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Abstract
This paper explores the statistical properties of household consumption-expenditure 
budget share distributions —defined as the share of household total expenditure spent 
for purchasing a specific category of commodities— for a large sample of Italian 
households in the period 1989-2004. We find that household budget share distributions 
are fairly stable over time for each specific category, but profoundly heterogeneous 
across commodity categories. We then derive a parametric density that is able to 
satisfactorily characterize household budget share distributions and: (i) is consistent 
with the observed statistical properties of the underlying levels of household 
consumption-expenditure distributions; (ii) can accommodate the observed across-
category heterogeneity in household budget share distributions. Finally, we 
taxonomize commodity categories according to the estimated parameters of the 
proposed density. We show that the resulting classification is consistent with the 
traditional economic scheme that labels commodities as necessary, luxury or inferior. 

Keywords: Household Consumption Expenditure, Budget Shares, Sum of Log-Normal 
Distributions.

JEL Classification D3, D12, C12.
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The study of household budget allocation � i.e., how the budget of a household is allocated

to buy di�erent commodities � is one of the most traditional topics in economics. Household

budget shares, de�ned as the share of total household resources spent for purchasing a speci�c

class of goods, contain useful information to shed light on this issue.

In the last decades, this topic has received a lot of attention by applied economists, however

most of the empirical literature on consumption is characterized by a theory-driven approach.

Indeed, the parametric speci�cations that are employed in the estimation of each speci�c de-

mand function are generally taken to be consistent with some underlying theory of household-

expenditure behavior, which very often is the standard model based on utility maximization

undertaken by fully-rational agents. Furthermore, the estimation of demand systems or Engel

curves compresses household heterogeneity to the knowledge of the �rst two moments (at best)

of household expenditure-level or budget-share distribution for the commodity category under

study.

This approach may be problematic for a number of reasons: (i) heterogeneity of household

consumption expenditure patterns is widely considered as a crucial feature and to fully charac-

terize such heterogeneity, one should perform distributional analyses that carefully investigate

how the shape of household consumption expenditure and budget share distributions change

over time and between di�erent commodity categories; (ii) understanding heterogeneity may

be important to build sound micro-founded, macroeconomic, consumption models that go

beyond the often disputable representative-agent assumption; (iii) a data-driven approach

focused on distributional analysis may help to discover fresh stylized facts related to how

households allocate their consumption expenditures.

In this paper we explore the statistical properties of household budget share distributions

employing data from the �Survey of Household Income and Wealth� provided by the Bank of

Italy for a sequence of 8 waves from 1989 to 2004. The sample comprises about 8000 house-

holds. We focus on four expenditure categories: nondurable goods and its subcategory food,

Nontechnical summary
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durable goods and insurance premia (which are rarely studied in the literature).

We look for a unique, parsimonious, closed-form density family that: (i) is able to satisfactorily

�t observed unconditional household budget share distributions, so as to accommodate the

existing heterogeneity emerging across households, among di�erent consumption categories

and over time; (ii) is consistent with the statistical properties of the (observed) household

consumption expenditure distributions employed to compute budget share distributions; (iii)

features economically-interpretable parameters that, once estimated, can help to build eco-

nomically meaningful taxonomies of commodity categories.

We begin with a descriptive analysis aimed at empirically exploring the stability of household

budget share distributions over time: indeed, estimated sample moments show that the shape

of budget share distributions did not dramatically change over the time interval considered.

However, for any given wave, there emerges a lot of heterogeneity across commodity cate-

gories. We also show that the underlying household consumption expenditure distributions

are well-proxied by log-normal distributions.

We then derive an original family of densities, de�ned over the unit interval, which is consis-

tent with the detected log-normality of household consumption expenditure distributions. We

�nd that for all the waves under study, according to simple measures of goodness-of-�t (e.g.,

the Average Absolute Deviation), the proposed density family is able to accommodate the

existing shape-heterogeneity that characterizes household budget share distributions across

di�erent commodity categories. To benchmark our results, we also �t household budget share

distributions with Beta variates, which are in principle very �exible densities de�ned over the

unit interval but lack any any consistency requirements with respect to the underlying shape

of household consumption expenditure distributions. Indeed, the density we derive outper-

forms the Beta in �tting observed household budget share distributions for the majority of

cases. Furthermore, the estimated parameters of the proposed density allow to reproduce an

economically-meaningful taxonomy of commodity categories, which interestingly maps into

the traditional classi�cation of commodities among necessary, luxury or inferior goods.
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1 Introduction

The study of household budget allocation —i.e., how the budget of a household is allocated

to buy different commodities— is one of the most traditional topics in economics (Prais and

Houthakker, 1955). Household budget shares contain useful information to shed light on this

issue. Indeed, the household budget share for a given commodity category g is defined as the

ratio between the expenditure for the commodity category g and total household resources —as

measured by, e.g., total expenditure or total income.

In the last decades, this topic has received a lot of attention by applied economists. In

particular, many efforts have been devoted to develop statistical demand functions for homo-

geneous groups of commodities, e.g. by relating the expenditure of consumers or households

for a given commodity category to prices and individual-specific variables as total expenditure

or income, household size, head-of-household age, and so on.1

Such a research program has been mostly characterized by a theory-driven approach (At-

tanasio, 1999). In fact, the parametric specifications that are employed in the estimation of each

specific demand function are in general taken to be consistent with some underlying theory of

household expenditure behavior, which very often is the standard model based on utility max-

imization undertaken by fully-rational agents.2 Furthermore, no matter whether parametric or

non-parametric techniques are employed, the estimation of demand systems or Engel curves

compresses household heterogeneity —for any given income or total expenditure level— to the

knowledge of the first two moments (at best) of household expenditure level or budget share

distribution for the commodity category under study.3

This of course is fully legitimate if the aim of the researcher is to empirically validate a

given theoretical model, or if there are good reasons to believe that the distribution under

analysis can be fully characterized by its first two moments. However, from a more data-driven

perspective, constraining in this way the exploration of the statistical properties of the observed

household expenditure patterns may be problematic for a number of reasons.
1The first study of this kind was made by Engel (1857), who empirically studied the relation between

German households’ total income and expenditure for different commodities (Moneta and Chai, 2005). For a
comprehensive appraisal of this huge body of literature, see e.g. Deaton (1992); Blundell (1988) and references
therein.

2See Aitchison and Brown (1954); Prais (1952); Banks et al. (1997); Blundell et al. (2007) among others.
3An Engel curve describes how the expenditure for a given commodity category varies as household’s total

resources, see Lewbel (2008).
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First, heterogeneity of household consumption-expenditure patterns is widely considered as

a crucial feature because, as Pasinetti (1981) notices: “At any given level of per capita income

and at any given price structure, the proportion of income spent by each consumer on any

specific commodity may be very different from one commodity to another”. This suggests that,

in order to fully characterize such heterogeneity, one should perform distributional analyses

that carefully investigate how the shape —and not only the first two moments— of household

consumption expenditure and household budget share distributions change over time and be-

tween different commodity categories. Second, understanding heterogeneity may be important

to build sound micro-founded, macroeconomic, consumption models that go beyond the often

disputable representative-agent assumption (Kirman, 1992; Hartley, 1997; Gallegati and Kir-

man, 1999).4 Third, adopting a more theory-free approach focused on distributional analysis

may help to discover fresh stylized facts related to how households allocate their consumption

expenditures across different commodity categories. In fact, theory-free approaches aimed at

searching for stylized facts are not new in economics and econometrics (see inter alia Kaldor,

1961; Hendry, 2000). More recently, this perspective has been revived in the field of econo-

physics, where the statistical properties of many interesting micro and macro economic variables

(e.g., firm size and growth rates, industry and country growth rates, wealth and personal in-

come, etc.) have been successfully characterized by using parametric techniques.5 These studies

show that, despite the turbulence typically detected at the microeconomic level (e.g., entry and

exit of firms; positive and negative persistent shocks to personal income, etc.), there exists an

incredible high level of regularity in the shape of microeconomic cross-section distributions,

both across years and countries.

Notwithstanding such successful results, similar distributional analyses have not been ex-

tensively performed, so far, on consumption-related microeconomic variables such as household

consumption expenditures and budget shares, for which reliable and detailed cross-section data

are also available. This is somewhat surprising because —as Attanasio (1999) notices— under-
4For example, Caselli and Ventura (2000) show that models based on the representative-agent assumption

impose almost no restrictions on household consumption expenditure and budget share distributions. On the
contrary, Forni and Lippi (1997) demonstrate that heterogeneity is crucial when aggregating individual behavior
in macro models. Furthermore, Ibragimov (2005) provides support to the insight that higher-than-two moments
can have a relevant impact on the dynamics of macro models. Additional perspectives on the importance of
heterogeneity in consumption and demand may be found in Hildenbrand (1994).

5See among others Chatterjee et al. (2005), Clementi and Gallegati (2005), Axtell (2001), Bottazzi and Secchi
(2006) and Fagiolo et al. (2008).
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standing consumption is crucial to both micro- and macro-economists, as it accounts for about

two thirds of GDP and it decisively determines (and measures) social welfare.

There are only two exceptions —to the best of our knowledge— to this lack of distribu-

tional studies on household consumption indicators. In a recent contribution, Battistin et al.

(2007) employ expenditure and income data from U.K. and U.S. surveys and show that total

household consumption expenditure distributions are well-approximated by log-normal densi-

ties (or, as they put it, are “more log-normal than income”).6 In a complementary paper (Fagiolo

et al., 2009), we argue that log-normality is valid only as a first approximation for Italian total

household consumption expenditure distributions, while a refined analysis reveals asymmetric

departures from log-normality in the tails of the distributions.

Both contributions focus on characterizing the dynamics of household consumption expen-

diture aggregate distributions only and nothing is said on the statistical properties of household

consumption expenditure or budget share distributions disaggregated among commodity cat-

egories. This paper is a preliminary attempt to fill this gap. To do so, we employ data from

the “Survey of Household Income and Wealth” (SHIW) provided by the Bank of Italy to study

household consumption expenditure and budget share distributions for a sequence of 8 waves

between 1989 and 2004. We focus on four commodity categories: nondurable goods, food,

durable goods, and insurance premia (which are rarely studied in the literature).7

We aim at empirically investigating the statistical properties of unconditional household

budget share distributions (and consumption expenditure distributions) of these four commod-

ity categories and their dynamics with a parametric approach.8 More specifically, we look for a

unique, parsimonious, closed-form density family that: (i) is able to satisfactorily fit observed

unconditional household budget share distributions, so as to accommodate the existing hetero-

geneity emerging across households, among different commodity categories and over time; (ii)

is consistent with the statistical properties of the (observed) household consumption expendi-

tures distributions employed to compute budget share distributions; (iii) features economically-

interpretable parameters that, once estimated, can help one to build economically-meaningful
6Log-normality of household consumption expenditure distributions in U.K. is confirmed by another early

study in the econophysics domain, see Hohnisch et al. (2002). See also Mizuno et al. (2008) for a study of the
distributional properties of individual purchases in Japanese convenience stores.

