 1, and ϕ3,t = 0 in (A.23). Instead, if the economy is just one period out of the

trap, it is optimal to set q̂t < q∗ since p̃t = p∗t at t and p̃t < p∗t at t− 1. During the trap, instead,

whether the deviation (p∗t − p̃t) dominates (p∗t−1 − p̃t−1) in (A.23) depends on parameter values.

With a small degree of complementarity between goods and liquidity χ, the deviation (p∗t − p̃t)
dominates and, therefore, it will be optimal to set q̂t = q∗.

B Optimal policy with distortionary taxation

In this Appendix, we consider the optimal policy problem when there are no lump-sum taxes. We

assume separable utility of the form:

Et0

∞∑
t=t0

βt−t0ξt

C1−σ−1
t

1− σ−1
+ V (qt)−

1∫
0

(Ht(j))
1+η

1 + η
dj

 .
and that deposits are fully backed by reserves, Rt ≥ Dt. Note that in equilibrium we can write the

above utility as

Et0

∞∑
t=t0

βt−t0ξt

[
Y 1−σ−1
t

1− σ−1
+ V (qt)−

Y 1+η
t

1 + η
∆t,

]

given the definition of ∆t given in (A.18). Under the assumption that ρ = 1 for which the deposit

rate is equal to the policy rate, i.e. iDt = iRt , the flow budget constraint of the government is

Bh
t +Rt
Pt

=
(1 + iRt−1)

Πt

Bh
t−1 +Rt−1

Pt−1
− (τ tYt − Trt)
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in which G is an exogenous transfer. The above flow budget constraint can be written as

qt =
(1 + iRt−1)

Πt
qt−1 − (τ tYt − Trt)

and therefore
(1 + iRt )qt

1 + iBt
+
iBt − iRt
1 + iBt

qt =
(1 + iRt−1)

Πt
qt−1 − (τ tYt − Trt).

Since
1

1 + iBt
= βEt

(
Uc(Yt+1)ξt+1

Uc(Yt)ξt

1

Πt+1

)
we can iterate the equation forward using the transversality condition to obtain

(1 + iRt−1)

Πt
Uc(Yt)ξtqt−1 = Et

∞∑
T=t

βT−tUc(YT )ξT

[
(τTYT − TrT ) +

iBT − iRT
1 + iBT

qT

]

and therefore

(1 + iRt−1)

Πt
Uc(Yt)ξtqt−1 = Et

∞∑
T=t

βT−t [Uc(YT )ξT (τTYT − TrT ) + ξTVq(qT )qT ]

having used

1 =
Vq (qt)

Uc (Yt)
+

1 + iRt
1 + iBt

.

B.1 The deterministic steady state

Here we compute the steady state of the optimal monetary and fiscal policy problem in a deter-

ministic problem in which the exogenous disturbances ξt and Gt takes constant values ξ = 1 and

Gt = G, for all t ≥ t0.
We thus consider the problem of maximizing

Ut0 =
∞∑
t=t0

βt−t0

(
Y 1−σ−1
t

1− σ−1
+ V (qt)−

Y 1+η
t

1 + η
∆t

)
(B.24)

subject to the constraints

Ktp

(
Πt

Π

) 1+ηθ
θ−1

= Ft, (B.25)

Ft = (1− τ t)Y 1−σ−1
t + αβ

(
Πt+1

Π

)θ−1

Ft+1, (B.26)

Kt = µθY
1+η
t + αβ

(
Πt+1

Π

)θ(1+η)

Kt+1, (B.27)

Wt0 =
∞∑
t=t0

βt−t0(τ tY
1−σ−1
t − TrtY −σ

−1
t + Vq(qt)qt), (B.28)
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∆t = α∆t−1

(
Πt

Π

)θ(1+η)

+ (1− α)p

(
Πt

Π

)− θ(1+η)
1−θ

, (B.29)

given specified initial conditions ∆t0−1, Ft0 , Kt0 , Wt0 where we have defined

p

(
Πt

Π

)
≡
(

1− α(Πt/Π)θ−1

1− α

)
.

