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Abstract

This paper provides closed-form formulae for computing the asymptotic standard
errors of the estimated autocovariance and autocorrelation functions for stable VAR
models by means of the δ-method. These standard errors can be used to construct
asymptotic confidence bands for the estimated autocovariance and autocorrelation
functions in order to assess the underlying estimation uncertainty. A Monte Carlo
experiment gives evidence on the small-sample performance of these asymptotic con-
fidence bands compared with that obtained using bootstrap methods. The usefulness
of the asymptotic confidence bands for empirical work is illustrated by two applica-
tions to euro area data on inflation, output and interest rates.

JEL Classification System: C13, C32, E31, E43

Keywords: Vector autoregressions, autocovariances and autocorrelations, confidence
bands, δ-method, bootstrap method, euro area, Phillips curve, yield curve



1 Introduction

Vector autoregressive (VAR) models are one of the most popular classes of models

in applied econometrics. They provide a simple tool for characterising the dynamic

interaction of the data, which can be displayed either by their autocovariance and

autocorrelation functions or by their impulse response functions. Whereas the latter

may be sensitive to the validity of a set of assumptions used to identify particu-

lar structural shocks in the data (see Bernanke and Mihov (1998) and Christiano,

Eichenbaum and Evans (1999) for a review of this issue in the context of measuring

the effects of monetary policy), the former are not, because of their purely descriptive

nature. Therefore, in order to avoid the need to identify structural shocks, McCal-

lum (1999) has recently advocated the use of autocovariance and autocorrelation

functions as the more appropriate device for confronting economic models with the

data.

Although the computation of the autocovariance and autocorrelation functions

of VAR models is straightforward from a technical point of view, there remains a

fundamental shortcoming in applied work. The autocovariance and autocorrelation

functions are computed from coefficients of VAR models which are estimated from

the data. The former are therefore also estimates and, hence, affected by uncertainty.

This estimation uncertainty is not properly taken into account when only reporting

the point estimates. Extending common practice, we therefore argue that the under-

lying uncertainty should be assessed by also reporting their confidence bands. These

can be set up either by means of bootstrap methods or by relying on asymptotic

theory. Focusing on the latter approach, this paper provides some simple formulae

for computing the asymptotic standard errors of the estimated autocovariance and

autocorrelation functions of stable VAR models. These can be used to construct

asymptotic confidence bands, thus saving the practitioner the computational costs

of the bootstrap.

It is well known that asymptotic confidence bands for the autocovariances and

the autocorrelations of the data — as estimated by their sample moments — could

alternatively be derived under the null hypothesis that the data are generated by a

white-noise process. In this case, the sample autocovariances and the sample autocor-

relations are asymptotically normal (see Hannan (1970) and Anderson (1971) among

others), with the standard errors of the sample autocorrelations being approximately

equal to 1/
√
T . Tests based on the sample autocorrelations are thus very easy to

conduct, but it has been shown by Dufour and Roy (1985) that these tests may

reject the null hypothesis less frequently than is consistent with their nominal size.

Instead, we establish the asymptotic normality of the estimated autocovariance and
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autocorrelation functions under the null hypothesis that the data are generated by a

VAR process. This approach would appear to be more appropriate if the true data-

generating process is more closely approximated by a VAR than by a white-noise

process.

The remainder of the paper is organised as follows. In Section 2 we state the

asymptotic distribution of the estimated autocovariance and autocorrelation func-

tions of stable VAR models by relying on the δ-method. Section 3 presents some

Monte Carlo evidence on the small-sample performance of the confidence bands

computed from the asymptotic standard errors compared with that obtained us-

ing bootstrap methods. In Section 4 we illustrate the usefulness of the asymptotic

confidence bands for empirical work by two applications to euro area data on infla-

tion, output and interest rates. Section 5 concludes the paper, and the closed-form

formulae of the partial derivatives of the autocovariance and autocorrelation func-

tions, which are needed to compute the asymptotic standard errors, are provided in

an appendix.

2 The Asymptotic Distribution of the Estimated Au-

tocovariance and Autocorrelation Functions of Stable

VAR Models

Before stating the asymptotic distribution of the estimated autocovariance and auto-

correlation functions, we briefly review some results on the estimation of stable VAR

models and their autocovariance and autocorrelation functions, which are referred to

later on.

2.1 The Stable VAR Model

Let { yt : t = 0,±1, . . . } be a sequence of a k-dimensional vector of variables which

is generated by an unrestricted vector autoregressive (VAR) process of order p,

yt = A1 yt−1 + · · ·+Ap yt−p + ut, t = 0,±1, . . . (1)

where ut is serially uncorrelated with mean zero and positive definite covariance

matrix Σu.