7Food is actually a subcategory of nondurable goods, but for its intrinsic importance we consider it as a
separate commodity category throughout the paper.

8By unconditional distributions we mean here not conditioned to total household resources, i.e. income or
total expenditures. More on this point in Section 2.
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taxonomies of commodity categories.

We begin with a descriptive analysis aimed at empirically exploring the stability of household

budget share distributions over time. Estimated sample moments show that the shape of the

household budget share distribution of each given commodity category did not dramatically

change over the time interval considered. However, for any given wave, there emerges a lot of

across-commodity heterogeneity in the observed shapes of household budget share distributions.

We also show that the underlying household consumption expenditures distributions —for

any given wave and commodity category— are well-proxied by log-normal distributions (with

very different parameters). We then derive an original family of densities, defined over the

unit interval, which is consistent with the detected log-normality of household consumption

expenditures distributions. The precise formulation of the closed-form density can be shown to

depend on the chosen approximation for the random variable defined as the sum of (possibly

correlated) log-normal distributions. In the literature there exist two possible approximations,

namely the log-normal and the inverse-Gamma, which we both fit to our data. To benchmark

our results, we also fit household budget share distributions with Beta variates, which are in

principle very flexible densities defined over the unit interval but lack any consistency with the

shape of the random variables which household budget shares stem from.

We find that in Italy, for all the waves under study and for all the commodity categories,

the proposed density family —using either approximation— outperforms the Beta in fitting

observed household budget share distributions for the majority of cases. Indeed, according

to simple measures of goodness-of-fit (e.g., the average absolute deviation), the proposed den-

sity family is able to better accommodate the existing shape-heterogeneity that characterizes

household budget share distributions across different commodity categories. Furthermore, the

estimated parameters of the proposed density allow to reproduce an economically-meaningful

taxonomy of commodity categories, which interestingly maps into the traditional classification

of commodities among necessary, luxury or inferior goods.

The paper is structured as follows. In Section 2 we describe the database that we employ

in the analysis and we discuss some methodological issues. Section 3 presents a preliminary

descriptive analysis of household consumption expenditure and budget share distributions. In

Section 4 we derive the proposed family of theoretical densities. Section 5 presents fitting results
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obtained with that density family, and compares them with Beta variates. Section 6 briefly

reports on some interpretations of our exercises in terms of commodity category taxonomies.

Finally, Section 7 concludes.

2 Data and Methodology

The empirical analysis below is based on the “Survey of Household Income and Wealth” (SHIW)

provided by the Bank of Italy. The SHIW is one of the main sources of information on household

income and consumption in Italy. Indeed, the quality of the SHIW is nowadays very similar to

that of surveys in other countries like France, Germany and the U.K..9

The SHIW was firstly carried out in the 1960s with the goal of gathering data on income

and savings of Italian households. Over the years, the survey has been widening its scope.

Households are now asked to provide, in addition to income and wealth information, also

details on their consumption behavior and even their preferred payment methods. Since then,

the SHIW was conducted yearly until 1987 (except for 1985) and every two years thereafter

(the survey for 1997 was shifted to 1998).

The present analysis focuses on the period 1989-2004. We therefore have 8 waves. The sam-

ple used in the most recent surveys comprises about 8000 households (about 24000 individuals

distributed across about 300 Italian municipalities). The sample is representative of the Ital-

ian population and is based on a rotating panel targeted at 4000 units. Available information

includes data on household demographics (e.g. age of household head, number of household

components, geographical area, etc.), disposable income, consumption expenditures, savings,

and wealth. In this study, we employ yearly data on (nominal) aggregate, household consump-

tion expenditures and on the following disaggregated commodity categories: nondurable goods

(N), durable goods (D), and insurance premia (I). Nondurable goods include also food (F),

which we consider as a separate (sub-)category of commodities. According to the definition

of the Bank of Italy, expenditures for nondurable goods correspond to all spending on both
9SHIW data are regularly published in the Bank’s supplements to the Statistical Bulletin and made publicly

available online at the URL http://www.bancaditalia.it/statistiche/indcamp/bilfait. We refer the
reader to Brandolini (1999) for a detailed overview on data quality and main changes in the SHIW sample
design, and to Battistin et al. (2003) on the general issues with recall consumption data. Notwithstanding the
generally better quality of consumption data based on diaries, the SHIW remains one of the surveys with the
highest coverage, carried out for a fairly long time with a high degree of accuracy. Moreover, the literature
exploiting SHIW data already comprises more than 300 papers - of which, about 40 study consumption issues.
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food and non-food items, excluding expenses for durable goods and insurance, maintenance,

mortgage and rent payments. The expenditures for food include spending on food products

in shops and supermarkets, and spending on meals eaten regularly outside home.10 House-

hold expenditures for durable goods correspond to items belonging to the following categories:

precious objects, means of transport, furniture, furnishings, household appliances, and sundry

articles. Finally, the commodity category labeled as “insurances” includes the following forms

of insurance: life insurance, private or supplementary pensions, annuities and other forms of

insurance-based saving, casualty insurance, and health insurance policies. A detailed descrip-

tion of the commodity categories under study is provided in the appendix, where we report the

corresponding questions from the SHIW questionnaire.

The SHIW database includes a variable recording household aggregate expenditure. This

quantity does not correspond to the sum of expenditures of the four consumption categories

considered here, but it is obtained by aggregating household expenditure for durable and non-

durable goods, plus non monetary income integrations and rent payments.11 Forms of insurance

are not included in the definition of household aggregate expenditure, as indeed these might

be considered forms of savings. However, we consider insurances as a commodity category for

basically two reasons: (i) insurance forms might also be seen as consumption goods, insomuch

as they cover actual expenses which are borne by the household (e.g. for pharmaceutical prod-

ucts); (ii) the insurance itself might be considered —and indeed appears in theoretical models—

as a good, which an agent might or might not purchase: the only difference with respect to

a traditional consumption good stands in the fact that the degree of risk aversion influences

the amount of insurance purchased. The sum of household consumption expenditure for non-

durable goods, durable goods and insurances makes up on average 80% of total expenditures.

Notice that, as total household consumption is just a proxy for total household resources, it

is irrelevant whether total consumption is built by including other commodity categories than

the four we focus on.

Household budget shares are computed as ratios of nominal yearly quantities. More formally,
10Expenditures for meals eaten regularly outside home are included in the food category only from 1995 on.

In order to achieve intertemporal comparability, reported food expenditures for 1989, 1991 and 1993 have been
complemented by using an annual index of expenditure for food outside home over total food expenditure -
around 0.25 in the considered years - obtained by calculations on data from the Italian statistical office (ISTAT).

11If a household dwelling is neither owned nor rented, but occupied in usufruct or free of charge, the total
consumption expenditure for that household will include an imputed rent, i.e. an amount corresponding to the
rent that could be charged for such a dwelling.
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our data structure consists of the distribution of yearly household budget shares defined as

Bh,t
i =

Ch,t
i

Ch,t
, (1)

where t ∈ T={1989, 1991, 1993, 1995, 1998, 2000, 2002, 2004} are survey waves, i ∈ I={N,

F, D, I} are the four commodity categories, Ch,t
i is the (nominal) consumption expenditure

of household h = 1, . . . , Ht for the commodity category i, and Ch,t is the (nominal) total

consumption expenditure of household h. All household consumption expenditure observations

have been preliminary weighted using appropriate sample weights provided by the Bank of Italy.

Outliers —defined as observations greater than 10 standard deviations from the mean— have

been removed. Since in each wave there were some cases of unrealistic (e.g., zero or negative)

aggregate consumption expenditure figures, we dropped such observations and we kept only

strictly-positive ones. We also dropped households for which yearly expenditures for at least

one commodity was larger or equal to total expenditure (as reported in the SHIW). Since we

rule out borrowing, Bh,t
i ∈ (0, 1). Finally, we excluded zero observations from the analysis, for

the following reasons: (i) it is not clear whether zero entries for nondurable goods mean a null

consumption expenditure or rather they are due to mistakes in data collection; (ii) the decision

whether to buy a durable good or an insurance or not (depending for example on whether

household income exceeds some threshold) is different from and precedes the decision on the

budget share possibly allocated to this good. We focus on the second step of the decisional

process; (iii) the degree of bunching at zero one typically finds in the distributions of durable

goods and insurance expenditures is influenced by factors which are likely to vary over the

business cycle; (iv) sample moments computed including zeroes would be poorly informative,

given the large proportion of zero observations. Therefore, we ended up with a changing (but

still very large) number of households in each wave Ht (see Table 3).

Two important points deserve to be discussed. First, we use total expenditures instead of

income to proxy household total resources and compute budget shares. This is primarily done

in order to separate the problem of allocating total consumption to various commodities from

the decision of how much to save out of current income. Notice that this is common practice

in the relevant literature. Indeed, due to the relatively higher reliability of expenditure data

(as compared to income ones), most of empirical studies typically use household consumption
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expenditures even if theoretical models are originally developed in terms of total income (see,

e.g., Banks et al., 1997). Since income is available in the SHIW database, we replicated our

exercises by defining household budget shares in terms of household-income ratios without any

appreciable differences in the results as far as descriptive analyses were concerned. Quantile-

quantile plots comparing household income and total consumption expenditure distributions,

reported in Figure 1 for wave 2004, show that as income increases the proportion of income

devoted to total consumption increases.12

Second, as already mentioned, this study is not explicitly concerned with the estimation of

Engel curves, either with parametric or non-parametric approaches (Engel and Kneip, 1996;

Chai and Moneta, 2008). Conversely, we treat household budget shares as agnostic variables

that have an economic meaning ‘per se’. Moreover, note that Engel curves describe the relation-

ship between conditional averages of household consumption expenditures (or budget shares)

for a particular commodity category and levels of income or total consumption expenditure,

where averages are computed conditional to levels of income or total consumption expenditure,

and possibly other explanatory variables. In this paper, we begin instead to study the statistical

properties of unconditional household budget share distributions, that is —for any commodity

category and wave— we pool together households irrespective of their income or total con-

sumption expenditure, and we consequently study the shape of the ensuing distributions and

their dynamics. In other words, we do not compress the overall across-household heterogeneity

existing for each commodity category and wave, as done in Engel-curve studies.13 This is be-

cause the goal of the paper is simply to characterize the distributional shape of unconditional

household budget share distributions and not how they change with household total budget.

