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Abstract 
In this paper, we explore the potential gains from alternative combinations of the surveyed 
forecasts in the ECB Survey of Professional Forecasters. Our analysis encompasses a variety 
of methods including statistical combinations based on principal components analysis and 
trimmed means, performance-based weighting, least squares estimates of optimal weights as 
well as Bayesian shrinkage. We provide a pseudo real–time out-of-sample performance 
evaluation of these alternative combinations and check the sensitivity of the results to possible 
data-snooping bias. The latter robustness check is also informed using a novel real time meta 
selection procedure which is not subject to the data-snooping critique. For GDP growth and 
the unemployment rate, only few of the forecast combination schemes are able to outperform 
the simple equal-weighted average forecast. Conversely, for the inflation rate there is stronger 
evidence that more refined combinations can lead to improvement over this benchmark. In 
particular, for this variable, the relative improvement appears significant even controlling for 
data snooping bias.  
 
 
 
 
 
Keywords: forecast combination, forecast evaluation, data snooping, real-time data, Survey of 
Professional Forecasters 
JEL: C22, C53 
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Non-technical summary 
In this paper, given the available sample of approximately 10 years of data that is now 

available from the ECB SPF, we explore alternative combinations of the SPF 

forecasts with a view to optimising the quality of information that is made available to 

decision makers and the public. The central focus of forecast combination is to reduce 

the information in a vector of forecasts to a single summary or combined forecast 

using an estimated set of combination weights. The optimal combination chooses the 

weights such that the expected loss of the combined forecast error is minimised. Such 

optimal weights will tend to be larger for more accurate forecasts particularly when 

such forecasts are less strongly correlated with other forecasts. Moreover, in a manner 

that is similar to the classical diversification gains in financial portfolio theory, the 

resulting combined forecast also offers potential improvements in forecasting 

performance by “averaging out” some of the error in individual forecasts. 

 

Our analysis employs a wide array of forecast combination methods including 

trimming (i.e. exclusion of “extreme” forecasts), weighting based on historical 

performance, optimal weighting as well as Bayesian shrinkage of least squares 

weights toward equal weights. In estimating the optimal combination weights by 

linear projection, we propose using statistical techniques designed to reduce the high 

cross-sectional dimension of the SPF dataset by constructing sub-groups of 

forecasters (e.g. high, average and low performing) and estimate the combination 

weights conditional on this classification. We then compare the out-of-sample 

forecast performance of these alternative SPF combination strategies with the current 

practice of focussing on the equal weighted forecast. We also examine the robustness 

of our results to the vintage of the data used as the target variable and check the extent 

to which the performance of different forecast combinations may have changed 

during the period of exceptional macroeconomic volatility associated with the 2008-

2009 financial crisis. 

 

Over the sample period analysed, we demonstrate that the equal weighted 

combination sets a reasonably high benchmark in the sense that it is shown to be quite 

informative when measured against simple time series or other naïve forecasts. 

Notwithstanding the relatively good performance of this SPF benchmark, a number of 
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alternative combination strategies are shown to achieve quantitatively important and 

statistically significant gains relative to this benchmark in an out-of-sample “horse 

race” conducted over the five year period from 2004:q1 to 2008:q3. Looking across 

variables, the scope for improvements from alternative combinations is most 

significant for inflation with quantitatively smaller (and generally less significant) 

gains achievable for GDP and, especially, for the unemployment rate.  

 

The above results refer to “normal times” as the sharp volatility and large forecast 

errors associated with the 2008-2009 financial crisis are excluded from the evaluation 

sample. Nonetheless, when the sample is extended to include the most recent period 

of large macroeconomic volatility, a number of the alternative combination strategies 

(least squares, Bayesian shrinkage and the recent best forecaster) continue to perform 

better than the equal weighted benchmark. During the crisis, it is noteworthy that a 

strategy of picking the recent best forecasters performed better than the benchmark for 

all three variables at the 1-year ahead horizon. Such a result points to the possible 

gains that may arise from placing all the weight on the forecaster adapting his/her 

outlook to the crisis environment and the loss in performance which may arise if 

positive weights continue to be assigned to forecasters who have not adapted.  

 

Overall, we would conclude from this study that there exists a reasonable case to 

consider alternative combinations as means of more optimally summarising the 

information collected as part of the quarterly rounds of the ECB SPF. An important 

caveat applying to our analysis, however is the likely relevance of data snooping bias 

given the small sample size available for evaluation and the large specification search 

conducted across alternative combination strategies. Only for the inflation forecasts, is 

a “reality check” (which attempts to control for such bias) indicating a robust 

improvement of the best performing model relative to the benchmark at the 10% 

significance level. For the other variables and horizons, the reality check is more in 

line with the often reported result of being unable to outperform an equal weighted 

combination in practice. This tends to caution against any assumption that the 

identified improvements relative to the equal weighted benchmarks would necessarily 

persist in the future and argues for the reporting of a suite of alternative combinations 

rather than focussing on a particular single “best” combination method.  
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1. Introduction  
Coinciding with the launch of the single currency in January 1999, the European 

Central Bank (ECB) started a Survey of Professional Forecasters as part of the 

information gathering and analysis of the macroeconomic outlook that was to be used 

as input for monetary policy decisions. Since then, the results of the ECB SPF have 

been communicated to policy makers on a quarterly basis and also have been 

regularly published in the ECB Monthly Bulletin and on its website (Garcia, 2003 and 

Bowles et al., 2007). Throughout this period, the forecast data collected in the SPF 

has normally been summarised by way of a simple average of the surveyed forecasts. 

Although a large literature exists on how to optimally combine forecasts (see 

Timmermann (2006), Newbold and Harvey (2002) and Clemen (1989)), such an 

approach was  reasonable given the lack of any available track record among SPF 

panel members in forecasting euro area aggregates. Moreover, as discussed further 

below, various empirical studies have shown that such a simple equally weighted 

pooling of forecasts performs relatively well in practice compared with alternative 

approaches that rely on estimated combination weights and thus can be sensitive to 

parameter estimation error.  