The VAR(p) model (1) is assumed to be stable, i.e.

det( Ik −A1 z − · · · −Ap zp ) = 0 ⇒ | z | > 1,

where | · | denotes the absolute value operator.
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Let f(y−p+1, . . . , y0;β)
∏T
t=1 f(yt | yt−p, . . . , yt−1;β) be the density of a sample

{ yt : t = −p+1, . . . , T } generated by the VAR(p) process (1). Then, for fixed initial

values y−p+1, . . . , y0, the conditional quasi-maximum-likelihood (QML) estimator for

β ∈ B is

β̂T = arg max
β∈B

T∑
t=1

ln f(yt |yt−p, . . . , yt−1;β),

where
β =

[
vec(A1, . . . , Ap)′, vech(Σu)′

]′
is the n-dimensional parameter vector of the VAR(p) model with n = pk2+k(k+1)/2)

and B ⊂ Rn denotes the feasible parameter space.1 The vec( · )-operator stacks the

columns of a matrix in a column vector and the vech( · )-operator stacks the elements

on and below the principal diagonal of a square matrix.

Under general regularity conditions the QML estimator β̂T converges in proba-

bility to the “true” parameter vector β0 as T →∞,

plim
T→∞

β̂T = β0,

and is asymptotically normal,
√
T (β̂T − β0) d−→ N

[
0,Σβ̂(β0)

]
, (2)

where Σβ̂(β0) = H(β0)−1I(β0)H(β0)−1 is the asymptotic covariance matrix of
√
T (β̂T − β0). I(β0) denotes the asymptotic information matrix and H(β0) is the

asymptotic expected Hessian of the appropriately normalised quasi-log-likelihood

function evaluated at β0.2

2.2 The Estimated Autocovariance and Autocorrelation Functions

In order to estimate the autocovariance and autocorrelation functions of the stable

VAR(p) model (see, e.g., Lütkepohl (1991), Chapter 2.1.4), it is convenient to start

from its VAR(1) representation

Yt = AYt−1 + Ut, t = 0,±1, . . .

with

Yt =


yt

yt−1

...

yt−p+1

 , Ut =


ut

0
...

0


1Closed-form expressions for β̂T are available, for instance, from Lütkepohl (1991), Chapter 3.4.

2See White (1994) for a thorough treatment of QML theory and covariance estimation.
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and

A =



A1 A2 · · · Ap−1 Ap

Ik 0 · · · 0 0

0 Ik 0 0
...

. . .
...

...

0 0 · · · Ik 0


, ΣU =


Σu 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 0

 .

The autocovariance function implied by the VAR(1) model, {ΓY,h : h =

0,±1, . . . } with ΓY,h = ΓY,h(β) = E[Yt Y ′t−h ], can then be obtained as follows. First,

the stacked contemporaneous covariance matrix fulfills the equation

vec(ΓY,0) =
(
I(kp)2 −A⊗A

)−1
vec(ΣU ),

where ⊗ denotes the Kronecker product. And second, the higher order autoco-

variance matrices are given recursively by the Yule-Walker equation of the VAR(1)

model,

ΓY,h = AΓY,h−1, h = 1, 2, . . . .

Finally, the autocovariance function of the VAR(p) model, {Γy,h : h = 0,±1, . . . }
with Γy,h = Γy,h(β) = E[ yt y′t−h ], is easily recovered from the autocovariance func-

tion of its VAR(1) representation by applying appropriately defined (0, 1) selection

matrices, since

ΓY,h =


Γy,h Γy,h+1 · · · Γy,h+p−1

Γy,h−1 Γy,h · · · Γy,h+p
...

...
. . .

...

Γy,h−p+1 Γy,h−p · · · Γy,h

 , h = 0,±1, . . .

with Γy,h = Γ′y,−h.

Given the autocovariance function {Γy,h : h = 0,±1, . . . }, the autocorrelation

function, {Ry,h : h = 0,±1, . . . } with Ry,h = Ry,h(β), is defined by

Ry,h = D−1Γy,hD−1, h = 0,±1, . . .

where D is a diagonal matrix with its diagonal elements being the square roots of

the diagonal elements of Γy,0.

Replacing the unknown parameter vector β with its QML estimate β̂T , we obtain

the estimated autocovariance and autocorrelation functions { Γ̂y,h : h = 0,±1, . . . }
and { R̂y,h : h = 0,±1, . . . } with Γ̂y,h = Γy,h(β̂T ) and R̂y,h = Ry,h(β̂T ), respectively.
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2.3 The Asymptotic Distribution of the Estimated Autocovariance

and Autocorrelation Functions

The asymptotic distribution of the estimated autocovariance and autocorrelation

functions can be obtained by applying the δ-method. Specifically, under general

regularity conditions (see Serfling (1980), Theorem 3.3.A) the following proposition

is true.