As we briefly recall in the concluding Section, two possible extensions of this work come

easily to the mind. In the first place, one might condition household budget share distributions,

for each commodity category and wave, to total household resources and investigate how condi-

tional household budget share distributions change as income or total consumption expenditure
12Data, scripts, and additional results are available from the Authors upon request. All statistical exercises

were performed using MATLAB�, version 7.4.0.287 (R2007a).
13If one plots the cloud of points (Ch,t

i , Ch,t) for a given (i, t) in the expenditure-budget plane, the budget
share of household h is simply the slope of the line connecting the origin of the plane with the point (Ch,t

i , Ch,t).
Engel-curve exercises try to fit this cloud of points with some conditional-expectation relation of the form
E(Ch,t

i |Ch,t, · · · ) and study the shape of this object as a function of Ch,t (or income). This paper focuses
instead on the distributional properties of the whole cloud of points, and how these properties change across
different (i, t).
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increase.14 Furthermore, one might extend the univariate approach employed here to a multi-

variate perspective. Indeed, the present study of household budget share distributions can be

considered as a first approximation to the more thorough analysis of the statistical properties

of the multivariate distribution (Ch,t
1 , . . . , Ch,t

K ), where K is the overall number of commodity

categories which total household consumption expenditures are disaggregated among. Given

that we do not have data for all the K components of the multivariate variable, we employ here

a univariate approach. Notice, however, that at least in principle some information about the

missing commodity categories can be recovered from the study of household budget share distri-

butions, as the denominator of household budget shares contains information on the correlations

between Ci and all the unobserved components of the multivariate variate (Ch,t
1 , . . . , Ch,t

K ).

3 Statistical Properties of Household Budget Share Distri-

butions: Descriptive Analysis

In this Section, we begin with a descriptive analysis of Italian household consumption expendi-

ture and budget share distributions, mainly focused on investigating whether such distributions

—and their correlation structure— exhibit structural changes over time.

Let us start with household consumption expenditure distributions. Figure 2 shows kernel

density estimates of the logs of household consumption expenditure distributions for waves 1989,

1993, 1998, and 2002.15 A visual inspection of the four panels indicates that, with the exception

of insurance premia, the shape of any given household consumption expenditure distribution

is fairly constant over time. This evidence seems to be confirmed by Table 1, where we report

estimated sample moments for logged household consumption expenditure distributions, and

by Figure 3, which shows their evolution over time. Notice that sample means show a positive

trend in time because we are considering nominal quantities. However, insurance expenditure

distributions display a more pronounced trend, which is probably due to the observed structural

increase in expenditure for insurance premia from the late 90s also in real terms. Note also that,

for any given wave, sample moments are fairly similar across commodity categories, meaning
14As discussed above, this task is fairly more general than studying Engel curves only.
15Here and in what follows we show these four reference waves for the sake of exposition. Similar results hold

also for the other waves. Note also that the kernel-density estimator is a non-parametric estimator. Therefore,
at this stage, we are not imposing any a-priori parametric assumption on the density of the observed data.
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that the across-commodity heterogeneity in the shape of nominal expenditure levels is not that

relevant. Furthermore, Table 2 shows sample correlations and p-values for the null hypothesis

of no correlation between household consumption expenditure distributions for different com-

modities in 2004.16 As expected, the correlations among household consumption expenditure

distributions are all strongly positive and significant.

We turn now to a descriptive analysis of household budget share distributions. Figure 4

shows the plots of kernel-density estimates for 1989, 1993, 1998, and 2002.17 We immediately

see that they are fairly stable over time. Conversely, as expected, their shapes differ signif-

icantly across commodity categories. Household budget share distributions for nondurable

goods and food are relatively bell shaped and a large mass of observations is shifted towards

the right of the unit interval. Kernels of durable goods and insurance premia are instead much

more right-skewed and monotonically decreasing. Note also that insurance-premia kernels ex-

hibit a relevant irregularity in the right tail, due to a small sample-size problem. The strong

across-commodity heterogeneity that clearly emerges in the shape of household budget share

distributions suggests that in order to find a unique, parsimonious, parametric statistical model

able to satisfactorily fit the data, one would require a very flexible density family.

Estimated sample moments of household budget share distributions are reported in Table

3. On average, 68% of total household expenditures is related to nondurable goods, while food

accounts for 33% of the total. Much less is spent on durable goods and insurance premia,

as they respectively represent —on average— 13% and 5% of total household consumption

expenditures.18

Figure 5 plots the time evolution of the first four sample moments of household budget

share distributions. In general, moments are relatively stable over time. The exception is

represented again by insurance premia, which display highly increasing moments from 1989 on.

In particular, skewness and kurtosis exhibit big jumps in 1995, and then move to higher levels.

Instead, standard deviation steadily increases from 1989 on. Notice also that skewness signs

do not change over time: they are always negative for nondurable goods and always positive
16Correlations are computed only for households with non-zero expenditure for all commodity categories.

This means using a sample size of about 1000 households for each wave.
17Kernel density estimation is performed so as to avoid possible biases due to the fact that budget shares are

defined over a bounded set (i.e., the unit interval).
18No appreciable differences are found by replacing the denominator of household budget shares with the sum

of nondurables, durables and insurance expenditure (i.e., by replacing the variable total expenditure provided
by the Bank of Italy with the sum of the four commodity categories of expenditure employed in this study).
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for all other categories (see Table 3). All this is good news if the aim is to look for a unique

family of probability densities that are able to satisfactorily accommodate the heterogeneity

observed across-commodity and over-time. In fact, the main message coming from the foregoing

descriptive analysis is that household budget share distributions did not dramatically change

their structural properties over time, notwithstanding many households did probably move back

and forth across income quantiles. This is a strong result also in light of the introduction of

the Euro in 2001.

Furthermore, we turn to study household budget share distributions’ correlation structure.

Table 4 reports the correlation matrix for 2004, together with the p-values for the null hypoth-

esis of no correlation. Figure 6 plots instead the time evolution of the correlations between

the distributions of nondurable goods, durable goods and insurance premia.19 Note that all

correlations are fairly stable over time and exhibit signs consistent with the economic intu-

ition. Indeed, nondurables are negatively correlated with durables —the average correlations

being -0.54%— which in turn are negatively correlated with food (here the average correla-

tion coefficient is -0.3%). Negative correlations indicate that when households increase their

relative expenditure for durable goods, they tend to reduce their relative expenditure for non-

durable goods, including food. Notice also that the correlation between insurance and all other

categories is statistically non significant.

Finally, as discussed in Battistin et al. (2007), notice that consumption and income data

generally suffer from under reporting (especially in the tails) and outliers, and Italian data

are not an exception (Brandolini, 1999). In order to minimize the effect of gross errors and

outliers, we have employed robust statistics to estimate the moments of household consumption

expenditure and budget share distributions (Huber, 1981). More specifically, we have used

median and mean absolute deviation as robust estimators for location and scale parameters.

Moreover, we have estimated the third moment with quartile skewness (Groeneveld and Meeden,

1984) and kurtosis using Moors’s octile-based robust estimator (Moors, 1988). Results confirm,

overall, our previous findings: robust moments for (logged) household consumption expenditure

and budget share distributions are stable over time, with the same exceptions found before.
19As in the case of household consumption expenditure distributions, the correlation between household

budget share distributions are computed only for households with non-zero expenditure for all the commodities
(about 1000 households for each wave).
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4 A Parametric Model for Budget Share Distributions

The main aim of this work is to determine a parsimonious, parametric, model able to satisfac-

torily fit household budget share distributions (in statistical terms). We look for a family of

densities, defined on the unit interval, which holds at least the following three desirable features.

First, the family of densities fitting household budget shares should be consistent with the sta-

tistical properties of the underlying household consumption expenditure distributions employed

to compute budget shares. Second, it should be flexible enough to accommodate —for each

wave— the observed across-commodity heterogeneity in the shape of household budget share

distributions. Third, the parameters of the density should embody some economic meaning

and allow one to taxonomize commodity categories according to their (high, low) level.

Let us begin with the first point. The existing literature shows that aggregate household con-

sumption expenditure distributions are typically log-normally distributed.20 Figure 7 indicates

that a log-normal density provides reasonable fits also for our household consumption expen-

diture distributions disaggregated across our four commodity categories. Table 1 confirms this

finding, as the logs of disaggregated household consumption expenditure distributions exhibit

skewness and kurtosis values very close to what would be expected if the original distributions

were log-normal (i.e. 0 and 3 respectively).21 Robust estimators for the third and fourth mo-

ments (see previous section) also support log-normality of household consumption expenditure

distributions. In fact, according to standard bootstrap tests, robust skewness and kurtosis of

logged household consumption expenditure distributions are often close to their expected values

in normal samples (0 and 1.233, respectively).

Let C1, . . . , CK be the expenditure levels of a given household in a representative time

period, where K is the number of commodity categories considered.22 The household budget
20Battistin et al. (2007) find that result for U.K and U.S. total household consumption expenditure distribu-

tions. Furthermore, in Fagiolo et al. (2009) we show that, as a first approximation, similar evidence is true also
for the Italian total household consumption expenditure. We also find, however, that a much better fit can be
obtained if one employs a more highly-parameterized density family (i.e., the asymmetric exponential power),
which is able to accommodate the existing asymmetry in tail fatness.