We introduce Lagrange multipliers φ1,t through φ5,t corresponding to constraints (B.25) through

(B.29) respectively. Note that the lagrange multiplier φ4 is constant. We also introduce multipliers

dated t0 corresponding to the constraints implied by the initial conditions Ft0 , Kt0 ; the latter

multipliers are normalized in such a way that the first-order conditions take the same form at

date t0 as at all later dates. The first-order conditions of the maximization problem are then the

following. The one with respect to Yt is

Y −σ
−1

t −∆tY
η
t − (1− τ t)(1− σ−1)Y −σ

−1
t φ2,t − (1 + η)µθY

η
t φ3,t + τ tY

−σ−1
t φ4

−σ−1Y −σ
−1

t τ tφ4 + σ−1Y −σ
−1−1

t Trtφ4 = 0; (B.30)

that with respect to ∆t is

− Y 1+η
t

1 + η
+ φ5,t − αβ

(
Πt+1

Π

)θ(1+η)

φ5,t+1 = 0; (B.31)

that with respect to Πt is

1 + θη

θ − 1
p

(
Πt

Π

) 1+θη
θ−1 −1

pπ

(
Πt

Π

)
Ktφ1,t − α(θ − 1)

(
Πt

Π

)θ−2 Ft
Π
φ2,t−1

−θ(1 + η)α

(
Πt

Π

)θ(1+η)−1 Kt

Π
φ3,t−1+

−θ(1 + η)α∆t−1

(
Πt

Π

)θ(1+η)−1 1

Π
φ5,t −

θ(1 + η)

θ − 1
(1− α)p

(
Πt

Π

) (1+ηθ)
θ−1

pπ

(
Πt

Π

)
φ5t = 0; (B.32)

that with respect to τ t is

φ2,t + φ4 = 0; (B.33)

that with respect to Ft is

− φ1,t + φ2,t − α
(

Πt

Π

)θ−1

φ2,t−1 = 0; (B.34)

that with respect to Kt is

p

(
Πt

Π

) 1+ηθ
θ−1

φ1t + φ3t − α
(

Πt

Π

)θ(1+η)

φ3,t−1 = 0; (B.35)

that with respect to qt is

Vq(qt) = −φ4(Vq(qt) + Vqq(qt)qt). (B.36)
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We search for a solution to these first-order conditions in which Πt = Π, ∆t = ∆, Yt = Y , τ t = τ ,

and qt = q at all times. A steady-state solution of this kind also requires that the Lagrange

multipliers take constant values. We furthermore conjecture the existence of a solution in which

∆ = 1, p(·) = 1, pπ(·) = −(θ − 1)α/[(1 − α)Π], and K = F . Using these substitutions, we find

that (the steady-state version of) each of the first-order conditions (B.30) —(B.36) is satisfied if

the steady-state values satisfy

1− Y η+σ−1

t = [(1− σ−1) + σ−1g − (1 + η)µθY
η+σ−1

t ]φ2, (B.37)

(1− αβ)φ5 =
Y 1+η

1 + η
,

φ4 = −φ2, (B.38)

φ1 = (1− α)φ2,

φ3 = −φ2,

Vq(q) = −φ4(Vq(q) + Vqq(q)q). (B.39)

We have defined g = Tr/Y. Similarly, (the steady-state versions of) the constraints (B.25) —

(B.29) are satisfied if
(1− τ)

µθ
= Y η+σ−1 , (B.40)

(τY − gY ) + Vq(q)qY
σ−1 = (1− β)q

(1 + iR)

Π
, (B.41)

F = K = (1− αβ)−1µθY
1+η,

W =
Y −σ

−1
(1 + iR)q

Π
.