Proposition: Let { yt : t = −p+1, . . . , T } be generated by a stable VAR(p) process

as represented by (1) and let β̂T be the QML estimator of the VAR parameter vector

β, which is assumed to be asymptotically normal according to (2); the estimators

of the autocovariance and autocorrelation functions, { Γ̂y,h : h = 0,±1, . . . } and

{ R̂y,h : h = 0,±1, . . . }, are then asymptotically normal:

i.
√
T
(

vec(Γ̂y,h − Γy,h(β0))
)

d−→ N
[

0,Σvec(Γ̂y,h)(β0)
]
, h = 0,±1, . . .

where

Σvec(Γ̂y,h)(β0) =
∂vec(Γy,h)

∂β′
Σβ̂(β0)

∂vec(Γy,h)′

∂β
,

and

ii.
√
T
(

vec(R̂y,h −Ry,h(β0))
)

d−→ N
[

0,Σvec(R̂y,h)(β0)
]
, h = 0,±1, . . .

where

Σvec(R̂y,h)(β0) =
∂vec(Ry,h)

∂β′
Σβ̂(β0)

∂vec(Ry,h)′

∂β
,

with the partial derivates of the autocovariance and autocorrelation matrices being

evaluated at the true parameter vector β0.

Note that the elements on the principal diagonal of the autocorrelation matrix of

order h = 0 are one per construction. Hence, their row vectors of partial derivatives

are zero. In this case, the δ-method, which assumes among its regularity conditions

that the rows of the matrices of partial derivatives are non-zero when evaluated at

the true parameter vector β0, would not be applicable. The obvious violation of the

regularity conditions, however, could easily be dealt with by introducing appropri-

ately defined (0, 1) selection matrices when stating the asymptotic normality result

above. To simplify notation this was omitted here. The distribution of the elements

on the principal diagonal of the estimated autocorrelation matrix of order h = 0

must instead be considered degenerate, with their variances and covariances equal

to zero.
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The appendix of the paper provides closed-form formulae for computing the par-

tial derivatives of the autocovariance and autocorrelation matrices with respect to the

parameter vector β by applying matrix differential calculus. Using these closed-form

formulae, the covariance matrices of the estimated autocovariance and autocorrela-

tion matrices can be computed by replacing the unknown parameter vector β0 with

its QML estimate β̂T and by using an appropriate estimate of the covariance ma-

trix of the latter. The estimated asymptotic standard errors of the autocovariance

and autocorrelation functions are the square roots of the elements on the principal

diagonal of these matrices.

3 Monte Carlo Evidence

It is well known that the asymptotic normal approximation to the distribution of

the estimated autocovariance and autocorrelation functions of VAR models may not

perform very reliably in small samples. In this section, we therefore aim at present-

ing some Monte Carlo evidence on the small-sample performance of the confidence

bands derived from the asymptotic standard errors provided above. Since boot-

strap methods have gained increased popularity in applied research recently, we also

present some evidence on the performance of bootstrap confidence bands but confine

ourselves to standard bootstrap techniques.3

3.1 The Design of the Monte Carlo Experiment

In designing the Monte Carlo experiment we closely follow Kilian (1998) who exten-

sively explores the performance of small-sample confidence bands for the estimated

impulse response functions of VAR models. The data-generating process is the stable

bivariate VAR(1) model

yt =

 a11 0

0.5 0.5

 yt−1 + ut, ut ∼ IIN

 0

0

 ,
 1 0.3

0.3 1


with the parameter a11 ∈ { 0.5, 0.7, 0.9 } governing its persistence. The sample sizes

considered are T ∈ { 50, 100, 200 }. For each simulated sample, 200 initial observa-

tions have been discarded to minimise the effect of the starting values which are set

to zero. For each Monte Carlo design point R = 2000 replications have been carried

out, and for each single replication 200 bootstrap samples have been drawn.

3See Li and Maddala (1996) for a survey of recent developments in bootstrap techniques and

their application in time series models.
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It is beyond the scope of our Monte Carlo experiment to provide a comprehensive

assessment of the small-sample confidence bands for the entire estimated autoco-

variance and autocorrelation functions of the data-generating process. Instead, we

restrict our investigation to an assessment of the small-sample confidence bands for

its first order autocovariances. Specifically, let Γijy,1 denote the element in the ith

row and the jth column of its first order autocovariance matrix Γy,1, and let Γ̂ijy,1 de-

note the associated estimate computed under either the asymptotic or the bootstrap

method. We then assess the small-sample performance of the asymptotic confidence

bands compared with that of the bootstrap confidence bands by evaluating the size

properties of testing

H0 : Γ̂ijy,1 = Γijy,1 against H1 : Γ̂ijy,1 6= Γijy,1, i, j = 1, 2

under both methods.