21As already mentioned, we do not have data for all commodity categories. Therefore, we can not exactly
check the assumption that all household consumption expenditure distributions disaggregated into commodity
categories are log-normally distributed. Nevertheless, further analysis shows that also the distribution of Ch,t −∑4

i=1 Ch,t
i —that is, the remaining average 20% of consumption expenditures— can be reasonably fitted by a

log-normal. In what follows, we shall use this fifth composite commodity category in order to keep the identity
Ch,t ≡ ∑4

i=1 Ch,t
i + Ch,t

5 .
22In our case K = 5, as we consider four commodity categories plus the composite commodity Ch,t

5 =
Ch,t − ∑4

i=1 Ch,t
i .
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share of commodity category i is defined as

Bi =
Ci

C
=

1

1 +
∑

j �=i Cj

Ci

=
1

1 +
∑

j �=i Zj(i)
=

1

1 + Si

(2)

where Si is the sum of the K − 1 random variables Zj(i), each being equal to the ratio between

Cj and Ci, with j = 1, . . . , i−1, i+1, . . . , K. Obviously, Bi ∈ (0, 1) as required. From equation

(2), it follows that the cumulative distribution function (cdf) of Bi reads:

FBi
(x) = Prob{Bi < x} = Prob

{
1 + Si >

1

x

}
= 1 − FSi

(
1

x
− 1

)
, (3)

where x ∈ (0, 1) and FSi
is the cdf of Si. Therefore, the probability density function (pdf) of

Bi is given by:

fBi
(x)dx =

1

x2
fSi

(
1

x
− 1

)
dx, (4)

where fSi
is the pdf of Si. This means that characterizing the distribution of Bi requires studying

the distribution of Si =
∑

j �=i Cj/Ci =
∑

j �=i Zj(i). Given the empirical evidence above, there

are good reasons to assume that expenditure levels Ci are all log-normally distributed, at least

as a first approximation. This implies that the ratios Zj(i) are also log-normally distributed,

as:

Prob{Zj(i) < z} = Prob{log(Cj) − log(Ci) < log(z)} = Prob{Dj(i) < log(z)}. (5)

Since log(Cj) and log(Ci) are normally distributed (and possibly correlated), their difference

Dj(i) will also be normal. Hence exp(Dj(i)) will be log-normally distributed.23

As a result, the shape of household budget share distribution Bi fully depends on the shape

of the sum of the K − 1 log-normal variates Zj(i)s. Notice that in general Zj(i) will not be

uncorrelated. Indeed, the Cis may be correlated because of household preferences. This seems

to be the case from our empirical evidence, as we have already noticed statistically-significant

correlations between household consumption expenditure distributions (see Table 2).24 The
23More generally, if X and Y are log-normally distributed with parameters (μX , σX) and (μY , σY ), and

covariance σXY , then D = log(X) − log(Y ) is a N(μX − μY ,
√

σ2
X + σ2

Y − 2σXY ). Thus X/Y = exp(D) is a
log-normal with the same parameters as D.

24Another reason why the Zj(i) may be in general correlated is that the sum of all expenditures cannot exceed
household total expenditure. This source of correlation may be washed away, however, by considering only the
first K − 1 commodities.
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significant correlation between household consumption expenditure distributions thus implies

that Zj(i) —as well as household budget share distributions— will not be independent.

According to the literature, there does not exist a closed form for the pdf of a sum of log-

normal (correlated or uncorrelated) random variables and only approximations are available.25

The baseline result is that the distribution of Si can be well approximated by a log-normal

distribution, whose parameters depend in a non-trivial way on the parameters of the log-normals

to be summed up and their covariance matrix.26

The log-normal proxy to the sum of log-normals is not, however, the only approximation

available. Indeed Milevski and Posner (1998) show that when K → ∞ then Si converges in

distribution to an an inverse-Gamma (InvΓ) density, which performs well in approximating the

sum also for very small K.27 Therefore there may be some gains in considering an InvΓ proxy

to Si instead of a log-normal one. Of course, the extent to which either approximation is to be

preferred is an empirical issue. For this reason, we shall consider both proxies in our empirical

application below.

In the case Si has a log-normal pdf with parameters (m, s), then:

fSi
(x; m, s) =

1

xs
√

2π
exp

[
−(log(x) − m)2

2s2

]
. (6)

Using (4), we get:

fBi
(x; m, s) =

1

x(1 − x)s
√

2π
exp

[
−(log(1 − x) − log(x) − log(m))2

2s2

]
(7)

In what follows we shall refer to density (7) as the LN-B density. Note that the LN-B is already

a pdf given that its integral over [0, 1] is one. In Figure 8 we show a variety of shapes derived

from (7) for selected values of the parameters m and s. If m > 0 (m < 0) the distribution is

right-skewed (left-skewed), if m = 0 it is symmetric. If 0 < s ≤ 1.5 the distribution is bell-

shaped, if 1.5 < s ≤ 2.5 it is bimodal, while if s > 2.5 it is U-shaped. This seems to confirm that
25See Beaulieu et al. (1995) for the case of independent summands and Mehta et al. (2006) for the case of

correlated summands.
26Many methods are available to find approximations to the parameters of the resulting log-normal distribu-

tion, see e.g. Fenton (1960), Schwartz and Yeh (1982), and Safak and Safak (1994). We are not interested here
in this issue because we can directly estimate the parameters of the resulting distribution for Bi via maximum
likelihood.

27The InvΓ random variable is simply defined as the inverse of a Γ random variable, i.e. if X ∼ Γ(η, θ−1)
then X−1 ∼ InvΓ(η, θ).
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despite its parsimony, the density (7) is sufficiently flexible to accommodate different shapes

for household budget share distributions.

On the other hand, if we assume an InvΓ approximation for the distribution of a sum of

log-Normals, then the distribution of Si depends on two parameters (θ, p) and its pdf reads:

fSi
(x; θ, p) =

θp

Γ(p)
x−p−1 exp

[
−θ

x

]
(8)

Once again, using (4) we obtain the pdf of Bi (henceforth, InvΓ-B), which reads:

fBi
(x; θ, p) =

θp

x2Γ(p)

(
1

x
− 1

)−p−1

exp

[
−θ

x

1 − x

]
. (9)

Figure 9 shows the shape of the density (9) for selected values of θ and p. We immediately

see that (9) is always an asymmetric distribution, as fBi
(1; θ, p) = 0 for any values of the

parameters, while if p > 1 fBi
(0; θ, p) = 0 but if p ≤ 1 fBi

(0; θ, p) > 0. The interpretation

of the two parameters is less straightforward than in the previous case. Notice that for small

values of p the function is monotonically decreasing, while as p increases a rightward-shifting

maximum emerges. When p < θ (p > θ) the maximum is attained for x < 0.5 (x > 0.5), while

if p = θ the maximum is around x = 0.5: this is the most symmetric case we can model with

this distribution. Even if the proxy (9) seems to be less flexible than (7), we shall retain it in

our fitting exercises for the sake of comparison.

5 Measuring the Goodness of Fit

In the previous section, we have derived two alternative, parsimonious, approximations of

budget-share distributions, which appear —at least in principle— flexible enough to accom-

modate the observed shape heterogeneity and are consistent with the empirically-detected log-

normality of household consumption expenditure distributions.

To check how well the foregoing approximations fit the data, we firstly estimate the param-

eters of (7) and (9) via maximum likelihood. Results are reported in Table 5, together with

asymptotic standard deviations for the parameters of LN-B and InvΓ-B. We shall comment pa-

rameter estimates in Section 6, where they will be employed to classify the commodity categories
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under study. In the rest of this Section, we focus instead on goodness-of-fit considerations.

To evaluate the performance of the two proposed proxies in fitting household budget share

distributions as compared to alternative distributions, we choose as a benchmark the Beta

density (Evans et al., 2000), whose pdf reads:

b(x; α, β) =
xα−1(1 − x)β−1

BE(α, β)
, (10)

where x ∈ [0, 1] and BE is the Beta function. Notice that the Beta also depends on only two

parameters and typically is flexible enough to accommodate many alternative shapes.28 How-

ever, it lacks any consistency requirements with respect to the underlying shape of household

consumption expenditure distributions, because in general it cannot be derived as the density

of household budget shares stemming from log-normally distributed expenditure levels.

We firstly employ a battery of goodness-of-fit tests based on empirical distribution function

statistics. More specifically, we run four widely-used tests: Kolmogorov-Smirnov (KS; Massey,

1951; Owen, 1962), Kuiper (KUI; Kuiper, 1962), Cramér - von Mises (CvM; Pearson and

Stephens, 1962) and Quadratic Anderson-Darling (AD2; Anderson and Darling, 1954). Notice

that we do not expect the observations to be actually drawn from the parametric density

defined in (7) or (9) or (10). We are only interested in understanding whether the theoretical

distributions we suggest are able to proxy the empirical data better than plausible alternatives,

because of their consistency with the findings above on household consumption expenditure

distributions. Furthermore, as our samples are always very large, the unrealistic assumption of

empirical data drawn from a theoretical distribution would bring the traditional goodness-of-

fit tests, which evaluate the deviation of the empirical CDF from the theoretical one at each

single observation, to reject the null hypothesis at any probability level, despite only minor

discrepancies.29 Therefore, we shall evaluate in what follows the goodness of fit of our competing

densities after having grouped logged observations among equally-spaced bins and computed

test statistics over such bins. In this way, the effect of a discrepancy between theoretical and

empirical probability density will strongly affect the statistic only if the same discrepancy is

recurring frequently within a particular interval (bin), while the existence of sporadic outliers
28An alternative, less parsimonious, benchmark to the Beta is the Generalized Beta, see e.g. Mauldon (1957)

and Sepanski and Kong (2007).
29See e.g. Bentler and Bonett (1980).
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will only have a minor effect on the test statistic.30

Table 6 reports the goodness-of-fit statistics only for KS and AD2 tests, as in general all

the four tests agree on whether the benchmark is outperformed or underperformed by either

specification of the proposed density. According to the statistics for all the four tests, the Beta

fit is never the best one. With respect to the LN-B and the InvΓ-B densities, the latter seems to

deliver a better fit in the case of nondurable and durable goods (and according to KUI and CvM

tests, also in the case of food). However, the levels of the statistics do not take into account

the different influences exerted by the sample size on the results of the binning procedure for

different distributions. Moreover, a density may perform relatively better than another one

even though both provide a very bad description of the empirical sample. In order to perform a

more statistically-sound comparison, we have therefore proxied via simulation the distributions

of the test statistics when using our procedure of grouping the observations into bins, and we

have computed the relevant p-values of the empirical values obtained before, i.e. the probability

mass to the right of the observed statistics.31 The picture given by the p-values is generally

consistent with that given by the statistics, however in a dozen cases the p-values for the Beta

density are at least as good as those for the LN-B or the InvΓ-B densities, notwithstanding

lower values of the statistics. Still, in terms of p-values, the LN-B or the InvΓ-B densities

outperform the Beta density in the 75%, 78%, 59% and 78% of the cases according to KS, KUI,

CvM and AD2, respectively.