We can use (B.40) and (B.38) into (B.37) to obtain

φ4 =
1− (1−τ̄)

µθ

(1 + η)(1− τ)− (1− σ−1)− σ−1g
(B.42)

which is positive provided τ < (η + σ−1(1− g))/(1 + η). Note that the multiplier φ4 is function of

τ and that output is a decreasing function of τ using (B.40). Moreover

(1 + iR)

Π
=

1 + iR

1 + iB
(1 + iB)

Π
=
(

1− Vq(q)Y σ−1
) 1

β
.

Therefore we can write (B.41) as

(τ − g)Y (τ) +
Vq(q)q

βY (τ)−σ−1
=

(1− β)

β
q
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which togheter with

Vq(q) = −φ4(τ)(Vq(q) + Vqq(q)q).

represents a set of two equations to solve for q and τ . Note that we should require τ < (η+σ−1(1−
g))/(1 + η) and Vq(q)Y (τ)σ

−1
< (1− β). The former restriction for q to be positive, the latter for

τ to be positive.

The remaining equations can then be solved (uniquely) for K = F and for W.

B.2 A second-order approximation to utility

We use the previous steps to find the second-order approximation of the utility

Ut0 = Et0

{ ∞∑
t=t0

βt−t0ξt

[
Y 1−σ−1
t − 1

1− σ−1
+ V (qt)−

Y 1+η
t

1 + η
∆t

]}
. (B.43)

Note that

ξt

[
Y 1−σ−1
t − 1

1− σ−1
+ V (qt)−

Y 1+η
t

1 + η
∆t

]
= UcY

[
Ŷt +

1

2

(
1− 1

σ

)
Ŷ 2
t

]
+ UcY Ŷtξ̂t −

+Vqq

[
q̂t +

1

2

(
1− 1

σq

)
q̂2
t

]
+ Vqqq̂tξ̂t −HlY Ŷtξ̂t

−HlY

[
Ŷt +

1

2
(1 + η)Ŷ 2

t

]
−H(Y )(∆t − 1) +O(||ξ||3),

Note that in the steady Hl = (1− Φ)Uc where

Φ ≡ 1− (1− τ̄)

µθ
< 1

measures the ineffi ciency of steady-state output Ȳ . We can then write

ξt

[
Y 1−ρ
t − 1

1− ρ + V (qt)−
Y 1+η
t

1 + η
∆t

]
= UcY

[
ΦŶt +

1

2

(
1− 1

σ

)
Ŷ 2
t

]
+ ΦUcY Ŷtξ̂t −

+Vqq

[
q̂t +

1

2

(
1− 1

σq

)
q̂2
t

]
+ Vqqq̂tξ̂t

−1

2
(1− Φ)UcY (1 + η)Ŷ 2

t −
(1− Φ)

1 + η
UcY (∆t − 1)

+O(||ξ||3),

We can therefore write

Ut0 = UcY · Et0
∞∑
t=t0

βt−t0 [ΦŶt −
1

2
uyyŶ

2
t + ΦŶtξ̂t − u∆∆̂t +

+vδ−1

[
q̂t(1 + ξ̂t) +

1

2

(
1− σ−1

q

)
q̂2
t

]
+ t.i.p.+O(||ξ||3), (B.44)
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where

uyy ≡ −(1− σ−1) + (1− Φ)(1 + η),

u∆ ≡ (1− Φ)

1 + η
.

We substitute (A.19) into (B.44) to obtain

Ut0 = Y ūc · Et0
∞∑
t=t0

βt−t0 [ΦŶt −
1

2
uyyŶ

2
t + ΦŶtξ̂t −

1

2
uπ(πt − π)2 +

+vδ−1

[
q̂t(1 + ξ̂t) +

1

2

(
1− σ−1

q

)
q̂2
t )

]
+ t.i.p.+O(||ξ||3),

where we have further defined

κ ≡ (1− αβ)(1− α)

α

(η + σ−1)

(1 + ηθ)
, uπ ≡

θ(η + σ−1)(1− Φ)

κ
.