The decision whether the null hypothesis is rejected or not is based on the studen-

tised test statistic T = (Γ̂ijy,1−Γijy,1)/σ̂
Γ̂

ij
y,1

obtained using either the asymptotic or the

bootstrap method, with σ̂
Γ̂

ij
y,1

denoting the estimated standard error of Γ̂ijy,1. Under

appropriate regularity conditions, both test statistics are asymptotically distributed

as standard normal.

3.2 The Results of the Monte Carlo Experiment

The results of the Monte Carlo experiment are presented by means of the probability

(P -) value plots suggested by Davidson and MacKinnon (1998). These plots are based

on the empirical distribution function of the P -values associated with the simulated

realisations τr (r = 1, . . . , R) of the test statistic T and provide a simple graphical

tool for evaluating the size properties of the above hypothesis tests for a continuous

range of nominal sizes. The P -value associated with a fixed value τr is the probability

Pr = P ({τ : τ ≥ τr > 0} ∪ {τ : τ ≤ τr < 0}) of observing a value of T being as

extreme or more extreme than τr, i.e. the probability of rejecting the null hypothesis

for a critical value equal to τr.

Noting that the test statistic T is asymptotically distributed as standard normal

under the null, the P -value associated with τr amounts to Pr = 2 (1− FN(|τr|; 0, 1))

with FN( · ; 0, 1) denoting the cumulative distribution function of the standard normal

distribution. For a randomly varying τr it then follows from a probability integral

transform that the probability U = Pr has a uniform distribution on the unit interval

[ 0, 1 ] with the cumulative distribution function FU(u; 0, 1) = u. Therefore, when

plotting the empirical distribution function of the simulated P -values point by point

against FU(u; 0, 1) = u, the resulting graph should be close to the 45◦-line if the

7



test statistic T were well-behaved in small samples. Points above the 45◦-line would

indicate that the test’s relative frequency of rejection is too high compared with the

nominal size u; points below the line would reveal that the frequency of rejection is

too low.

Figures 1 to 3 display the P -value plots of the four hypothesis tests under inves-

tigation for each of the Monte Carlo design points and for both the asymptotic and

the bootstrap method. For convenience, the P -value plots are truncated at u = 0.4.

The four hypothesis tests behave quite similarly under the two methods. For both

methods, however, the tests over-reject the null hypotheses for nominal sizes being

standard for hypothesis testing. For a11 = 0 and a sample size of T = 50, for instance,

the frequency of rejection of the null hypothesis associated with Γ11
y,1 is 0.101 (0.053,

0.129) under the asymptotic method and 0.081 (0.048, 0.111) under the bootstrap

method, compared with a nominal size of 0.05 (0.01, 0.10). By contrast, the tests

under-reject for large nominal sizes under both methods.

As expected, the size properties of the tests improve with the sample size under

both methods. Also as expected, the size properties under both methods deteriorate

for data-generating processes with a higher degree of persistence. This latter finding

reflects that a rise in the persistence of the data-generating process increases the bias

and the skewness of the small-sample distribution of the estimated autocovariances.

The bias and the skewness of the small-sample distribution, in turn, adversely affect

the performance of the asymptotic confidence bands the construction of which is

based on the assumption of a symmetric distributional shape. Somewhat surprisingly,

the non-parametric bootstrap confidence bands are found to be distorted to almost

the same extent as the asymptotic bands.4

Overall, a comparison of the results under the asymptotic method with those

under the bootstrap method shows that for large nominal sizes the distortions under

the bootstrap method are even more severe than those under the asymptotic method.

For small nominal sizes there is no clear advantage to using the bootstrap method

for samples of the size T = 100 or T = 200, whereas the bootstrap method obviously

outperforms the asymptotic method for a sample size of T = 50. In view of these

results, the use of the asymptotic confidence bands for the estimated autocovariance

and autocorrelation functions seems very much justified. Beyond that, it also saves

the practitioner the computational costs of the bootstrap.

4It is recognised, although beyond the scope of the present paper, that the use of the bootstrap-

after-bootstrap technique proposed by Kilian (1998) would improve on the performance of the boot-

strap confidence bands. This two-step bootstrap technique accounts for the bias of the small-sample

distribution indirectly by bias-correcting the estimated parameters of the VAR model before boot-

strapping the confidence bands.
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4 Empirical Applications

In this section we illustrate the usefulness of the proposed asymptotic method for

applied work by constructing asymptotic confidence bands for the autocovariance

and autocorrelation functions estimated from two euro area data sets. The first

dataset comprises inflation and output data, and the second data on the yield spread

and the short-term real interest rate.