Together with standard goodness-of-fit tests, we employ also the average absolute devia-

tion as a simple measure of goodness-of-fit (see, e.g., Bottazzi et al., 2008, for an economic

application). The average absolute deviation represents an alternative, additional, measure of

agreement between the empirical and the theoretical frequencies. For any given commodity

category i and wave t (labels are suppressed for the sake of simplicity), the average absolute
30This procedure also moderates the problems coming from the generation of pseudorandom numbers dis-

tributed as in (7) or (9). This is not a trivial task and the issue is one of the main points of our research
agenda.

31To proxy the distribution of a test statistic for a given theoretical density and a commodity category of
household budget shares of size n, we use the following procedure: (i) generate via a bootstrap-with-replacement
method a random sample of observations of the same size n as the observed sample, then group the observations
into L bins; (ii) on the randomly-extracted sample, re-estimate the parameters of the theoretical frequency by
maximum likelihood and compute the test statistic; (iii) repeat this procedure a large number of times m to
get the proxy for the distribution of the test statistic. Of course the foregoing steps should be repeated for any
given empirical sample, i.e. for any wave and commodity category considered, and for any of the three densities
studied. In what follows, we have set m = 1000 and we have considered L=100 bins.
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deviation is defined as:

AAD =
1

L

L∑
l=1

|φBi
(xl) − fBi

(xl; •, •)|, (11)

where L is the number of bins in which we group the empirical observations, and each class is

identified by its midpoint xm, in correspondence of which we compute the empirical frequency

φBi
and the theoretical frequency fBi

. The latter is obtained using equations (7), (9), or (10),

when parameters are replaced by their maximum-likelihood estimates.

According to the values obtained for the average absolute deviation (see Table 7), in 66%

of the cases the Beta distribution is outperformed by either the LN-B or the InvΓ-B density.

More precisely, in 34% of the cases the LN-B seems to deliver a better fit, whereas in 28% of the

cases the InvΓ-B approximation fits better the data and in one case they have exactly the same

performance. In the remaining 34% of the cases either the LN-B or the InvΓ-B density (or even

both) show the same goodness-of-fit as the Beta , i.e. the proposed density always manages to

do at least as well as the benchmark. According to p-values in Table 7, the Beta distribution

fits the data better than the other two densities only in 19% of the cases. Conversely, the

LN-B density provides a better fit in 50% of the cases, whereas in 19% of the cases the InvΓ-B

approximation wins the competition. In five cases the proposed density in either specification

and the benchmark have the same performance, while in the remaining couple of cases the

LN-B or the InvΓ-B densities do equally better than the Beta. It is interesting to note that,

according to these results, the InvΓ-B provides good fits for nondurable goods budget shares,

while the LN-B works better for durable goods and insurance premia budget shares. Food

budget shares seem to be well described by either the Beta or the LN-B . Notice also that

both average absolute deviations and p-values are often very similar, thus empirically it seems

that in some cases all alternatives may provide equally good fits. However, the distributions

that we have proposed should be in our view preferred to the Beta because of their statistical

consistency with the underlying household consumption expenditure distributions.

A graphical analysis of the goodness-of-fit for two waves (2000 and 2004) is provided in

Figures 10 and 11. The LN-B density provides better fits for the left tail of nondurables budget

shares and, more generally, for insurances and durables. In these latter cases, however, none

of the distributions considered is able to account for the few observations lying on the extreme

right of the support. The InvΓ-B performs well only on the right tail of nondurable goods
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budget share distributions.

6 Towards a Taxonomy of Commodity Categories

The foregoing analysis suggests that the LN-B and InvΓ-B densities are a statistically-satisfactory

parametric model for Italian household budget share distributions, one that is able to accom-

modate the existing heterogeneity in the shape of the distributions and is consistent with the

statistical properties of the underlying household consumption expenditure distributions. In

this Section, we shall attempt to draw some economic implications stemming from estimated

parameters in order to show that the family of density that we have proposed can also be

employed to meaningfully classify commodity categories.

To begin with, notice that it is very hard to taxonomize our four commodity categories on the

basis of the estimated parameters of household consumption expenditure distribution. Indeed,

the sample moments reported in Table 1 are similar for all commodity categories. However,

inspection of Table 5 reveals that estimated parameters for LN-B and InvΓ-B —as happened also

for sample moments— feature a much higher heterogeneity. This difference between household

budget share distributions and consumption expenditure distributions is not surprising, as

household budget share distributions contain more information than household consumption

expenditure distributions, namely the information about household-budget allocation behavior,

which is itself the factor that can allow one to classify the commodity categories.

Therefore, it is tempting to employ the information coming from estimated parameters of

both LN-B and InvΓ-B densities in order to build a taxonomy of the four commodity categories.

More precisely, we shall employ the study of the shape of the LN-B and InvΓ-B densities per-

formed in Section 4 to classify our commodity categories with respect to the high/low values of

their estimated parameters (m, s) and (p, θ). Since these estimates are relatively stable across

time (see again Table 5), we shall use averages of estimates across all the waves. As far as

the LN-B is concerned, we shall discriminate between commodity categories exhibiting (av-

erage) estimates for m ≶ 0 and s ≶ 1, whereas for the InvΓ-B density we will differentiate

between commodity categories with (average) estimates for p ≶ 1 and θ ≶ 1. The two re-

sulting taxonomies are shown in Table 8. Note that durable goods and insurance premia have

similar characteristics, i.e. they have low dispersion and are right-skewed, while the budget
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share distributions of nondurable goods are more disperse and left-skewed. Food budget share

distributions are similar to the latter in that are quite disperse, but are right-skewed.

Notice that, although the parameters of both the LN-B and the InvΓ-B densities cannot

be easily traced back to the moments of the associated random variables, a clear-cut relation

seems to exist between the taxonomies in Table 8 and estimated sample moments of household

budget share distributions. Indeed, suppose to classify now commodity categories on the base

of estimated sample moments only (i.e., without fitting household budget share distributions

with any parametric model). In particular, suppose to focus on estimates of the mean (μ), the

median (med), standard deviation (σ), skewness (ξ) and kurtosis (κ). Let us take the number of

observations outside the estimated interval [μ−σ, μ+σ] as a measure of dispersion of household

budget share distributions: the larger this number the higher the dispersion around the mean.

Let us also say that a household budget share distribution has low (high) mean if the latter is

lower (higher) than the median. Finally, let us discriminate between left-skewed (ξ < 0) and

right-skewed (ξ > 0) distributions; and call a distribution fat-tailed if κ >> 3.

Given this setup, one gets the two taxonomies of Table 9. Notice first that apart from the

position of non-durables in the right taxonomy (the one involving kurtosis and standard devia-

tion), both taxonomies reproduce the ones obtained using estimated parameters. More specif-

ically, durables and insurances budget share distributions have mean lower than the median

(μ/med < 1), low dispersion, they are highly right-skewed (ξ > 0) and fat-tailed (κ >> 3). Non-

durable budget share distributions display instead a mean similar to the median (μ/med 	 1),

are left-skewed (ξ < 0), and have thinner, but still thicker than a normal, tails (κ ≥ 3). This

taxonomy has a rather interesting economic meaning, related with Engel’s classification of com-

modities. Indeed, we do not expect many extreme observations, and therefore a higher kurtosis,

when dealing with the consumption of nondurable goods (more likely to be related to necessary

goods), while exceptional events are more common when dealing with durable goods (category

which includes luxury goods).

This simple exercise has one main implication. It shows that the proposed density family,

in addition to its other appealing properties, can be easily employed —via the evaluation of

the estimated parameters— to build classifications of commodity categories, which are also

consistent with other taxonomies developed on the basis of estimated sample moments. In our
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view, the classification built using estimated parameters of LN-B and InvΓ-B densities (Table

8) should be preferred to the one based on sample moments (Table 9) for at least two reasons.

First, it is more parsimonious, as it entails the estimation of only two parameters. Second, it is

obtained through a statistically-sound parametric model of the whole household budget share

distribution, and hence —unlike that based on sample moments— is based on a full description

of the sample.

7 Conclusions

In this paper we have explored the statistical properties of household consumption expenditure

and budget share distributions for a large sample of Italian households in the period 1989-2004.

A preliminary descriptive analysis has shown that the shapes of such distributions are rel-

atively stable across time but display a lot of across-commodity heterogeneity. We have then

derived a family of parsimonious parametric models (densities) for household budget share dis-

tributions that are consistent with the statistical properties of observed household consumption

expenditure distributions (which household budget share distributions are computed from) and

are able to satisfactorily fit the observed data while accommodating the existing shape het-

erogeneity. Finally, we have shown that the estimated parameters of such densities can be

employed to build economically-meaningful taxonomies of commodity categories, which partly

map into the well-known Engel’s classification of goods into necessary, luxury or inferior.

Given its preliminary nature, the present work allows for many possible extensions. First,

the foregoing exercises can be replicated on similar databases of other countries, possibly at

different levels of commodity category disaggregation. This may help in assessing the robustness

and generality of our findings.

Second, as already discussed in Section 2, one may consider to link more closely the approach

pursued here with that employed in Engel-curve-related works (Lewbel, 2008). More specifically,

instead of focusing only on unconditional budget share distributions, one might think to study

the shape (and the moments) of household budget share distributions conditional to household

income or total expenditures, age and cohort of household’s head, and other relevant household-

or commodity-specific variables. The idea here is to go beyond standard parametric or non-

parametric Engel-curve studies and look not only at how the first (and maybe second) moment
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of such conditional distributions changes with household income or total expenditure, but also

at how the whole shape of conditional household budget share distributions is affected by

increasing income levels (and across different commodity categories).

Finally, in a similar perspective, the univariate approach employed in this study may be

replaced by a multivariate one, where the statistical properties of the K-dimensional household

budget share distribution is studied, either parametrically via e.g. multivariate extensions of

our LN-B and InvΓ-B approximations, or non parametrically via multivariate kernel analyses.

This might allow one to fully incorporate into the study the underlying across-budget share

correlation structure, which at the moment is embodied in the estimates of density parameters

and cannot be elicited to address issues related to substitution between different commodities.
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Appendix
We report here the list of the questions in the 2004 SHIW questionnaire, which correspond to the four
commodity categories we study. Questionnaires for previous waves are very close to the 2004 version
as regards these four commodity categories.