We can also write it as

Ut0 = Y ūc · Et0
∞∑
t=t0

βt−t0 [a′xxt −
1

2
x′tAxxt −

1

2
x′tAεεt −

1

2
aπ(πt − π)2] +

+t.i.p.+O(||ξ||3),

where we have used the following definitions

xt ≡


τ̂ t

Ŷt

q̂t

 ,

εt ≡
[
ξ̂t

Ĝt

]

a′x ≡
[

0 Φ vδ−1
]

Ax ≡


0 0 0

0 −(1− σ−1) + (1− Φ)(1 + η) 0

0 0 −vδ−1
(
1− σ−1

q

)


Aε ≡


0 0

−Φ 0

−vδ−1 0


aπ ≡

θ(η + σ−1)(1− Φ)

κ
.
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B.3 A second-order approximation of the AS equation

We follow Benigno and Woodford (2003) to obtain that a second-order approximation of the AS

equation is:

Vt =
1− α
α

(1− αβ)

(1 + θη)

(
(η + σ−1)Ŷt + ωτ τ̂ t +

1

2

ωτ
(1− τ̄)

τ̂2
t +

1

2
[(ξ̂t + (1 + η)Ŷt)

2−

(−ωτ τ̂ t + ξ̂t + (1− σ−1)Ŷt)
2]
)

+
θ(1 + η)

2
(πt − π)2 + βEtVt+1 + t.i.p.+O(||ξ||3).

In a more compact way, we can write

Vt = κ(c′xxt +
1

2
x′tCxxt + x′tCεεt +

1

2
cπ(πt − π)2) + βEtVt+1

+s.o.t.i.p.+O(||ξ||3), (B.45)

We have defined

ωτ ≡ τ̄ /(1− τ̄)

ψ ≡ ωτ/(η + σ−1),

c′x ≡
[
ψ 1 0

]
,

Cx ≡


ψ (1− σ−1)ψ 0

(1− σ−1)ψ (2 + η − σ−1) 0

0 0 0

 ,

Cε ≡


ψ 0

1 0

0 0

 ,
cπ ≡

θ(1 + η)

κ

We can also integrate (B.45) forward from time t0 to obtain

Vt0 = Et0

∞∑
t=t0

βt−t0κ(c′xxt +
1

2
x′tCxxt + x′tCεεt +

1

2
cπ(πt − π)2)

+t.i.p.+O(||ξ||3). (B.46)

Note that in a first-order approximation, (B.45) can be written as simply

(πt − π) = κ[Ŷt + ψτ̂ t] + βEt(πt+1 − π), (B.47)

since Vt = (πt − π) +O(||ξ||2).
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B.4 A second-order approximation of the government’s intertemporal budget

constraint

We now derive a second-order approximation to the intertemporal government budget constraint

Wt = Et

∞∑
T=t

βT−t[ξTY
1−σ−1
T τT − ξTY −σ

−1

T TrT+ξTV q(qT )qT ], (B.48)

and

Wt =
(1 + iRt−1)qt−1

Πt
ξtY

−σ−1
t . (B.49)

First, we take a second-order approximation of the term ξtY
1−σ−1
t τ t obtaining

ξtY
1−σ−1
t τ t = Y 1−σ−1τ + (1− σ−1)Y −σ

−1
τ Ỹt + Y 1−σ−1 τ̃ t + Y 1−σ−1τ ξ̃t +

−1

2
σ−1(1− σ−1)Y −σ

−1−1τ Ỹ 2
t + (1− σ−1)Y −σ

−1
Ỹtτ̃ t +

+(1− σ−1)Y −σ
−1
τ Ỹtξ̃t + Y 1−σ−1 τ̃ tξ̃t +O(||ξ||3),

= Y 1−σ−1τ + (1− σ−1)Y 1−σ−1τ Ŷt + Y 1−σ−1τ

(
τ̂ t +

1

2
τ̂2
t

)
+ Y 1−σ−1τ ξ̂t

+
1

2
(1− σ−1)2τY 1−σ−1 Ŷ 2

t + (1− σ−1)τY 1−σ−1 Ŷtτ̂ t +

+(1− σ−1)Y 1−σ−1τ Ŷtξ̂t + Y 1−σ−1τ τ̂ tξ̂t + s.o.t.i.p.+O(||ξ||3)