4.1 Inflation and Output

In a widely quoted paper, Fuhrer and Moore (1995) investigated the dynamic charac-

teristics of the inflation and output gap processes for the US economy by means of the

estimated autocorrelation function of a VAR model. They pursued two objectives.

First, they used the autocorrelation function as a descriptive device to investigate

the lead-lag relationship between inflation and the output gap which traditionally

underlies structural modelling of the short-run Phillips curve trade-off. Second, in

the spirit of McCallum (1999), they used the estimated autocorrelation function as

a benchmark against which the capacity of alternative structural models to explain

the inflation persistence in the US data was evaluated.

In this application, we focus on the first of the two objectives and explore the

inflation and output gap dynamics for the euro area, whereas the second objective is

pursued in Coenen and Wieland (1999). Specifically, we estimate the autocovariance

and autocorrelation functions of a VAR model fitted to quarterly data on the annu-

alised quarterly change in the log of the euro area GDP deflator, π, and the log of

euro area real GDP, q. The time series span the period from the first quarter of 1974

to the fourth quarter of 1998. The graphs of the series are depicted in Figure 4.

In fitting the VAR model we allow for deterministic components in the data.

Specifically, we assume that the data { y∗t : t = −p + 1, . . . , T } are a sample of the

2-dimensional vector of variables y∗ = [π, q ]′, being generated by the linear model

y∗t = α0 + α1 t+ yt, t = 0,±1, . . . (3)

with { yt : t = 0,±1, . . . } following a VAR(p) process as represented by equation (1)

above.

This general linear model was advocated by Toda and Yamamoto (1995) for

conducting statistical inference in vector autoregressions with possibly integrated

processes without pre-testing for unit roots or cointegration.5

We proceed in two steps. First, we detrend the data using a projection technique

to account for the downward trend in the inflation rate within our sample and to

5Substituting (3) into (1), it becomes obvious that { y∗t } is assumed to follow a VAR(p) process
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obtain a simple measure of the output gap.6 Second, using the detrended data

{ yt : t = −p + 1, . . . , T }, we estimate the parameters of the VAR(p) model, i.e.

the coefficient matrices A1, . . . , Ap and the covariance matrix Σu employing QML

methods.

We chose a lag order of 2, using a standard lag selection procedure based on the

HQ and SC criteria. The Ljung-Box Q(12) statistic indicates serially uncorrelated

residuals with a probability value of 42.8%. The QML estimates of the parameters

of the VAR(2) model are reported in Table 1. The point estimates imply that the

smallest root of the characteristic equation det( I2 − A1 z − A2 z
2 ) = 0 is 1.2835,

thereby suggesting that the deviations of inflation from trend and the output gap

are stationary and, hence, that the autocovariance and autocorrelation functions are

well-defined.7

Figures 5 and 6 show the point estimates (solid line) and the estimated 95%-

confidence bands (dotted lines) for the autocovariance and autocorrelation functions

of the VAR(2) model for inflation as a deviation from trend and the output gap.

The diagonal panels pertain to the autocovariances and autocorrelations of the de-

trended inflation rate and the output gap, the off-diagonal panels to the lagged cross

covariances and cross correlations. The autocovariances and autocorrelations are in-

dicative of a rather high degree of persistence in both the inflation and output gap

processes. The cross correlations in the upper right-hand panel show that the output

gap leads the inflation rate by about four quarters, thereby suggesting the existence

of a short-run Phillips curve trade-off. This trade-off proves to be significant, as

revealed by the estimated confidence bands. By contrast, the lower left-hand panel

displays that the lagged inflation rate is negatively, albeit not significantly correlated

with the output gap.

around a deterministic linear trend,

y∗t − α0 − α1 t = A1 (y∗t−1 − α0 − α1 (t− 1)) + · · ·+Ap (y∗t−p − α0 − α1 (t− p)) + ut

which, in turn, can be rewritten as

y∗t = α̃0 + α̃1 t+A1 y
∗
t−1 + · · ·+Ap y

∗
t−p + ut

with α̃0 = A(1)α0−A′(1)α1 and α̃1 = A(1)α1, where A(z) = Ik −A1 z− · · · −Ap z
p. If each series

of { yt } were integrated, with none of the individual series being cointegrated with any of the others,

then A(1) = 0 and, hence, α̃1 = 0. This could also occur if { yt } were cointegrated since then A(1)

would be of reduced rank (see Toda and Yamamoto (1995), p. 228).

6Let X∗ = [x∗1, . . . , x
∗
T ]′ with x∗t = [ y∗′t , y

∗′
t−1, . . . , y

∗′
t−p ]′ and T = [ τ1, . . . , τT ]′ with τt = [ 1, t ]′,

then M X∗ = X, where M = IT − T (T ′ T )−1T ′ is a (T × T )-dimensional projection matrix and

X = [x1, . . . , xT ]′ with xt = [ y′t, y
′
t−1, . . . , y

′
t−p ]′.