• Durable consumer goods

1. During 2004 did you (or your household) buy ...

2. If yes, what is the total value of the objects bought? (Even if they were not paid for
completely)

– precious objects (jewelery, old and gold coins, works of art, antiques including antique
furniture)

– means of transport (cars, motorbikes, caravans, motor boats, boats, bicycles)
– furniture, furnishings, household appliances and sundry articles (furniture, furnishings,

carpets, lamps, small household appliances, washing machines, dishwashers, vacuum
cleaners, floor polishers, TVs, PCs, fridges, cookers, heaters, air conditioners, radios,
tape recorders, CD players, HI-FI equipment, mobile phonesets, fax machines, cam-
eras, camcorders, etc.)

• Nondurable consumer goods

1. What was the monthly average spending of your household in 2004 on all consumer goods,
in cash, by means of credit cards, cheques, Bancomat cards, etc? Consider all spending,
on both food and non-food consumption, and exclude only:

– purchases of precious objects;
– purchases of cars;
– purchases of household appliances and furniture;
– maintenance payments;
– other contributions received from relatives or friends;
– extraordinary maintenance of your dwelling;
– rent for the dwelling;
– mortgage payments;
– life insurance premiums;
– contributions to private pension funds.

• Food

1. What instead is the monthly average figure for just food consumption? Consider spending
on food products in supermarkets and the like and spending on meals eaten regularly
outside the home.

• Forms of insurance

1. – In 2004 did you or another member of your household hold a life insurance policy?
– In 2004 how many life insurance policies did you, or another member of your household,

hold?
– How much did your household pay in 2004 for each policy?

2. – In 2004 did you or another member of your household have a private health insurance
policy (covering accidents and sickness)?

– How much did your household pay in 2004 for health insurance policies?
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3. – In 2004 did you or another member of your household, individually or with the help
of your, his or her employer, pay premiums for a private (or supplementary) pension,
an annuity or simply to receive a lump sum in the future (e.g. under children’s saving
plans)?

– In 2004 how many private/supplementary pensions, annuities and other forms of
insurance-based saving life insurance policies did you, or another member of your
household, hold?

– How much did your household pay in 2004 for each private/supplementary pension?

4. – In 2004 did you or another member of your household pay premiums for a policy or
policies covering accidents, theft, fire, hail, third-party liability, etc. (exclude compul-
sory automobile liability insurance - RCA)?

– How much did your household pay in 2004 for these premiums?
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Figure 1: Quantile-quantile plot comparing income and total consumption expenditure distri-
butions. Wave: 2004. Y-Axis: income quantiles; X-Axis: consumption quantiles.
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Figure 2: Kernel-density estimates of logged household consumption expenditure distributions
and their evolution over time.
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Figure 3: Sample moments of logged household consumption expenditure distributions and
their evolution over time.
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Figure 4: Kernel-density estimates of household budget share distributions and their evolution
over time.
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Figure 5: Sample moments of household budget share distributions and their evolution over
time.
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Wave: 2000.
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as parameters m and s change.
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Figure 10: Fitting alternative densities to household budget share distributions. Wave: 2000.
Beta: dotted line. LN-B : solid line. InvΓ-B: dashed line.
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Figure 11: Fitting alternative densities to household budget share distributions. Wave: 2004.
Beta: dotted line. LN-B : solid line. InvΓ-B: dashed line.
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Waves
Stats 1989 1991 1993 1995 1998 2000 2002 2004 Avg

N N Obs 7409 7209 6223 6258 5588 6277 6361 6281 6451
Mean 8.551 8.518 8.715 8.876 8.863 8.949 8.942 9.073 8.811
Std Dev 1.014 1.064 0.962 0.918 0.939 0.939 0.982 0.909 0.966
Skewness 0.201 0.111 0.281 0.108 0.007 0.102 0.174 0.143 0.141
Kurtosis 2.844 2.893 2.927 2.703 2.710 2.727 2.647 2.810 2.783

D N Obs 2534 2352 2082 1856 2091 1920 1833 1961 2079
Mean 6.554 6.713 6.529 6.900 6.902 7.078 6.881 6.879 6.805
Std Dev 1.626 1.656 1.615 1.593 1.560 1.588 1.635 1.568 1.605
Skewness -0.041 0.033 0.028 0.017 0.123 0.047 0.158 0.296 0.083
Kurtosis 2.698 2.678 2.561 2.509 2.503 2.454 2.560 2.683 2.581

I N Obs 1780 1928 2257 2961 2652 2575 2175 2164 2312
Mean 5.501 5.604 5.737 5.853 6.198 6.359 6.358 6.551 6.020
Std Dev 1.500 1.599 1.557 1.567 1.476 1.398 1.408 1.408 1.489
Skewness -0.069 -0.216 -0.269 -0.284 -0.504 -0.166 -0.228 -0.279 -0.252
Kurtosis 2.555 2.788 2.689 2.649 3.218 2.641 2.965 3.592 2.887

F N Obs 7409 7228 6235 6261 5596 6281 6366 6281 6457
Mean 7.738 7.808 8.014 8.108 8.089 8.119 8.133 8.241 8.031
Std Dev 0.978 1.059 0.969 0.913 0.930 0.947 0.975 0.919 0.961
Skewness 0.214 0.109 0.253 0.099 0.017 0.108 0.138 0.116 0.132
Kurtosis 2.753 2.844 3.029 2.744 2.770 2.805 2.635 2.853 2.804

N+D+I N Obs 896 904 1099 1225 1310 1162 930 1016 1068
Mean 9.148 9.156 9.269 9.484 9.435 9.607 9.640 9.716 9.432
Std Dev 0.932 1.030 0.904 0.830 0.909 0.877 0.945 0.861 0.911
Skewness 0.326 0.078 0.335 0.186 0.011 0.174 0.232 0.109 0.182
Kurtosis 2.848 3.131 2.818 2.534 2.718 2.420 2.558 2.721 2.718

TC N Obs 7416 7237 6245 6274 5598 6282 6370 6285 6463
Mean 8.907 8.905 9.093 9.256 9.300 9.369 9.377 9.510 9.215
Std Dev 1.028 1.095 0.978 0.925 0.934 0.939 0.975 0.908 0.973
Skewness 0.230 0.150 0.240 0.120 0.077 0.132 0.262 0.236 0.181
Kurtosis 2.828 2.865 2.855 2.690 2.659 2.704 2.659 2.866 2.766

Table 1: Moments of logged household consumption expenditure distributions vs. waves. Avg:
Average values over the whole period. TC = Total Consumption; N = Nondurables; D =
Durables; I = Insurances; F = Food. The figures labeled as N+D+I only refer to households
with non-zero expenditure for each commodity category.
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N D I F TC
N 1.00 - - - -

- - - - -
D 0.40 1.00 - - -

(0.00) - - - -
I 0.49 0.39 1.00 - -

(0.00) (0.00) - - -
F 0.87 0.29 0.44 1.00 -

(0.00) (0.00) (0.00) - -
TC 0.92 0.58 0.51 0.80 1.00

(0.00) (0.00) (0.00) (0.00) -

Table 2: Correlations among household consumption expenditure distributions and p-values
(in brackets) for the null hypothesis of no correlation. Wave 2004. TC = Total Consumption;
N = Nondurables; D = Durables; I = Insurances; F = Food.

Waves
Stats 1989 1991 1993 1995 1998 2000 2002 2004 Avg

N N Obs 7409 7208 6223 6258 5588 6277 6361 6281 6451
Mean 0.717 0.702 0.703 0.699 0.667 0.675 0.668 0.666 0.687
Std Dev 0.141 0.154 0.151 0.142 0.149 0.143 0.147 0.146 0.147
Skewness -0.873 -0.736 -0.797 -0.686 -0.698 -0.726 -0.652 -0.610 -0.722
Kurtosis 3.674 3.199 3.583 3.425 3.317 3.508 3.500 3.339 3.443

D N Obs 2534 2352 2082 1856 2091 1920 1833 1961 2079
Mean 0.130 0.148 0.118 0.127 0.137 0.136 0.118 0.105 0.127
Std Dev 0.138 0.150 0.143 0.144 0.151 0.149 0.144 0.137 0.144
Skewness 1.640 1.591 1.967 1.752 1.755 1.648 1.994 2.233 1.822
Kurtosis 5.767 5.663 7.182 6.139 6.146 5.610 7.072 8.207 6.473

I N Obs 1780 1928 2257 2961 2652 2575 2175 2164 2312
Mean 0.039 0.043 0.048 0.049 0.062 0.062 0.060 0.066 0.054
Std Dev 0.040 0.042 0.051 0.057 0.063 0.066 0.067 0.079 0.058
Skewness 2.116 1.799 2.609 3.954 2.544 3.270 3.700 4.281 3.034
Kurtosis 9.798 7.403 14.980 39.336 14.909 23.049 27.494 33.127 21.262

F N Obs 7409 7228 6235 6261 5596 6281 6366 6281 6457
Mean 0.335 0.364 0.369 0.343 0.323 0.310 0.314 0.305 0.333
Std Dev 0.122 0.139 0.138 0.127 0.124 0.117 0.124 0.117 0.126
Skewness 0.405 0.402 0.285 0.389 0.557 0.457 0.530 0.586 0.452
Kurtosis 3.051 2.938 2.863 3.018 3.563 3.373 3.218 3.423 3.181

N+D+I N Obs 896 904 1099 1225 1310 1162 930 1016 1069
Mean 0.805 0.790 0.794 0.809 0.815 0.817 0.803 0.798 0.804
Std Dev 0.153 0.159 0.175 0.150 0.151 0.158 0.142 0.172 0.157
Skewness -0.423 -0.129 -0.083 0.125 0.220 0.258 0.129 0.741 0.105
Kurtosis 4.790 5.211 5.079 5.173 4.884 6.287 4.888 6.382 5.337

Table 3: Moments of household budget share distributions vs. waves. Avg: average values over
the whole period. N = Nondurables; D = Durables; I = Insurances; F = Food. The figures
labeled as N+D+I only refer to households with non-zero expenditure for each commodity
category.
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N D I F
N 1.00 - - -

- - - -
D -0.55 1.00 - -

(0.00) - - -
I 0.02 0.05 1.00 -

(0.44) (0.08) - -
F 0.48 -0.31 0.04 1.00

(0.00) (0.00) (0.17) -

Table 4: Correlations among household budget share distributions and p-values (in brackets)
for the null hypothesis of no correlation. Wave 2004. N = Nondurables; D = Durables; I =
Insurances; F = Food.