 

In this paper, given the available sample of approximately 10 years of data against 

which we can evaluate SPF forecasts, we explore alternative combinations of the SPF 

forecasts with a view to optimising the quality of SPF information that is made 

available to decision makers and the public. As discussed in Timmermann (2006), the 

central focus of forecast combination is to reduce the information in a vector of 

forecasts to a single summary or combined forecast using an estimated set of 

combination weights. The optimal combination chooses the weights such that the 

expected loss of the combined forecast errors is minimised. Such optimal weights will 

depend on the first two moments of the joint distribution of the vector of forecasts and 

the actual outcome and have an intuitive interpretation: They will tend to be larger for 

more accurate forecasts, particularly when such forecasts are less strongly correlated 

with other forecasts. In a manner that is similar to the classical diversification gains in 

financial portfolio theory, the resulting combined forecast offers potential 

improvements in forecasting performance by “averaging out” the idiosyncratic 

components in individual forecasts. Such idiosyncratic components in individual 
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forecasts may reflect misspecification in an individual forecasters’ models, 

measurement error or divergence in the degree of adaptability of individual forecasts 

to new information, including information concerning possible structural breaks 

associated with technological innovation or institutional change impacting on the 

macro economy (see Diebold and Pauly (1987), Hendry and Clements (2002) and 

Aiolfi, Capistran and Timmermann (2010)). More generally, the potential gains from 

more optimal combination strategies may be particularly large during times of 

exceptional change or volatility in macroeconomic conditions. For example, 

combination methods which allow for time-variation in combination weights may be 

particularly suited to periods such as the “great recession” associated with the 2008 – 

2009 financial crisis.  

 

Our analysis encompasses a variety of methods that have been proposed in the 

literature including statistical combinations based on principal components analysis 

and trimmed means, performance-based weighting (Bates and Granger (1969)), 

optimal weighting as well as Bayesian shrinkage, advocated in Clemen and Winkler 

(1986), Diebold and Pauly (1990) and Stock and Watson (2004). In estimating the 

optimal combination weights by linear projection, we also follow the conditional 

combination strategy in Aiolfi and Timmerman (2006) and employ statistical 

techniques designed to reduce the cross-sectional dimensionality of the dataset by 

constructing sub-groups of forecasters and estimate optimal weights conditional on 

this sub-grouping. As a result, our mode of analysis aims at handling the relatively 

large cross sectional dimension of the SPF dataset with a view to maintaining a 

relatively parsimonious representation so as to minimise estimation error in the 

combination weights. In comparing the out-of-sample forecast performance of the 

above alternative combination strategies, we test the robustness of our findings along 

a number of dimensions that are judged to be important in practical applications:  

Most notably, given that we test a large number of combination methods using a 

single historical dataset, we employ the White (2000) reality check for data snooping 

as well as a novel “meta” selection procedure aimed at shedding light on the 

robustness of any identified gains from alternative combination methods. Also, given 

the significant revisions to euro area macroeconomic variables over our sample 

period, we examine the sensitivity of our results to the chosen vintage of the outcome 

for the forecast target variable against which forecast performance is assessed. 
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Finally, the sub-sample stability of the performance of alternative combinations is 

considered, in particular the extent to which the relative performance of different 

methods may have changed during the period of exceptional macroeconomic 

volatility associated with the 2008-2009 financial crisis.  

 

Our main findings can be summarised as follows: Over the sample period analysed, 

the equal weighted combination sets a reasonably high benchmark in the sense that it 

is shown to be quite informative when measured against simple time series or other 

Naïve forecasts. Notwithstanding the relatively good performance of the SPF 

benchmarks, a number of alternative combination strategies are shown to achieve 

quantitatively important gains relative to this benchmark. Looking across variables, 

the scope for improvements from alternative combination strategies appears the most 

significant for inflation with smaller and less significant gains achievable for GDP 

and, especially, for the unemployment rate. In general, our results do not identify any 

single combination approach which appears to dominate across either variables or at 

different horizons. Instead, depending on the horizon and the variable, the best 

performing combination methods include least squares, Bayesian shrinkage as well as 

more simple strategies where the weighting is determined only by relative past 

performance.  

 

The remainder of the paper is organised as follows. In Section 2 we review the main 

classes of combination methods we employ and explain how in practice we have 

applied them to the ECB SPF. Section 3 provides some information on the SPF 

dataset, focussing on the cross-sectional information that is available and some 

practical issues (such as the entry and exit of forecasters from the panel) that need to 

be overcome when implementing several of the forecast combination methods we 

apply. Section 4 presents our three main performance evaluation measures while in 

Section 5 we present the main out-of-sample forecast evaluation results for each of 

the three main forecast variables (inflation, GDP growth and the unemployment rate) 

over two different horizons (1- and 2-years ahead). This section also examines the 

overall robustness of our findings i) with respect to the data vintage used in the 

forecast evaluation,  ii) in terms of overall sub-sample stability and iii) accounting for 

possible data snooping bias. Finally Section 6 concludes with a summary of our main 

findings.  
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2. Forecast Combination Methods 
In this section, we review the main categories of approaches we apply for the 

estimation of combination weights and the alternative benchmarks against which they 

are evaluated. Let  be the i’th survey participant’s forecast of the outcome in 

period t+h, based on the forecaster’s information at time t. The main aim of forecast 

combination is to reduce the information in a vector of N forecasts ( , i = 1, . . . , 

N) to a single summary or combined forecast  where w represents the N-

dimensional vector of combination weights, wi,t+h, i = 1, …, N. The optimal 

combination chooses w such that the conditional expected loss of the combined 

forecast errors is minimised, i.e. the optimal combination weights ( ) solve the 

problem denoted by (2.1) below 
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where denotes the error of the combined forecast and L( . ) the representative 

decision maker’s loss function. Assuming that the forecast is linear in the combination 

weights and that loss is of the MSE type, i.e. , combination weights 

will depend on the first two moments of the joint distribution of the vector of 

forecasts and the actual outcome and can be estimated by linear projection of the 

individual forecasts on the target variable.