7Our findings are also supported by the results of univariate augmented Dickey-Fuller tests for

unit roots in the detrended series. The values of the t-statistics for inflation in deviation from trend

and the output gap are -3.93 and -2.64, which are significant at the 5% and 10% levels, respectively.
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4.2 Spread and Short-Term Real Interest Rate

In this application, we explore the dynamic interaction of the spread between the

long-term and the short-term nominal interest rates and the ex post short-term real

interest rate for the euro area. We start by fitting a VAR model to quarterly data

on the spread between the euro area long-term government bond yield and the euro

area three-month money market rate, s = il − is, and the differential of the euro

area three-month money market rate and the annualised quarterly change in the log

of the euro area GDP deflator, r = is − π. The two time series range from the first

quarter of 1980 to the fourth quarter of 1998. Their accompanying graphs are shown

in Figure 7.

Again, we use the linear model (3), (1), but restrict the parameter α1 to zero

and, thus, exclude linear trends from the spread and the real interest rate data. The

HQ and SC criteria suggest a lag order of 2, with the probability value of the Ljung-

Box Q(12) statistic amounting to 31.9%. The QML estimates of the VAR(2) model

are reported in Table 2. The minimum root of the characteristic equation is 1.267,

so we treat the spread and the real interest rate as stationary, with well-defined

autocovariance and autocorrelation functions.8

Figures 8 and 9 display the point estimates (solid line) and the estimated 95%-

confidence bands (dotted lines) for the autocovariance and autocorrelation functions

of the VAR(2) model for the spread and the short-term real interest rate. The

diagonal panels reveal a rather high degree of persistence in both the spread and the

real interest rate. The off-diagonal panels indicate that the spread and the short-term

real rate are negatively and significantly correlated to lags of around five quarters.

Hence, the yield curve flattens following an increase in the short-term real rate.

Interestingly, significance is detected only by means of the cross autocorrelations, i.e.

after correcting the cross autocovariances for their estimated scale.

Overall our findings are consistent with the expectation theory of the term struc-

ture. Assuming a monetary contraction, for instance, emanating from a temporary

increase in the short-term nominal interest rate, the short-term real interest rate will

rise almost to the same amount (given the sluggishness of inflation), whereas the

increase in the short-term nominal rate will feed into the long-term nominal inter-

est rate by less. Of course, to investigate the term structure more rigourosly would

require a structural approach which, however, is beyond the scope of the present

example, which merely aims at providing some stylised facts.

8See Coenen and Vega (1999) for empirical evidence that the spread and the real rate for the

euro area constitute cointegrating relationships, i.e. that they are stationary.
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5 Concluding Remarks

In this paper we have shown how to derive asymptotic confidence bands for the esti-

mated autocovariance and autocorrelation functions of stable VAR models. We argue

that plotting the point estimates of the autocovariance and autocorrelation functions

together with their asymptotic confidence bands provides a useful tool for assessing

the estimation uncertainty involved. The usefulness of these asymptotic confidence

bands for applied work has been demonstrated by two illustrative examples. An

application to inflation and output data for the euro area indicated that there is

a significant short-run Phillips curve trade-off. This finding constitutes a first but

important explorative step in investigating the Phillips curve trade-off, which is built

upon in Coenen and Wieland (1999). An application to interest rate data for the

euro area revealed that, in line with the expectation theory of the term structure, the

yield curve flattens significantly following an increase in the short-term real interest

rate which, in turn, may be the outcome of a tightening of monetary conditions.

By means of a Monte Carlo experiment we have provided evidence that the

asymptotic confidence bands perform quite well in small samples when compared

with bootstrap confidence bands obtained using standard techniques. However, it

has also been recognised that the use of more efficient bootstrap techniques, such

as the bias-corrected bootstrap method proposed by Kilian (1998) for instance, may

improve on the relative performance of the latter. Notwithstanding this possible

improvement, which is considered an interesting topic for future research, the use

of the asymptotic confidence bands seems very much justified by the results of this

paper, not at least because it is very easy to implement and saves the practitioner

the computational costs of the bootstrap.
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Appendix: The Partial Derivatives of the Autocovari-

ance and Autocorrelation Functions

In order to derive the partial derivatives of the autocovariance matrices in part i. of

the proposition stated in Section 2, note first that by repeatedly applying rules (5)

and (7) in Lütkepohl (1996), Chapter 7.2,

vec(Γy,0,Γy,1, . . . ,Γy,p−1) = vec(S1 ΓY,0)

= (Ikp ⊗ S1) vec(ΓY,0), (A.1)

vec(Γy,h) = vec(S1 ΓY,h−p+1 S2)