= Y 1−σ−1τ + Y 1−σ−1τ [(1− σ−1)Ŷt + τ̂ t +
1

2
τ̂2
t + ξ̂t +

1

2
(1− σ−1)2Ŷ 2

t

+(1− σ−1)Ŷtτ̂ t + (1− σ−1)Ŷtξ̂t + τ̂ tξ̂t] + s.o.t.i.p.+O(||ξ||3),

where a tilde variable denote the deviation of the variable with respect to the steady state. Con-

sidering a second-order approximation of the term

ξtY
−σ−1
t Trt = Y −σ

−1
Tr − σ−1Y −σ

−1−1TrỸt + Y −σ
−1 · T̃ rt + Y −σ

−1
Tr · ξ̃t +

+
1

2
σ−1(1 + σ−1)Y −σ

−1−2Tr · Ỹ 2
t − σ−1Y −σ

−1−1 · ỸtT̃ rt +

−σ−1Y −σ
−1−1Tr · Ỹtξ̃t +O(||ξ||3),

= Y −σ
−1
Tr − σ−1Y −σ

−1
TrŶt + Y −σ

−1
Tr · T̂ rt + Y −σ

−1
Tr · ξ̃t

+
1

2
σ−2TrY −σ

−1
Ŷ 2
t − σ−1Y −σ

−1
Tr · ŶtT̂ rt +

−σ−1Y −σ
−1
Tr · Ŷtξ̂t + s.o.t.i.p.+O(||ξ||3)

= Y 1−σ−1g + Y 1−σ−1g[−σ−1Ŷt + T̂ rt + ξ̂t +
1

2
σ−2Ŷ 2

t

−σ−1ŶtT̂ rt − σ−1Ŷtξ̂t] + s.o.t.i.p.+O(||ξ||3),
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We now take a second-order approximation of the term

ξtV q(qt)qt = Vqq + Vqqqq̃t + Vq q̃t + Vqqξ̃t+
1

2
(Vqqqq + 2Vqq)q̃

2
t + (Vq + Vqqq)q̃tξ̃t

+O(||ξ||3)

= Vqq + (Vqqq
2 + Vqq)q̂t + Vqqξ̂t +

1

2
(Vqqqq

3 + 3Vqqq
2 + Vqq)q̂

2
t +

+(Vqq + Vqqq
2)q̂tξ̂t + s.o.t.i.p.+O(||ξ||3),

= Vqq[1 + (1− σ−1
q )q̂t + ξ̂t +

1

2
(σ̃−1
q σ−1

q − 2σ−1
q + 1)q̂2

t +

+(1− σ−1
q )q̂tξ̂t] + s.o.t.i.p.+O(||ξ||3)

in which we have defined 1 + σ̃−1
q = −Vqqqq/Vqq.

We can then write

W̃t = τ [(1− σ−1)Ŷt + τ̂ t +
1

2
τ̂2
t + ξ̂t +

1

2
(1− σ−1)2Ŷ 2

t + (1− σ−1)Ŷtτ̂ t +

+(1− σ−1)Ŷtξ̂t + τ̂ tξ̂t]− g[−σ−1Ŷt + T̂ rt + ξ̂t +
1

2
σ−2Ŷ 2

t

−σ−1ŶtT̂ rt − σ−1Ŷtξ̂t]

vδ−1[(1− σ−1
q )q̂t + ξ̂t +

1

2
(σ̃−1
q σ−1

q − 2σ−1
q + 1)q̂2

t +

+(1− σ−1
q )q̂tξ̂t] + βEtW̃t+1 + s.o.t.i.p.+O(||ξ||3)

and in a more compact way

W̃t = [b′xxt + b′εεt +
1

2
x′tBxxt + x′tBεεt] + βEtW̃t+1

s.o.t.i.p.+O(||ξ||3) (B.50)

where W̃t ≡ (Wt − W̄ )/(UcY ) and

b′x =
[
τ τ(1− σ−1) + gσ−1 vδ−1(1− σ−1

q )
]
,

b′ε =
[

(τ − g + vδ−1) −g
]