46
ECB
Working Paper Series No 1061
June 2009

W
av

es
L
N

-B
19

89
19

91
19

93
19

95
19

98
20

00
20

02
20

04
N

m
-1

.0
4

(0
.0

09
)

-0
.9

8
(0

.0
10

)
-0

.9
8

(0
.0

10
)

-0
.9

5
(0

.0
10

)
-0

.7
7

(0
.0

10
)

-0
.8

1
(0

.0
09

)
-0

.7
8

(0
.0

09
)

-0
.7

7
(0

.0
09

)
s

0.
76

(0
.0

06
)

0.
83

(0
.0

07
)

0.
83

(0
.0

07
)

0.
77

(0
.0

07
)

0.
74

(0
.0

07
)

0.
72

(0
.0

06
)

0.
75

(0
.0

07
)

0.
74

(0
.0

07
)

D
m

2.
47

(0
.0

26
)

2.
28

(0
.0

27
)

2.
69

(0
.0

31
)

2.
57

(0
.0

33
)

2.
43

(0
.0

30
)

2.
45

(0
.0

31
)

2.
64

(0
.0

32
)

2.
80

(0
.0

30
)

s
1.

33
(0

.0
19

)
1.

33
(0

.0
19

)
1.

42
(0

.0
22

)
1.

40
(0

.0
23

)
1.

37
(0

.0
21

)
1.

37
(0

.0
22

)
1.

35
(0

.0
22

)
1.

34
(0

.0
21

)

I
m

3.
74

(0
.0

28
)

3.
66

(0
.0

28
)

3.
61

(0
.0

28
)

3.
61

(0
.0

24
)

3.
25

(0
.0

24
)

3.
22

(0
.0

23
)

3.
26

(0
.0

25
)

3.
17

(0
.0

26
)

s
1.

18
(0

.0
20

)
1.

24
(0

.0
20

)
1.

31
(0

.0
20

)
1.

31
(0

.0
17

)
1.

25
(0

.0
17

)
1.

18
(0

.0
16

)
1.

17
(0

.0
18

)
1.

20
(0

.0
18

)

F
m

0.
74

(0
.0

07
)

0.
61

(0
.0

08
)

0.
59

(0
.0

08
)

0.
71

(0
.0

08
)

0.
80

(0
.0

08
)

0.
86

(0
.0

08
)

0.
85

(0
.0

08
)

0.
89

(0
.0

08
)

s
0.

59
(0

.0
05

)
0.

66
(0

.0
05

)
0.

66
(0

.0
06

)
0.

61
(0

.0
05

)
0.

62
(0

.0
06

)
0.

60
(0

.0
05

)
0.

62
(0

.0
06

)
0.

60
(0

.0
05

)

W
av

es
In

vΓ
-B

19
89

19
91

19
93

19
95

19
98

20
00

20
02

20
04

N
p

1.
79

(0
.0

27
)

1.
45

(0
.0

22
)

1.
38

(0
.0

22
)

1.
52

(0
.0

25
)

1.
93

(0
.0

34
)

1.
96

(0
.0

32
)

1.
74

(0
.0

28
)

1.
81

(0
.0

30
)

θ
0.

47
(0

.0
08

)
0.

37
(0

.0
07

)
0.

34
(0

.0
07

)
0.

41
(0

.0
08

)
0.

67
(0

.0
13

)
0.

66
(0

.0
12

)
0.

58
(0

.0
11

)
0.

62
(0

.0
12

)

D
p

0.
66

(0
.0

16
)

0.
68

(0
.0

17
)

0.
57

(0
.0

15
)

0.
63

(0
.0

17
)

0.
64

(0
.0

17
)

0.
64

(0
.0

17
)

0.
61

(0
.0

17
)

0.
58

(0
.0

15
)

θ
3.

09
(0

.1
06

)
2.

70
(0

.0
95

)
2.

78
(0

.1
08

)
3.

08
(0

.1
24

)
2.

81
(0

.1
06

)
2.

83
(0

.1
12

)
3.

12
(0

.1
27

)
3.

26
(0

.1
30

)

I
p

0.
99

(0
.0

29
)

0.
95

(0
.0

27
)

0.
86

(0
.0

22
)

0.
78

(0
.0

17
)

0.
92

(0
.0

22
)

0.
93

(0
.0

23
)

0.
91

(0
.0

24
)

0.
71

(0
.0

18
)

θ
23

.1
4

(0
.8

77
)

20
.1

4
(0

.7
38

)
15

.9
5

(0
.5

49
)

13
.3

7
(0

.4
09

)
12

.6
9

(0
.3

98
)

12
.5

0
(0

.3
98

)
12

.4
6

(0
.4

33
)

7.
30

(0
.2

65
)

F
p

3.
07

(0
.0

48
)

2.
38

(0
.0

37
)

2.
52

(0
.0

43
)

2.
86

(0
.0

48
)

2.
73

(0
.0

49
)

3.
02

(0
.0

51
)

2.
77

(0
.0

46
)

3.
00

(0
.0

51
)

θ
5.

41
(0

.0
92

)
3.

51
(0

.0
61

)
3.

68
(0

.0
69

)
4.

82
(0

.0
89

)
5.

00
(0

.0
98

)
6.

02
(0

.1
11

)
5.

34
(0

.0
98

)
6.

09
(0

.1
12

)

Ta
bl

e
5:

E
st

im
at

ed
pa

ra
m

et
er

s
an

d
as

ym
pt

ot
ic

st
an

da
rd

de
vi

at
io

ns
(i

n
pa

re
nt

he
se

s)
of

LN
-B

an
d

In
vΓ

-B
vs

.
w

av
es

.
Av

g:
av

er
ag

e
va

lu
es

ov
er

th
e

w
ho

le
pe

ri
od

.
N

=
N

on
du

ra
bl

es
;D

=
D

ur
ab

le
s;

I
=

In
su

ra
nc

es
;F

=
Fo

od
.



47
ECB

Working Paper Series No 1061
June 2009

W
av

es
p
d
f

19
89

19
91

19
93

19
95

19
98

20
00

20
02

20
04

N
K

S
B

et
a

3.
93

0
(0

.3
6)

3.
20

9
(0

.3
4)

3.
87

4
(0

.3
3)

3.
47

3
(0

.3
6)

3.
33

7
(0

.4
1)

3.
34

0
(0

.4
5)

3.
53

6
(0

.3
8)

3.
24

3
(0

.3
3)

L
N

-B
3.

87
0

(0
.3

6)
3.

15
1

(0
.3

4)
3.

77
9

(0
.3

3)
3.

37
0

(0
.3

7)
3.

27
8

(0
.4

2)
3.

27
4

(0
.4

6)
3.

45
0

(0
.3

8)
3.

16
4

(0
.3

2)
In

vΓ
-B

3.
70

9
(0

.3
7)

3.
04

3
(0

.3
7)

3.
52

8
(0

.3
5)

3.
11

3
(0

.4
0)

3.
13

6
(0

.4
1)

3.
10

3
(0

.4
6)

3.
21

3
(0

.3
6)

2.
96

8
(0

.3
1)

A
D

2
B

et
a

73
.0

1
(0

.3
3)

38
.6

4
(0

.3
3)

72
.8

3
(0

.3
2)

50
.9

4
(0

.3
4)

49
.1

4
(0

.3
6)

48
.7

0
(0

.4
1

60
.6

0
(0

.3
5)

45
.2

5
(0

.3
0)

L
N

-B
65

.1
3

(0
.3

4)
34

.8
6

(0
.3

2)
63

.8
6

(0
.3

2)
44

.2
9

(0
.3

5)
45

.9
6

(0
.3

5)
45

.0
4

(0
.4

0)
55

.2
6

(0
.3

6)
41

.5
6

(0
.3

0)
In

vΓ
-B

42
.5

5
(0

.3
5)

24
.0

7
(0

.3
7)

36
.0

5
(0

.3
4)

26
.4

2
(0

.4
0)

31
.7

7
(0

.3
6)

31
.0

5
(0

.2
1)

33
.7

3
(0

.3
4

27
.4

8
(0

.2
8)

D
K

S
B

et
a

5.
97

9
(0

.2
6)

5.
53

2
(0

.3
2)

6.
05

5
(0

.2
8)

5.
67

9
(0

.4
1)

5.
48

2
(0

.3
8)

5.
72

9
(0

.2
8)

5.
89

7
(0

.3
6)

6.
35

0
(0

.2
6)

L
N

-B
6.

09
2

(0
.2

8)
5.

65
6

(0
.3

3)
6.

28
0

(0
.3

2)
5.

91
0

(0
.4

3)
5.

72
0

(0
.4

0)
5.

92
0

(0
.3

0)
6.

18
9

(0
.3

8)
6.

63
7

(0
.2

8)
In

vΓ
-B

5.
52

4
(0

.1
9)

5.
09

2
(0

.3
7)

5.
47

8
(0

.2
9)

5.
28

3
(0

.4
2)

5.
04

8
(0

.3
9)

5.
30

6
(0

.2
0

5.
42

7
(0

.4
2)

5.
78

6
(0

.1
8)

A
D

2
B

et
a

19
3.

28
(0

.2
6)

14
9.

61
(0

.3
0)

18
9.

78
(0

.2
6)

14
8.

09
(0

.4
1)

13
4.

88
(0

.3
6)

16
1.

90
(0

.2
8)

16
8.

69
(0

.3
5)

22
4.

49
(0

.2
5)

L
N

-B
15

0.
16

(0
.2

5)
12

1.
19

(0
.2

9)
15

3.
64

(0
.2

9)
12

4.
44

(0
.4

3)
11

6.
48

(0
.3

8)
13

3.
49

(0
.2

9)
14

6.
18

(0
.3

6)
18

6.
59

(0
.2

7)
In

vΓ
-B

13
0.

92
(0

.2
0)

11
2.

83
(0

.3
9)

11
5.

92
(0

.3
3)

11
2.

10
(0

.4
3)

10
3.

96
(0

.4
0)

11
7.

75
(0

.1
9

11
7.

01
(0

.4
4)

12
9.

91
(0

.1
8)

I
K

S
B

et
a

6.
50

9
(0

.3
1)

6.
00

1
(0

.2
9)

6.
89

1
(0

.2
9)

7.
85

3
(0

.3
1)

7.
16

1
(0

.2
6)

7.
36

2
(0

.2
9)

7.
43

5
(0

.2
6)

7.
56

7
(0

.2
6)

L
N

-B
6.