c
hte

2)()( c
ht

c
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1  As discussed in Timmermann (2006), it 

can be shown that the equally weighted combination - which is currently the headline 

SPF indicator used by the ECB - is optimal only under strongly restrictive 

assumptions that one would not necessarily expect to hold ex ante, i.e. under the 

assumption that the forecasts all have the same variances and pair wise cross 

correlations. Such assumptions would be likely to hold only in the unlikely situation 

where forecasters all share a single common information set and the same model of 

the economy on the basis of which they report and update their forecasts. To the 

extent that forecasters hold differing views on the structure of the economy or adapt 

their views at different speeds in response to economic news, or have different 
                                                 
1 The problem of finding the optimal combination weights is directly analogous to the well-known 
portfolio optimisation problem posed in finance. 
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information sets on which they condition their forecasts, there are potentially 

significant opportunities to better exploit the information content of the SPF through 

alternative more optimal combinations of the individual replies. Given the SPF’s role 

as input included in the regular information set underpinning monetary policy 

decision-making in the euro area, together with its function of providing publicly 

available information on the macroeconomic outlook, such opportunities to improve 

forecast performance warrant a careful empirical investigation.  

 

In practice, however, there may be some important limits to the gains from attempting 

to combine forecasts optimally. Optimal combination weights are obtained by linear 

projection of the target variable on each of the forecasts (Granger and Ramanathan 

(1984)) and will therefore be subject to sizeable estimation error particularly in 

situations where the number of individual forecasts is large relative to the number of 

time series observations, as is the case for the ECB SPF which was launched only in 

1999 with a relatively large number of approximately 90 participants from across the 

EU. Such estimation error reflects the dependence of the optimal weights on the full 

conditional covariance matrix of forecasts which – when the number of forecasts is 

high – entails a large number of unknown parameters. Such estimation error is a 

commonly cited explanation for why more simple combination schemes – such as the 

equally weighted combination – have been shown to perform well in practices. For 

example, Stock and Watson (2004), Makridakis et al (1982), Makridakis and Winkler 

(1983), and Smith and Wallis (2009) are four notable studies highlighting the 

empirical success of the equal weighted combination. At the same time, some studies 

have suggested greater empirical success with more theoretically motivated 

combinations. For example, using a conditional combination strategy, Aiolfi and 

Timmermann (2006) report some out-of-sample improvement compared with simple 

equal weighted combinations or using the previous best model. More recently, 

Capistrán and Timmermann (2009) cite evidence in support of an alternative affine 

transformation of the equal weighted forecast as performing reasonably well in small 

samples.  

 

Essentially there is a trade-off between the squared bias of the forecast – which 

generally is reduced by using more complex and flexible models – and the variance of 

the forecast error which comprises the effect of parameter estimation error and so 



12
ECB
Working Paper Series No 1277
December 2010

tends to be lower for simple combinations such as equal-weighting. Good forecasting 

methods exploit this trade-off in an optimal manner. The extent of this trade-off will 

depend on factors such as the cross-sectional and time-series dimensions of the data 

along with the (unknown) parameters of the data generating process and the joint 

distribution of the forecasts. These differ across variables, data sets, sample periods 

and forecast surveys and so it is difficult to come up with a universally appropriate 

strategy that uniformly performs well. In the remainder of this section, we discuss 

these and other simpler approaches to combining forecasts that are commonly adopted 

in practical applications. We restrict ourselves to the class of linear combinations and 

focus on those methods which emphasise parsimony with a view to minimising as 

much as possible estimation error.  

 

2.1 Trimming and other statistical combinations  

A first class of methods draws on statistical techniques in order to summarise the 

information in the distribution of individual forecasts. We consider the median as well 

as other trimmed mean measures which remove extreme values from the cross section 

of individual forecasts. Such combinations which assign zero weight to some 

forecasts and equal weights to all others can be motivated by the possibility of 

forecasts that are completely non-informative. To the extent that such forecasts 

represent “noise” their removal will improve the overall forecast accuracy of any 

combined forecast, including the equally weighted combination.  Within the class of 

statistical approaches, Stock and Watson (2004) have suggested to use principal 

components analysis to estimate the static common factors from the panel of forecasts 

in order to derive the combined forecast. In order to implement this approach the first 

few principal components are computed recursively and regressed (again recursively) 

on the outcome of the target variable. Denoting  as the first p principal 

components of the panel of forecasters, the combined forecast is computed using the 

weights estimated using the OLS regression (2.2) below.  

tpt FF ,,1
ˆ,...,ˆ

 

httppt
c

ht FwFwy ,,11 ˆ...ˆ  
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In the practical application of this method, we consider the performance of the 

forecast combination for up to three principal components (p = 1, 2 and 3) and 

estimate all the combination weights recursively and allowing for the lags reflecting 

the publication delay of the outcome variable in order to preserve the “real time” 

character of the resulting combination.  

 

2.2 Performance-based weighting schemes 

Another class of combination methods is based on the intuitive idea of assigning 

higher weights to forecasts with a relatively good forecasting track record and lower 

weights to forecasts with a poor performance. The idea for such performance-based 

weighting was introduced by Bates and Granger (1969). Such combinations have been 

shown to perform reasonably well in practice (Newbold and Granger (1974)), a 

finding which is often interpreted in terms of robustness given high estimation 

uncertainty that plagues other approaches attempting to exploit forecast co-variances. 

Stock and Watson (2004) propose the following general representation for such a 

scheme which allows for an arbitrary discount function that can be applied to 

historical forecast errors (capturing the idea that past forecast performance has a 

smaller impact on current combination weights), i.e.  