Bx =


τ τ(1− σ−1) 0

(1− σ−1) τ(1− σ−1)2 − gσ−2 0

0 0 vδ−1(σ̃−1
q σ−1

q − 2σ−1
q + 1)

 ,

Bξ =


τ 0

τ(1− σ−1) + σ−1g gσ−1

vδ−1(1− σ−1
q ) 0

 .
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Moreover integrating forward (B.50), we obtain that

W̃t0 = Et0

∞∑
t=t0

βt−t0 [b′xxt +
1

2
x′tBxxt + x′tBεεt] + t.i.p.+O(||ξ||3), (B.51)

where we have moved εt in t.i.p.

Note that up to first-order terms, we can write

W̃t =
{

[τ(1− σ−1) + gσ−1]Ŷt + τ τ̂ t − gT̂ rt + (τ − g + vδ−1)ξ̂t)]

+vδ−1(1− σ−1
q )q̂t

}
+ βEtW̃t+1.

Note that W̄ = (1− β)−1(UcY )(τ − g+ vδ−1) and Ŵt ≡ (Wt− W̄ )/W̄ = W̃t · (UcY/W̄ ). Moreover

note that
(1− β)

β
q(1− v) = (τ − g)Y + vq

and therefore
(1− β)

β
δ−1(1− v) = (τ − g) + vδ−1.

It also follows that W̄/UcY = β−1δ−1(1 − v). Define ω ≡ (τ − g)/[(1 − β)W̄/(UcY )], therefore

vδ−1 = (1− ω)[(1− β)W̄/(UcY )]. Define also % = βδ/(1− v). We can then write:

Ŵt = %τ̃ t − %T̃ rt + (%τ − (1− β)ωσ−1)Ŷt + (1− β)[ξ̂t + (1− ω)(1− σ−1
q )q̂t] + βEtŴt+1,

in which we have used the definition τ̃ t = τ t − τ and from now onwards T̃ rt = (Trt − Tr)/Y.
Moreover

Ŵt ≡ q̂t−1 − (πt − π)− σ−1Ŷt + ξ̂t + ı̂Rt−1

We can write

q̂t−1 − (πt − π)− σ−1Ŷt + ı̂Rt−1 = [byŶt + %τ̃ t − %T̃ rt + bq q̂t]

+βEt[q̂t − (πt+1 − π)− σ−1Ŷt+1 + ı̂Rt − r̃nt ],

in which we have defined r̃nt = ξ̂t − Etξ̂t+1 in which we have defined

by ≡ (%τ − (1− β)ωσ−1),

bq ≡ (1− β)(1− ω)(1− σ−1
q ).

B.5 A quadratic approximation to the policy objective function

Using the above derivations, we can now derive a quadratic approximation to the policy objective

function. To this end, we combine equation (B.46) and (B.51) in a way to eliminate the linear
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terms in (B.44). Indeed, we find ϑ1, ϑ2 such that

ϑ1b
′
x + ϑ2c

′
x = a′x ≡ [0 Φ vδ−1].

The solution is given by

ϑ1 = −Φ

Γ
,

ϑ2 =
Φ(1− τ)(σ−1 + η)

Γ
,

where

Γ = (1− τ)(1 + η)− (1− σ−1(1− g)).

Note that the lagrange multiplier φ4, given in (B.42), is such that φ4 = −ϑ1 and, therefore, given

the first-order condition (B.39) it also follows that

ϑ1vδ
−1(1− σ−1

q ) = vδ−1.