42
3

(0
.3

3)
5.

95
0

(0
.3

2)
6.

72
9

(0
.3

1)
7.

64
5

(0
.3

2)
6.

93
7

(0
.2

9)
7.

19
7

(0
.3

2)
7.

29
6

(0
.3

0)
7.

45
2

(0
.2

8)
In

vΓ
-B

6.
46

4
(0

.3
1)

5.
95

2
(0

.2
9)

6.
82

2
(0

.2
7)

7.
70

2
(0

.3
4)

7.
10

7
(0

.2
3)

7.
27

3
(0

.2
5)

7.
31

2
(0

.2
4)

7.
06

3
(0

.4
8)

A
D

2
B

et
a

21
2.

45
(0

.3
1)

15
5.

52
(0

.2
9)

26
7.

57
(0

.2
7)

56
0.

43
(0

.3
0)

35
1.

57
(0

.2
5)

41
5.

20
(0

.2
8)

43
6.

94
(0

.2
5)

51
4.

84
(0

.2
5)

L
N

-B
13

9.
00

(0
.3

2)
10

7.
05

(0
.3

1)
15

8.
93

(0
.3

0)
27

4.
53

(0
.3

2)
19

4.
88

(0
.2

8)
23

4.
79

(0
.2

9)
24

8.
61

(0
.2

8)
28

6.
99

(0
.2

6)
In

vΓ
-B

18
5.

45
(0

.3
0)

14
4.

63
(0

.2
9)

20
4.

32
(0

.2
8)

25
7.

90
(0

.4
2)

25
0.

95
(0

.2
4)

26
9.

22
(0

.2
5)

26
6.

89
(0

.2
8)

21
5.

16
(0

.5
7)

F
K

S
B

et
a

3.
35

4
(0

.4
0)

3.
57

7
(0

.3
1)

3.
29

6
(0

.3
6)

3.
15

4
(0

.4
2)

4.
03

0
(0

.4
7)

4.
27

1
(0

.2
7)

3.
61

8
(0

.3
3)

3.
40

0
(0

.3
8)

L
N

-B
3.

29
2

(0
.3

9)
3.

51
2

(0
.3

1)
3.

21
9

(0
.3

5)
3.

08
8

(0
.4

2)
3.

96
2

(0
.4

7)
4.

18
8

(0
.2

8)
3.

54
8

(0
.3

3)
3.

33
7

(0
.3

9)
In

vΓ
-B

3.
37

5
(0

.3
8)

3.
54

8
(0

.2
2)

3.
32

9
(0

.2
9)

3.
17

1
(0

.4
1)

3.
99

6
(0

.4
5)

4.
28

8
(0

.2
2)

3.
61

8
(0

.3
1)

3.
38

4
(0

.3
9)

A
D

2
B

et
a

52
.7

9
(0

.3
3)

69
.4

0
(0

.2
9)

56
.0

4
(0

.3
1)

46
.0

9
(0

.3
4)

89
.9

2
(0

.4
2)

10
8.

23
(0

.2
8)

62
.4

8
(0

.3
1)

0.
31

(0
.3

8)
L
N

-B
49

.3
2

(0
.3

2)
63

.3
5

(0
.4

3)
52

.5
9

(0
.3

5)
43

.6
8

(0
.3

2)
80

.0
6

(0
.5

3)
90

.9
4

(0
.3

1)
57

.0
0

(0
.2

9)
0.

29
(0

.3
7)

In
vΓ

-B
69

.3
4

(0
.3

6)
51

.4
7

(0
.1

9)
45

.9
4

(0
.5

2)
51

.9
3

(0
.2

4)
74

.3
3

(0
.3

4)
12

6.
02

(0
.2

0)
66

.3
8

(0
.2

5)
0.

25
(0

.3
5)

Ta
bl

e
6:

K
ol

m
og

or
ov

-S
m

ir
no

v
(K

S)
an

d
Q

ua
dr

at
ic

A
nd

er
so

n
D

ar
lin

g
(A

D
2)

st
at

is
ti

cs
w

it
h

p-
va

lu
es

(i
n

br
ac

ke
ts

).
N

=
N

on
du

ra
bl

es
;

D
=

D
ur

ab
le

s;
I

=
In

su
ra

nc
es

;F
=

Fo
od

.
In

bo
ld

fa
ce

th
e

fig
ur

es
th

at
in

an
y

gi
ve

n
w

av
e

an
d

co
m

m
od

ity
ca

te
go

ry
m

in
im

iz
e

st
at

is
ti

cs
or

m
ax

im
iz

e
p-

va
lu

es
.



48
ECB
Working Paper Series No 1061
June 2009

W
av

es
p
d
f

19
89

19
91

19
93

19
95

19
98

20
00

20
02

20
04

N
B

et
a

0.
00

4
(0

.4
4)

0.
00

5
(0

.8
6)

0.
00

8
(0

.7
0)

0.
01

0
(0

.2
6)

0.
01

0
(0

.4
6)

0.
01

5
(0

.1
9)

0.
01

3
(0

.5
9)

0.
01

4
(0

.6
4)

L
N

-B
0.

00
3

(0
.4

3)
0.

00
4

(0
.8

6)
0.

00
7

(0
.6

8)
0.

00
9

(0
.2

5)
0.

01
0

(0
.4

6)
0.

01
5

(0
.2

0)
0.

01
3

(0
.5

8)
0.

01
4

(0
.6

4)

In
vΓ

-B
0.

00
(0

.6
6)

0.
00

3
(0

.9
1)

0.
00

6
(0

.7
3)

0.
00

8
(0

.2
5)

0.
00

8
(0

.4
5)

0.
01

3
(0

.2
0)

0.
01

1
(0

.5
8)

0.
01

2
(0

.6
2)

D
B

et
a

0.
00

4
(0

.8
8)

0.
00

3
(0

.9
4)

0.
00

5
(0

.6
8)

0.
00

4
(0

.7
7)

0.
00

4
(0

.8
5)

0.
00

4
(0

.7
9)

0.
00

5
(0

.6
6)

0.
00

5
(0

.6
6)

L
N

-B
0.

00
2

(0
.9

3)
0.

00
2

(0
.9

9)
0.

00
4

(0
.5

7)
0.

00
3

(0
.8

7)
0.

00
2

(0
.9

7)
0.

00
3

(0
.8

6)
0.

00
4

(0
.7

0)
0.

00
3

(0
.7

4)

In
vΓ

-B
0.

00
4

(0
.9

0)
0.

00
3

(0
.9

6)
0.

00
5

(0
.7

1)
0.

00
4

(0
.8

2)
0.

00
4

(0
.8

7)
0.

00
4

(0
.7

8)
0.

00
6

(0
.6

5)
0.

00
6

(0
.6

2)

I
B

et
a

0.
00

3
(0

.7
7)

0.
00

4
(0

.6
3)

0.
00

2
(0

.9
5)

0.
00

3
(0

.7
1)

0.
00

2
(0

.9
4)

0.
00

3
(0

.7
6)

0.
00

3
(0

.6
2)

0.
00

2
(0

.7
6)

L
N

-B
0.

00
2

(0
.9

7)
0.

00
3

(0
.8

9)
0.

00
3

(0
.8

7)
0.

00
2

(0
.8

3)
0.

00
3

(0
.8

1)
0.

00
3

(0
.7

7)
0.

00
2

(0
.9

2)
0.

00
2

(0
.9

5)

In
vΓ

-B
0.

00
3

(0
.7

6)
0.

00
4

(0
.6

4)
0.

00
2

(0
.9

4)
0.

00
3

(0
.6

9)
0.

00
1

(0
.9

7)
0.

00
3

(0
.7

7)
0.

00
2

(0
.6

8)
0.

00
3

(0
.5

4)

F
B

et
a

0.
00

1
(1

.0
0)

0.
00

2
(0

.9
9)

0.
00

4
(0

.7
8)

0.
00

6
(0

.6
1)

0.
00

4
(0

.8
0)

0.
00

5
(0

.7
4)

0.
00

5
(0

.8
0)

0.
00

7
(0

.5
3)

L
N

-B
0.

00
1

(1
.0

0)
0.

00
2

(0
.9

8)
0.

00
4

(0
.7

8)
0.

00
6

(0
.6

2)
0.

00
4

(0
.7

9)
0.

00
5

(0
.7

5)
0.

00
5

(0
.7

9)
0.

00
7

(0
.5

2)

In
vΓ

-B
0.

00
2

(1
.0

0)
0.

00
3

(0
.9

8)
0.

00
5

(0
.7

7)
0.

00
7

(0
.6

0)
0.

00
5

(0
.7

7)
0.

00
6

(0
.7

3)
0.

00
6

(0
.8

0)
0.

00
8

(0
.5

2)

Ta
bl

e
7:

Av
er

ag
e

ab
so

lu
te

de
vi

at
io

n
st

at
is

ti
cs

w
it

h
p-

va
lu

es
(i

n
br

ac
ke

ts
).

Av
er

ag
e

ab
so

lu
te

de
vi

at
io

ns
co

m
pu

te
d

by
co

m
pa

ri
ng

em
pi

ri
ca

la
nd

th
eo

re
ti

ca
lp

df
s.

N
=

N
on

du
ra

bl
es

;D
=

D
ur

ab
le

s;
I

=
In

su
ra

nc
es

;F
=

Fo
od

.
In

bo
ld

fa
ce

th
e

fig
ur

es
th

at
in

an
y

gi
ve

n
w

av
e

an
d

co
m

m
od

ity
ca

te
go

ry
m

in
im

iz
e

av
er

ag
e

ab
so

lu
te

de
vi

at
io

ns
or

m
ax

im
iz

e
p-

va
lu

es
.



49
ECB

Working Paper Series No 1061
June 2009

LN-B m > 0 m < 0 InvΓ-B θ > 1 θ < 1

s < 1 F N p > 1 F N

s > 1 D, I p < 1 D, I

Table 8: A taxonomy of household budget share distributions according to the estimated pa-
rameters (m, s) and (p, θ). N = Nondurables; D = Durables; I = Insurances; F = Food.

ξ > 0 ξ < 0 κ >> 3 κ ≥ 3
low σ high σ

μ/med 	 1 F N N, F

μ/med < 1 D, I D, I

Table 9: A taxonomy of household budget share distributions according to estimated sample
moments. N = Nondurables; D = Durables; I = Insurances; F = Food. μ = mean; med =
median; σ = standard deviation; ξ = skewness; κ = kurtosis.
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