 

n

j
jt

it
it

m

mw

1

1

1

            2
, )ˆ(

0

hsihs
Ts

sht
it yym

ht

(2.3) 

 

where  is the discount factor and  represents the cumulative sum of past 

(discounted) forecast errors computed since the start of the sample (T0). The case of 

 = 1 (no discounting) corresponds to an optimal weighting scheme when the 

individual forecasts are uncorrelated (Bates and Granger (1969)). Hence this method 

essentially ignores any correlation in the errors of the individual forecasts. Setting 

values for  below unity allows for higher (lower) weights to be assigned to more 

recent (distant) forecast errors in the calculation of the combination weights. In 

empirical applications of this approach, the weights can be computed either 

recursively using all available observations from the start of the sample (T0) or over a 

itm
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rolling window of a given length (v) to take account of possible time variation in 

relative forecast performance. The latter assigns zero weight to any past forecast 

errors occurring in periods prior to this rolling window. The shorter is v the more 

weight is put on the model’s recent track record and the larger the part of historical 

performance that is discarded. Assuming no discounting of performance within the 

rolling window, the relevant combination can are derived according to (2.4) below.  
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(2.4) 

In the empirical implementation of (2.4), we assess the performance for v = 1, 4 and 8 

quarters. Another commonly used and simple performance-based combination 

method is the Recent Best (RB) forecast As implemented in this study this assigns all 

weight to the individual forecasts with the lowest most recently observed squared 

forecast errors or the lowest average mean squared error over a rolling window of 

length v. In the absence of any strong prior information about the length of window 

necessary in order to identify the best forecaster, the empirical analysis considers 

window lengths of v = 1 and v = 4 quarters. 

 

2.3 Least squares (optimal) combination weights  

Under mean-squared loss, the optimal combination weights have a straightforward 

interpretation as the coefficients in a multiple regression of the observed outcome on 

the individual forecasts (Granger and Ramanathan (1984)). We consider the following 

four basic combination regressions: 
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Equation (2.5) is the most general regression allowing for an intercept term and 

estimating the weights on individual forecasts using unconstrained OLS. Hence it 

allows for a possible bias adjustment in the combined forecast which may adjust for 

any bias in the individual forecasts.2 In contrast, equation (2.6) omits a constant in the 

combination regression and therefore does not include any correction for possible 

bias.3 Equation (2.7) imposes the adding up constraint that the estimated weights sum 

to unity. The constraint ensures that the combined forecast will be unbiased if the 

individual forecasts are also unbiased. Lastly, equation (2.8) follows Granger and 

Newbold (1986) by ruling out negative weights and weights greater than unity in 

order to ensure that the combined forecast always lies within the range of the 

individual forecasts.4  All of the above four regressions (2.5) – (2.8) are estimated 

recursively and the recursive weights are used to derive the combined forecasts in 

pseudo real time.5 In practice, a key problem which arises in applying the above 

regression approaches to the SPF forecasts is the relatively large cross sectional 

dimension of available forecasts to be combined together with the relatively small 

time series dimension that can be used to estimate the combination regressions. Aiolfi 

and Timmermann (2006) have suggested the use of clustering techniques as a simple 

way of overcoming this problem. They apply the k-mean clustering algorithm to the 

panel of individual forecasts in order to identify the group structure of the dataset. The 

combination weights are then estimated by replacing the N individual forecasts in 

                                                 
2 As a result the combined forecast estimated using equation 2.5 may be unbiased even if the individual 
forecasts are biased. 
3 As highlighted subsequently in Section 3 of this paper, the case for some bias adjustment exists for a 
number of variables in the ECB SPF.  
4 The convexity constraints are implemented using non-linear least squares. In principal, such a non-
negativity constraint may be sub-optimal. However, in practice, such constraints may help improve 
forecast performance by helping to limit the impact of parameter estimation error on the combined 
forecast. 
5 Hence, although the notation in (2.4) to (2.8) suppresses any time subscript on the weights but rather 
emphasises their horizon dependence, the least squares combination weights will also vary over time 
reflecting the recursive estimation of the regression coefficients.  
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equations (2.5) to (2.8) with the mean of each cluster. In the empirical application we 

restrict ourselves to a maximum of three clusters given the restricted time series 

sample that is available for the estimation.  

 

Capistrán and Timmermann (2009) propose an alternative least-squares combination 

approach which may be useful in practical situations where the dimension of the 

vector of forecasts is very large. Their combination is based on a simple linear 

projection of the target variable on the equally weighted forecast
ht

y , i.e.  

 

hth
c

ht ht
ywwy ,0  

(2.9) 

 

where w is the estimated slope parameter in the combination regression. This simple 

linear projection has the advantage of being relatively parsimonious, thus helping to 

limit the impact of parameter estimation error. Moreover, it provides a simple 

transformation of the equal weighted forecast and has been shown empirically to 

perform well in finite samples. It can also be implemented easily in cross-sectional 

panels like the SPF with frequent missing observations due to the entry, exit and 

possible re-entry of forecasters from the panel of respondents. As with the other 

approaches above, (2.9) can be estimated either with or without the bias adjustment 

parameter ( ). hw ,0

 

2.4 Shrinkage (Bayesian) Combinations  

A fourth and related class of combination schemes is to calculate the combination 

weights as a weighted average of the weights from the least squares estimates and the 

weights of the equally weighted forecast combination. The combination weights are 

as a result shrunk toward an equally weighted prior, thus giving the resulting 

combination a Bayesian interpretation (Diebold and Pauly (1990)). As implemented 

in Stock and Watson (2004), our shrinkage weights take the form 

 

)/1()1(ˆ ,, Nww hihi   

(2.10) 
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where )1(/1,0(max NhTN  and the parameter governs the amount of 

shrinkage and T denotes the number of observations used in the least squares 

regressions. Hence, when the sample size is high relative to the number of forecasts 

used in the combination, the least squares weights will be given a higher weight. As 

with other constrained estimates of combination weights the intuition for the above 

approach is to limit the impact of the data on the estimated weighting scheme as a 

way to possibly reduce the associated parameter estimation error. In the practical 

application below, in line with the strategy adopted in Aiolfi and Timmermann 

(2006), we estimate the shrinkage combination using the same estimated clusters 

employed in the least squares combination and for alternative values of the shrinkage 

parameter. We vary the intensity of the shrinkage parameter, allow for the possibility 

of either 2 or 3 clusters, either with or without a bias adjustment, allowing for a total 

of eight possible shrinkage combinations.6  

 

3. The SPF dataset  
In this section we provide a brief overview of the ECB SPF dataset focusing on its 

cross-sectional dimension. We also highlight the extent of the entry and exit of 

forecasters in the ECB panel and, given that a number of combination methods 

require a panel without missing observations, we present a simple approach to create a 

fully balanced panel.  