We can, therefore, write

Et0

∞∑
t=t0

βt−t0ΦŶt = Et0

∞∑
t=t0

βt−t0 [ϑ1b
′
x + ϑ2c

′
x]xt =

−Et0
∞∑
t=t0

βt−t0 [
1

2
x′tDxxt + x′tDεεt +

1

2
dπ(πt − π)2]

+ϑ1W̃t0 + ϑ2κ
−1Vt0 + t.i.p.+O(||ξ||3)

where

Dx ≡ ϑ1Bx + ϑ2Cx, etc.

Hence

Ut0 = ΩEt0

∞∑
t=t0

βt−t0
{
a′xxt −

1

2
x′tAxxt − x′tAεεt −

1

2
aπ(πt − π)2

}
+ t.i.p.+O(||ξ||3)

= −ΩEt0

∞∑
t=t0

βt−t0
{

1

2
x′t∆xxt + x′t∆εεt +

1

2
λπ(πt − π)2

}
+

+Xt0 + t.i.p.+O(||ξ||3)

= −ΩEt0

∞∑
t=t0

βt−t0
{

1

2
λyŶ

2
t − λgT̂ rtŶt + λq q̂

2
t +

1

2
λπ(πt − π)2

}
+Xt0 +

+t.i.p.+O(||ξ||3) (B.52)

In particular, we obtain that Ω = ūcȲ and that

λy ≡ (1− Φ)(σ−1 + η) + Φ(σ−1 + η)
(1− τ)(1 + η)

Γ
+

Φ

Γ
σ−1g;
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λq =
Φ

Γ
vδ−1σ−1

q (σ−1
q − σ̃−1

q )

λg =
Φ

Γ
gσ−1

moreover we have defined

λπ =
Φθ(1− τ)(σ−1 + η)(1 + η)

Γκ
+

(1− Φ)θ(σ−1 + η)

κ
.

Finally,

Xt0 ≡ Ȳ ūc[ϑ1W̃t0 + ϑ2κ
−1Vt0 ]

is a transitory component.

Therefore the loss function is given by

Lt0 = Et0

∞∑
t=t0

βt−t0
{

1

2
λyy

2
t +

1

2
λπ(πt − π)2 +

1

2
λqq

2
t

}
.

in which the output gap is defined by yt = Ŷt − Ŷ ∗t with Ŷ ∗t ≡ λ−1
y λgT̃ rt/g.

B.6 Optimal policy problem

Before solving the optimal policy problem, we recall the constraints to appropriately modify them.

The AS equation is given by

(πt − π) = κ[yt + ψτ (τ̃ t − τ̃∗t )] + βEt(πt+1 − π),

in which we have defined ψτ = ψ/τ and τ̃∗t = −ψ−1
τ Ŷ ∗t . The AD equation is now

yt = (1− v)Etyt+1 − σ(1− v)(̂ıRt − Et(πt+1 − π)− rnt ) + σσ−1
q vq̂t

in which

rnt = r̃nt +
1

σ
EtŶ

∗
t+1 −

1

σ(1− v)
Ŷ ∗t

The intertemporal budget constraint of the government is given by

q̂t−1 − (πt − π)− σ−1Ŷt + ı̂Rt−1 = Et

∞∑
T=t

βT−t[byŶT + %τ̃T − %T̃ rT + bq q̂T − βr̃nT ]

which can be written as

q̂t−1 − (πt − π)− σ−1yt + (̂ıRt−1 − rnt−1) = −ft + Et

∞∑
T=t

βT−t[byyt + %(τ̃T − τ̃∗T ) + bq q̂T ]
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having define the fiscal-stress variable ft

ft = −Et
∞∑
T=t

βT−t[byŶ
∗
T + %τ̃∗T − %T̃ rT − βr̃nT ]− rnt−1.