= (S′2 ⊗ S1) vec(ΓY,h−p+1), h = p, p+ 1, . . . (A.2)

vec(ΓY,0) =
(
I(kp)2 −A⊗A

)−1
vec(ΣU )

=
(

vec(ΣU )′ ⊗ I(kp)2
)

vec
((

I(kp)2 −A⊗A
)−1

)
(A.3)

and vec(ΓY,h+1) = vec(AΓY,h)

= (Ikp ⊗A) vec(ΓY,h)

= (Γ′Y,h ⊗ Ikp) vec(A), h = 0, 1, . . . (A.4)

where

S1 =
[
Ik 0k,k · · · 0k,k

]
, S2 =

[
0k,k · · · 0k,k Ik

]′
.

Then, starting from the identities (A.1) and (A.3), straightforward application

of the chain rule and the product rule of matrix differentiation, hereby using the

rule for differentiating the inverse of a matrix (see Lütkepohl (1996), Chapter 10.6,

rule (1)) and the rule for differentiating the Kronecker product of two matrices (see

Lütkepohl (1996), Chapter 10.5.2, rule (1.b)), the partial derivatives of the autoco-

variance matrices of order h = 0, 1, . . . , p− 1 are given by

∂vec(Γy,0,Γy,1, . . . ,Γy,p−1)
∂β′

= (Ikp ⊗ S1)
∂vec(ΓY,0)

∂β′
,

where

∂vec(ΓY,0)
∂β′

=
(
vec(ΣU )′ ⊗ I(kp)2

) ∂vec

((
I(kp)2 −A⊗A

)−1
)

∂vec
(
I(kp)2 −A⊗A

)′

×
∂vec

(
I(kp)2 −A⊗A

)
∂vec(A⊗A)′

∂vec(A⊗A)
∂vec(A)′

∂vec(A)
∂β′

+
(
I(kp)2 −A⊗A

)−1 ∂vec(ΣU )
∂β′
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with

∂vec

((
I(kp)2 −A⊗A

)−1
)

∂vec
(
I(kp)2 −A⊗A

)′ = −
(
I(kp)2 −A⊗A

)′−1
⊗
(
I(kp)2 −A⊗A

)−1
,

∂vec
(
I(kp)2 −A⊗A

)
∂vec(A⊗A)′

= − I(kp)4

and

∂vec(A⊗A)
∂vec(A)′

= (Ikp ⊗Kkp,kp ⊗ Ikp)
[(
I(kp)2 ⊗ vec(A)

)
+
(
vec(A)⊗ I(kp)2

)]
,

where Kkp,kp denotes the ((kp)2 × (kp)2)-dimensional commutation matrix defined

such that vec(A) = Kkp,kp vec(A′) (see Lütkepohl (1996), Chapter 1.5).

Finally, when taking into account the particular structure of the VAR(1) coeffi-

cient matrix A,

∂vec(A)
∂β′

=
[

(Ipk ⊗
[

1 01,p−1

]′
⊗ Ik) 0(pk)2,k(k+1)/2

]
and, using the identity

vec(ΣU ) = vec

 1 01,p−1

0p−1,1 0p−1,p−1

 ⊗ Σu


and again the rule for differentiating the Kronecker product of two matrices,

∂vec(ΣU )
∂β′

=

[
0(pk)2,(pk)2 (Ik ⊗Kk,k ⊗ Ik)

× vec

 1 01,p−1

0p−1,1 0p−1,p−1

 ⊗ vec(Dk)

]
,

where Dk denotes the (k2× k(k+1)/2)-dimensional duplication matrix defined such

that vec(Σu) = Dk vech(Σu) (see Lütkepohl (1996), Chapter 1.5).

Using the identities (A.2) and (A.4) and applying the product rule of matrix

differentiation, the partial derivatives of the autocovariance matrices of order h =

p, p− 1, . . . are given by

∂vec(Γy,h)
∂β′

= (S′2 ⊗ S1)
∂vec(ΓY,h−p+1)

∂β′
,

where ∂vec(ΓY,h−p+1)/∂β′ is obtained by the simple recursion

∂vec(ΓY,h−p+1)
∂β′

= (Ikp ⊗A)
∂vec(ΓY,h−p)

∂β′
+
(
Γ′Y,h−p ⊗ Ikp

) ∂vec(A)
∂β′
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which is initialised with vec(ΓY,0) and ∂vec(ΓY,0)/∂β′.