 

3.1 The ECB SPF: some key features  

The SPF forecasts are described in some detail in previous studies such as Bowles et 

al. (2010) and Garcia (2003). A key aspect that warrants clarification is the definition 

and transformations of the variables being forecasted. For both the 1 and 2- year 

horizons, these refer to the annual change in the (level of) GDP and the (level of) the 

HICP in quarter t+h compared with quarter t+h-4 and the level of the unemployment 

expressed as a percentage of the euro area labour force in quarter t+h.7 To get a sense 

                                                 
6 The prior mean of the bias adjustment parameter is set equal to zero. The choice of shrinkage 
parameter allows the weight on the prior mean to vary between 25% and 75% depending on the 
number of observations and clusters used.  
7 Recent literature has emphasised the possible impact of such transformations on forecast performance 
of model-based forecasts.  In the present context, the evaluation is very much constrained by the 
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of the behaviour of these SPF forecasts over the sample period, Figure 1 plots the 

mean SPF forecasts for the three variables (GDP, inflation and the unemployment 

rate) and two horizons (1 and 2-year ahead forecasts) analysed in this study. Both the 

current (2009:q3) and the 1st vintages are shown for each of the outcomes together 

with the forecast errors for the equal weighted forecast calculated using the 1st 

vintage. The figure highlights the relatively sizeable and often persistent forecast 

errors from the SPF; the errors are particularly sizeable for the quarters starting in 

2008:q3 reflecting the impact of the 2008-2009 financial crisis. The inflation and 

GDP forecast errors show a clearly one-side pattern while those for the 

unemployment rate are more two-sided.8 This graphical presentation also highlights 

some difference between the longer 2-year horizon forecasts and the 1-year forecasts, 

in the sense that the former have tended to be much smoother and, hence, less 

correlated with the actual outcome.  

 

To provide some graphical information on the heterogeneity embedded in the SPF 

panel, Figure 2 plots the histograms of the mean errors for each variable and horizon. 

In order to avoid any sampling distortions associated with the entry and exit of 

forecasters, the plots are based on a preliminary filtering of the data so as to include 

only those forecasters who have been contributing relatively frequently.9  Without 

this pre-filtering, some forecasters would perform poorly (or reasonably well) in 

relative terms simply because they contributed to the survey during a period when the 

target variable exhibited above (below) average volatility. For example, in the case of 

GDP, the cohort of forecasters who entered the panel only in 2007 and 2008 

performed particularly poorly in relative terms reflecting the exceptionally high 

volatility in the macroeconomic environment around this time. Table 1 provides 

further evidence on this, reporting the mean errors and RMSE over different sub 

samples for each variable and horizon. For example, the average RMSE on the 1-year 

ahead SPF forecasts for GDP rose from 1.1 when calculated over the period 1999:q1-

                                                                                                                                            
definitions of the variables used in the SPF questionnaire. A major virtue of the latter - from the 
perspective of empirical analysis - has been its relative stability in terms of structure and definitions of 
forecast variables.  More generally, however, an important question for future research is the possible 
impact of survey design on actual forecast performance of the SPF. 
8 For a more comprehensive analysis of the properties of the SPF forecasts for growth and the 
unemployment rate see Bowles et al (2010). 
9 The filter is such that forecasters with more than four consecutive missing observations are excluded 
from the panel. The unbalanced nature of the SPF panel is discussed in more detail in Section 3.2 
below.  
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2003:q4 to 1.8 when calculated over the period 2004:q1-2009:q3. This latter period 

includes the influential observations linked to the exceptional macroeconomic 

volatility associated with the 2008-2009 financial crisis. A similar, though less 

marked, deterioration in forecast performance is evident for the unemployment rate 

and inflation forecasts reflecting the impact of the financial crisis (see also Table 1).  

                                                

 

A clear feature of the data evident from Figure 1 and Table 1 is the presence of 

possible bias in SPF forecasts. In the case of GDP and the unemployment rate, the 

bias has tended to be positive (i.e. as defined here the forecasted level for both 

variables has tended to be above the actual outcome). In Figure 2, μ denotes the 

average mean error across all forecasters, i.e. of the equal weighted forecast 

combination, and N the number of forecasters that “survive” in the filtered panel. In 

the case of the 1- and 2-year ahead unemployment rate forecast the average bias has 

nonetheless tended to be quite small (i.e. less than 0.2 percentage points), while in the 

case of GDP 1 year ahead it is larger (close to 0.6 percentage points). In the case of 

inflation, there is also evidence of possible negative bias (i.e. the forecasted level for 

inflation has tended to be below the actual outcome). Overall, this graphical analysis 

suggests that for some variables and some horizons, combination methods which 

allow for bias adjustment could yield superior out-of-sample performance over the 

evaluation period relative to combination methods that do not directly adjust for 

bias.10  

 

Figure 3 shows the equivalent histograms for the RMSEs of each forecaster (again 

using the filtered dataset). From the plots, it is also clear that the SPF forecasts exhibit 

standard features one would expect to observe. In particular, with the exception of the 

inflation forecasts (see also Table 1), forecast performance as measured by the RMSE 

deteriorates with an increase in the length of the forecast horizon (see Patton and 

Timmermann (2010)). As with the mean error plot in Figure 2, the plots also highlight 

significant heterogeneity in forecasting performance across individuals and it is 

precisely this heterogeneity in the data that alternative combination methods seek to 
 

10 The findings in Croushore (2009) for the US SPF suggest less evidence of bias when surveyed 
forecasts are evaluated over significantly longer runs of data than the 10 years that is available for the 
ECB SPF. Most combinations we apply incorporate some form of bias adjustment via the constant in 
the combination regressions. A relatively large bias in individual forecasts will also tend to result in a 
relatively low weight when using the performance based weighting scheme discussed in Section 2.2. 
However, performance based combination does not include a bias adjustment at the aggregate level.  
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exploit. Another interesting feature that can be examined from these cross plots is the 

possible existence of a group structure in the data set. However, Figure 3 does not 

suggest a clear clustering of panel members into groups of low or high forecast 

accuracy. Nonetheless, in the following section we evaluate the performance of least 

squares combination schemes where the forecast are replaced by the simple mean of 

alternative clusters identified by applying the K-mean algorithm to the panel of 

squared forecast errors in the fist half of the sample (1999:q3- 2003:q4).  