In the evaluation of the optimal policy, we assume a zero fiscal stress at all times. The optimal

policy problem minimizes the quadratic loss function

Lt0 = Et0

∞∑
t=t0

βt−t0
{

1

2
λyy

2
t +

1

2
λπ(πt − π)2 +

1

2
λqq

2
t

}

under the log-linear approximation of the equilibrium conditions:

(πt − π) = κ[yt + ψτ (τ̃ t − τ̃∗t )] + βEt(πt+1 − π).

yt = (1− v)Etyt − σ(1− v)(̂ıRt − Et(πt+1 − π)− rnt ) + σσ−1
q vq̂t.

q̂t−1 − (πt − π)− σ−1yt + ı̂Rt−1 − rnt−1 = byyt + %(τ̃T − τ̃∗T ) + bq q̂T

+βEt[q̂t − (πt+1 − π)− σ−1yt+1 + ı̂Rt − rnt ],

First-order conditions with respect to Ŷt, πt, τ̂ t, ı̂Rt and q̂t are given respectively by

λyyt − κφ1,t + φ2,t − β−1(1− v)φ2,t−1 − σ−1(φ3,t − φ3,t−1)− byφ3,t = 0

λπ(πt − π) + φ1,t − φ1,t−1 − σ(1− v)β−1φ2,t−1 − (φ3,t − φ3,t−1) = 0

−κψτφ1,t − %φ3,t = 0

σ(1− v)φ2,t + β(Etφ3,t+1 − φ3,t)− φ4,t = 0

λq q̂t − σσ−1
q vφ2,t − bqφ3,t + β(Etφ3,t+1 − φ3,t) = 0

in which φ4,t is the lagrange multiplier associated to the zero-lower bound constraint

(̂ıRt + ln(1 + iR)) ≥ 0

with φ4,t ≥ 0.

C Calibration

We calibrate the model parameters as in the following table:
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Table 1: Calibration of parameters

β = 0.995 κ = 0.02

σ = 0.5 δ = 0.598

η = 0.47 v = 0.0015

θ = 10 Π = 1 + 0.02/4

τ = 0.3

.

The intertemporal elasticity of substitution in consumption σ is set to 0.5; the inverse of the

Frisch elasticity of labor supply is set to η = 0.47; the elasticity of substitution among the varieties

of goods in the consumption basket is set to θ = 10; the slope of the AS equation is the to

κ = 0.02, the tax rate is set at τ = 0.3. All the above calibration, except for the tax rate, is taken

from Eggertsson and Woodford (2003). The gross inflation rate Π is set to be consistent with an

inflation target of 2% at annual rates. The rate of time preference is set to β = 0.9975 so that the

steady state nominal interest rate is at 2% at annual rates. The parameter g is determined by

g = τ − δ−1

[
1− β − χ

β

]
Given the calibration of τ and θ, then Φ = 1− (1− τ)(θ − 1)/θ. The parameter δ = Y/q is build

using the average ratio between total liquidity and nominal GDP for the period 1971 Q1 to 2005

Q4. The total liquidity is computed as the sum of M1, without currency in circulation, plus the

public debt in the hands of private investors. Data are taken from FRED: M1 corresponds to the

series with the code M1NS; currency corresponds to the series with the code MBCURRCIR, the

federal government debt in the hands of private investors corresponds to the series HBPIGDQ188S,

which is expressed as a percentage of nominal GDP. The average of the ratio q/Y is equal to 41.8%

using GDP at annual rates, therefore δ = 1/(0.418× 4).

The spread between risk-free illiquid and liquid securities, v, is calibrated as the average of the

log-difference between the 3-month AA non financial commercial paper gross interest rate (series

CP3M and CPN3M) and the 3-month treasury bills gross interest rate (series TB3MS), for the

period 1971 Q1 to 2005 Q4.

The elasticity σq is determined by the first-order condition of the optimal policy problem,

equation (B.39):

σq =
φ4

1 + φ4

=
−ϑ1

1− ϑ1
=

Φ

Γ + Φ
.
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The elasticity σ̃q is set at σ̃q = σq + 0.05. Note that the elasticity of liquidity demand with

respect to the interest-rate spread can be retrieved from qi = σq(1 − v)/v, but it is irrelevant for

the simulations presented in the text. The parameter ρ is instead set to take values 0.2, 0.5 and 1

in the simulation of Figure 1 and the unitary value in all other Figures.
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