In order to derive the partial derivatives of the autocorrelation matrices in part

ii. of the proposition, note that by again applying rules (5) and (7) in Lütkepohl

(1996), Chapter 7.2,

vec(Ry,h) = vec(D−1Γy,hD−1)

=
(
D−1 ⊗D−1

)
vec(Γy,h)

=
(
Ik ⊗D−1Γy,h

)
vec(D−1). (A.5)

Using the identity (A.5) and applying the chain and product rules of matrix

differentiation and the rule for differentiating the inverse of a matrix, the partial

derivatives of the autocorrelation matrices of order h = 0, 1, . . . are given by

∂vec(Ry,h)
∂β′

=
∂vec(Ry,h)
∂vec(Γy,h)′

∂vec(Γy,h)
∂β′

,

where ∂vec(Γy,h)/∂β′ is derived above and where

∂vec(Ry,h)
∂vec(Γy,h)′

=
(
D−1 ⊗D−1

)
Ik2

+ 2
(
Ik ⊗D−1Γy,h

) ∂vec(D−1)
∂vec(D)′

∂vec(D)
∂vec(Γy,h)′

with
∂vec(D−1)
∂vec(D)′

= −D−1 ⊗D−1

and

∂vec(D)
∂vec(Γy,h)′

=


0.5 diag

(
vec(D−1)⊗ ι′k2

)
, h = 0

0k2,k2 , h = 1, 2, . . .

with ιk2 denoting a k2-dimensional column vector of ones and exploiting the structure

of the diagonal matrix D and the definition of the elements on its diagonal.
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Table 1: QML Estimates of the Parameters of the VAR(2) Model for y∗ = [π, q ]′

A1 A2 Σu × 104

0.4879 0.3890 0.0989 -0.2190 0.9871
(0.0963) (0.1709) (0.0899) (0.1688) (0.1518)

0.0481 1.1236 -0.2159 -0.1605 -0.0686 0.2736
(0.0571) (0.0928) (0.0366) (0.1094) (0.0528) (0.0584)

Note: Estimates of the asymptotic standard errors are given in parentheses, with the asymptotic

information matrix being estimated by the Newey-West (1987) estimator with the lag truncation

parameter set equal to 3.
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Table 2: QML Estimates of the Parameters of the VAR(2) Model for y∗ = [ s, r ]′

A1 A2 Σu × 104

1.1601 -0.0617 -0.3359 0.0170 0.1681
(0.1241) (0.0457) (0.1282) (0.0340) (0.0292)

-0.2605 0.5295 -0.0652 0.0774 -0.1160 0.8971
(0.2547) (0.1105) (0.1880) (0.0953) (0.0560) (0.1498)

Note: Estimates of the asymptotic standard errors are given in parentheses, with the asymptotic

information matrix being estimated by the Newey-West (1987) estimator with the lag truncation

parameter set equal to 3.
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Figure 1: P -Value Plots for Testing H0 : �̂
ij
y;1 = �

ij
y;1 with a11 = 0:5

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Asymptotic Method:  T = 50

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Bootstrap Method:  T = 50

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Asymptotic Method:  T = 100

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Bootstrap Method:  T = 100

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Asymptotic Method:  T = 200

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Bootstrap Method:  T = 200

| 45�-line � � � �11
y;1 � � �21

y;1 �� �12
y;1

� � � �22
y;1

20



Figure 2: P -Value Plots for Testing H0 : �̂
ij
y;1 = �

ij
y;1 with a11 = 0:7
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Figure 3: P -Value Plots for Testing H0 : �̂
ij
y;1 = �

ij
y;1 with a11 = 0:9
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Figure 4: Graphs of the Time Series for y
� = [�; q ]0
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Source: ECB area-wide model database (see Fagan et al. (1999)). Aggregation of data for the countries of the

euro area using �xed 1995 GDP weights at PPP rates.

23



Figure 5: Estimated Autocovariances of the VAR(2) Model for y
� = [�; q ]0
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Note: Solid line: estimated autocovariances. Dotted lines: estimated autocovariances plus/minus twice their

estimated asymptotic standard errors.
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Figure 6: Estimated Autocorrelations of the VAR(2) Model for y
� = [�; q ]0
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Note: Solid line: estimated autocorrelations. Dotted lines: estimated autocorrelations plus/minus twice their

estimated asymptotic standard errors.
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Figure 7: Graphs of the Time Series for y
� = [ s; r ]0
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Source: ECB area-wide model database (see Fagan et al. (1999)). Aggregation of data for the countries of the

euro area using �xed 1995 GDP weights at PPP rates.
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Figure 8: Estimated Autocovariances of the VAR(2) Model for y
� = [ s; r ]0
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Note: Solid line: estimated autocovariances. Dotted lines: estimated autocovariances plus/minus twice their

estimated asymptotic standard errors.
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Figure 9: Estimated Autocorrelations of the VAR(2) Model for y
� = [ s; r ]0
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Note: Solid line: estimated autocorrelations. Dotted lines: estimated autocorrelations plus/minus twice their

estimated asymptotic standard errors.
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