 

As a final graphical insight into the dataset, Figure 4 plots forecaster performance 

over the first part of the sample (X-axis) against the performance in the second part of 

the sample (Y-axis) for each variable and each horizon. In line with the data reported 

in Table 1, a clear feature evident in Figure 4 is the sharp deterioration in average 

forecast performance in the second half of the sample compared with the first half. 

High persistence in forecast performance would suggest a positive correlation 

between past and subsequent forecast performance.11 Such a positive relation is 

indeed evident for some variables and horizons but it tends not to be statistically 

significant. However, in the case of unemployment, the graphical evidence is more 

suggestive of anti-persistence or “crossings” (see Aiolfi and Timmermann (2006)) 

whereby relatively good past performance in the first part of the sample is associated 

with a relatively poor forecast performance in the second half of the sample (and vice 

versa). Finally Figure 4 also highlights that the overall dispersion in forecaster 

accuracy is not time invariant. This is particularly evident for GDP forecasts (both 

horizons) where a much greater level of dispersion is evident in the second sub-

sample, again most likely linked to the larger forecast errors made at the time of 2008-

2009 financial crisis. From the perspective of combining such forecasts, both 

observations above (i.e. time varying dispersion in forecast accuracy and anti-

persistence) would tend to highlight the possible gains from combination methods 

which allow for sufficient time variation in the combination weights. More generally, 

such instability in each forecaster’s relative performance also highlights the possible 

gains from forecast combination as a way of hedging against instability in any 

particular forecaster’s individual performance. 

 
                                                 
11 We include a break between the two sub-samples to ensure that any observed correlation does not 
reflect the overlapping nature of the time series of forecasts.  
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3.2 Balancing the panel  

As highlighted in the recent study by Capistrán and Timmermann (2009), a major 

practical challenge that arises in forecast surveys is the frequent and extensive ‘entry’ 

and ‘exit’ of participants from the SPF panel. Focussing on the filtered data (i.e. 

which includes only those regularly participating as defined above), depending on the 

variable or horizon, the employed filter yields a panel of (approximately) between 30 

and 40 forecasts. However, even the filtered data involves several missing values and 

gaps reflecting the entry and exit of forecasters.12 As these gaps need to be filled in 

order to implement several of the combination methods discussed in Section 2, we 

propose a simple panel regression approach to balance the panel and fill these gaps. 

Our simple approach, focuses on the dynamics of relative forecast performance using  

the panel regressions of the form:  

htihthtiihthti yyyy ,11,, )ˆ(ˆ    

(3.1) 

(3.1) posits a simple AR(1) process, whereby the relative deviation of each forecaster 

to the simple average in period t is linked to its relative deviation in period t-1. When 

imposing i =  = 1.0, (3.1) implies missing observations for individual forecasts are 

set equal to the previously reported individual forecast updated with the change in the 

simple average of those forecasters who do respond. For 0    1.0, the missing 

values for forecaster i in period t are replaced with the period t average forecast plus a 

fraction of the previously observed deviation from the average forecast. In 

implementing equation (3.1),  can be estimated recursively over the sample period to 

ensure that the method used to balance the panel preserves the pseudo real time nature 

of the resulting dataset. Alternatively, one could use a factor model and an EM 

algorithm to fill out missing observations, see Stock and Watson (2002).13  

 
                                                 
12 In each filtered panel, the share of missing observations in the total panel is approximately 5%. For 
example, for the 1-year ahead GDP forecasts with N = 38 participants and 40 time series observations 
collected over the period 1999:q3-2009:q3, 79 of the 1520 panel observations were missing due to 
entry and exit of forecasters.  
13 An alternative even simpler - though possibly more controversial approach - would set the first 
missing observations for an individual’s forecast equal to his/her previously reported forecast. This 
“naïve updating” can then be applied recursively through the sample to give a fully balanced panel. We 
have examined the sensitivity of the results to the choice of method used to balance the panel and find 
them to be overall insensitive to this choice.  
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3.3. Real time data issues 

A key practical complication that arises in forecast combination and forecast 

evaluation relates to the impact of data revisions. Survey forecasts are by definition 

“real time” in the sense that they cannot use information that was unavailable at the 

time the survey was carried out and combinations of such forecasts also possess a 

corresponding real-time dimension. However, data revisions alter the estimate of the 

outcome for the forecast target variable and the evaluation of alternative combinations 

may therefore be sensitive to the choice of vintage of data used to define the target 

variable.14  

 

To get a sense of the relevance of the role of such real time issues for the evaluation 

of SPF combinations, Figure 5 plots the difference between the 1st estimate provided 

by Eurostat for each of the three SPF variables and the corresponding “current” 

estimates available in 2009:Q3.15 From the chart it is clear that substantial revisions in 

euro area data are apparent for both GDP and the unemployment rate. Compared with 

initial published results, the 2009:Q3 estimates of euro area GDP has been revised 

upward substantially over most of the period since 1999.16 Similar sized revisions are 

evident for the unemployment rate (with downward revisions in the first half of the 

sample being followed by significant upward revisions subsequently). In the case of 

inflation, there have been more limited revisions overall and mainly in the early years 

of the sample.  

 

Figure 5 would suggest a clear need to consider the possible impact of the vintage of 

data used for the target variable on the evaluation of alternative forecast 

combinations. A priori, however, there is no simple rule which could guide the choice 

                                                 
14 It is not just the evaluation of alternative combinations but also the estimation of combination 
weights that will be sensitive to the data vintage used to derive the target variable. All estimated 
combinations discussed in Section 2 - with the exception of the simple trimming and the equal 
weighted combination - may be sensitive to the vintage of the data used to define the target variable. 
For example, under performance-based combination, historical revisions to the outcomes for the target 
variable may imply possible changes in the relative weight on any given forecaster. Similarly, the 
estimated coefficients in regression-based combinations may be sensitive to the vintage of the time 
series used as the dependent variable in the combination regression. The pseudo real time approach in 
this study discards the relevance of data revisions on estimated combinations for the sake of simplicity 
but this is clearly a relevant area for future research.  
15 Our real time data is fully consistent with the estimates in the real time database of the Euro Area 
Business Cycle Network as described in Giannone, Henry, Lalik and Modugno (2010). 
16 The importance of such data revisions for the euro area is similar to the evidence for the US which is 
reviewed in Croushore and Stark (2003).  
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of data vintage to use for the evaluation. On the one hand, to the extent that a new 

data release is pure “news”, the associated revision should be completely 

unpredictable. This would suggest that revisions could be ignored in forecast 

evaluation and, in line with this news hypothesis, our baseline results use the 1st 

estimate for each variable in deriving forecast performance statistics. However, to the 

extent that measurement error (or “noise”) partly accounts for subsequent data 

revisions, they may have a predictable component which would suggest a possible 

preference to focus on the revised vintages of data in the forecast evaluation.17 Given 

this alternative hypothesis, we report our forecast evaluation results also using the 

current vintage of estimates for the three macro variables analysed and check the 

sensitivity of the performance of different combinations to this alternative choice.  

 

4. Forecast Performance Measurement  
In this section we briefly discuss the out-of-sample performance evaluation methods 

we use to assess the alternative combination strategies discussed in Section 2. The 

evaluation is presented in the form of the Mean Squared Error (MSE) of the 

alternative SPF combinations ( ) relative to the benchmark equal weighted 

combination,

htcy ,ˆ

hty . Assuming our “holdout” sample (used for the out-of sample 

evaluation) runs from period T1 to period T, our performance evaluation measure is 

given by: 

 

(Relative) MSE = T
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(4.1) 

 

                                                 
17 Clark and McCracken (2008) analyse the impact of data revisions on forecast evaluation and show 
that such revisions can significantly impact the asymptotic behaviour of tests of equal predictive 
ability. In particular, they highlight that the result in West (1996) that parameter estimation error can be 
ignored in tests of predictive accuracy only holds under the “news” hypothesis. In contrast, in the 
presence of noisy data revisions, parameter estimation error contributes to the variance of the test 
statistic and cannot be ignored in inference.  
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and will be less than unity whenever the alternative combination performs better than 

the simple equal weighted combination. To help gauge the overall performance of the 

equal weighted benchmark, we also report the Relative MSE for three simple time 

series models. In particular, we consider a Naïve forecast which sets the projected 

level of the variable equal to its current level as known at the time of the survey and 

allowing for publication lags.18  We also estimate a Random Walk with drift for the 

seasonally adjusted level of GDP and the level of the consumer price index (HICP).19 

Lastly, with a view to capturing any persistence in the dynamics of the three variables, 

we also estimate an AR(1) process for the log change in GDP and HICP and for the 

level of the unemployment rate. While these time series benchmarks are quite simple, 

they have proven to be quite difficult to beat in practice - particularly at horizons 

beyond 1 quarter ahead. They therefore provide a reasonably good time series 

benchmark against which to assess the performance of the SPF. In addition to 

examining Relative MSEs, it is useful to be able to assess the overall statistical 

significance of any observed difference in forecast performance. Therefore we also 

report the results of Diebold and Mariano (1995) test (DM) for the null hypothesis 

that a given combination fails to beat the equal-weighted benchmark. This test is 

particularly suited to the evaluation of multi-period forecasts as is the case here and 

where there is evidence of non-Gaussian forecast errors which are likely to be serially 

correlated (see Mariano (2002)).  

 

The DM statistic provides statistical evidence about whether a particular combination 

performs better than the equal weighted benchmark. Ideally however we would like to 

assess the extent to which the evidence in favour of the best performing combinations 

is robust in a statistical sense. Given that we are evaluating a large set of potential 

combinations repeatedly using the same historical dataset, chance alone may be able 

to explain a statistically significant DM result for any given combination. Therefore, 

as a further test of the robustness of our findings, we also report the results of the 

                                                 
18 Publication lags imply that the known current level for each forecast variable is approximately 
lagging the survey month by 1 month in the case of inflation, by 2 months in the case of the 
unemployment rate and by 1 quarter in the case of the annual GDP growth. This information on the 
level of each forecast variable that is known at the time of the survey is provided to ECB SPF 
participants when they receive the survey questionnaire.   
19 Given that it is not a clearly trending variable like GDP and the HICP, a random walk without drift 
would seem more appropriate for the level of the unemployment rate. This is, however, equivalent to 
the Naïve forecast for the level of the unemployment rate. 
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White (2000) reality check for data snooping. The reality check tests the null 

hypothesis that the expected performance of the best performing model is no better 

than the benchmark. As such the test provides useful information as to whether or not 

the identification of some improvement compared with the equal weighted 

combination is merely the result of data mining (and therefore perhaps less likely to 

persist over time).  Denoting fj as a measure of the out-of-sample forecasting 

performance of the jth combination (j = 1, . . . , J) relative to the benchmark, e.g., 

MSEj – MSE0, where the benchmark (represented by model zero) is the equal-

weighted combination, the White Reality Check (RC) test can be applied to the 

performance statistic: 

 

White RC = jj
fTMin 2

1

 

(4.2) 

Where jf is the sample mean of the forecasting performance of model j measured 

relative to the performance of the benchmark, i.e.  
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While a closed form solution for the distribution of the minimum in (4.2) above is not 

available, it can be approximated using a bootstrap sampling procedure and the 

relevant P-values can then be reported for the null hypothesis that the expected 

performance of the best performing combination is no better than the equal weighted 

combination.20  This provides some indication as to whether or not the findings are 

robust to possible “data snooping” bias. 

 

One limitation to the reality check procedure is that it assesses the performance of the 

best combination scheme jointly with the performance of a large cross-section of 

competing specifications. Under such circumstances, the power of the test may be 

                                                 
20 See White (2000), Sullivan, Timmermann and White (1999) and Qi and Wu (2006) for further 
information and practical applications of the reality check. 
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reduced due to the inclusion of poorly performing models.21 We therefore consider 

one final alternative to help shed light on the overall robustness of the out-of-sample 

results. Suppose, for example, that the decision maker has some way of selecting in 

real time the best combination. This would happen if, e.g., the best combination 

scheme dominates other models from an early point in the sample onwards. We 

evaluate the performance of the combinations identified from such a ‘meta’ rule that 

recursively selects the top combination from among all specifications discussed in 

Section 2 against the benchmark over the out-of-sample evaluation period. As an 

example, subject to having a minimum initial track record, at each point in time one 

could choose that combination strategy which historically (up to that point in time) 

generates the smallest MSE-value. The identity of this model may change through 

time so we are effectively referring to the forecasting performance of the combination 

selection or ‘search’ rule. Such a meta selection procedure is not subject to the ‘data 

snooping’ criticism since it effectively only considers one combination strategy at 

each point in time.  

 

5. Results  
In this section we first discuss the performance of the equal weighted SPF 

combinations compared with alternative time series and other simple benchmarks. We 

then turn to a comparison of the alternative classes of combination methods with the 

equal weighted combination and conclude with an examination of the overall 

robustness of our findings in terms of their sensitivity to real time data issues, their 

stability over time and the reality check to assess the relevance of possible data 

snooping bias.  

 

5.1 Comparison of SPF with statistical benchmarks  

Tables 2, 3 and 4 report the baseline out-of-sample evaluation results for GDP 

growth, HICP inflation and the unemployment rate respectively for both 1- and 2-year 

ahead horizons. The results are reported in the form of the MSE for the various 

combinations relative to the MSE of the equal weighted combination. The 

performance statistics are calculated for the period 2004:q1 to 2008:q3, i.e. over 
                                                 
21 Hansen (2005) has therefore suggested a modification to White’s test aimed at reducing the impact of 
irrelevant alternatives using a studentized test statistic and incorporating additional sample information 
by means of a data dependent null distribution. 
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“normal” business cycle conditions and excluding the very large macroeconomic 

shocks associated with the 2008-2009 financial crisis which had a strong impact on all 

variables particularly from 2008:q4 onwards. In addition to the relative MSE, the P-

value from the Diebold-Mariano test is reported for each combination, providing an 

indication of the likelihood that the equal weighted combination outperforms the 

alternative combinations.  

 

One notable feature looking at the tables is the relatively good performance of 

(equally-weighted) SPF forecasts for the real variables (GDP and unemployment) 

relative to the simple time series models (Random Walk, Naïve or AR(1)). Only in the 

case of inflation, do Naïve time series predictors outperform the SPF average at both 

one and two-year ahead horizons. For example, the Random Walk with drift for the 

level of the price index significantly improves on the equal weighted average by over 

20% at both the one- and two year ahead horizons. These results highlighting the 

relatively good performance of univariate time series models for inflation are 

consistent with previous studies of the SPF (e.g. Bowles et. al. (2007) and Bowles et 

al. (2010)) and euro area inflation forecasting (e.g. Benalal et al. (2004) and Giannone 

et al. (2010)). From the perspective of the ECB, in the case of inflation, the relatively 

poor performance of the equal weighted SPF forecast certainly motivates the case for 

examining the extent to which alternative SPF combinations might improve on the 

existing information extracted from the survey. As a final comment on the 

comparison with other simple benchmarks, it is notable that there are no significant 

gains from either trimming or focusing on the median SPF forecast for any variable or 

any horizon. This suggests very little evidence of “noisy” forecasters in the ECB SPF 

panel in line with the survey’s policy of including only “professional” forecasters with 

a sound reputation and experience in producing euro area forecasts. 

 

5.2 Relative performance of alternative combinations methods 

To get a sense of the relative performance of alternative combinations, Figure 6 

summarises the detailed results in Tables 2, 3 and 4 by displaying the relative MSEs 

for the best performing specification within 7 main combination categories for all 

variables and both horizons. The evaluation statistics are computed using the “real 

time” or 1st vintage of the target variable as the actual outcome in line with the 

hypothesis that subsequent revisions are pure news and therefore unpredictable (in 
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Section 5.3 below we assess the sensitivity of the results to the choice of vintage for 

the outcome series). When the performance gain from a combination method is 

statistically significant according to the Diebold-Mariano test, Figure 6 also reports 

the relevant P-value. 

 

Looking first at the results for GDP in Figure 6(a), several alternative combinations 

outperform moderately (by approximately 10%) the equal weighted combination. At 

the 1-year horizon, the gains are strongest for least squares combinations and to a 

lesser extent combinations based on shrinkage. In the case of the 2-yr ahead horizon, 

the scope for improving on the performance of the equal weighted combination 

appears much smaller (see also the detailed results in Table 2 where for this horizon 

almost all specifications have relative MSEs that exceed unity). However, the 

performance based combination using a short rolling window (v = 1 quarter) also 

demonstrates a quantitatively noticeable 13% improvement which is also statistically 

significant according to the DM statistic. Given that just over 30 specifications for 

alternative combinations have been tried, this finding may reflect data snooping bias 

(see the discussion in Section 5.5 below).  

 

Figure 6(b) also depicts the relative performance of alternative combination strategies 

for the SPF inflation forecasts. In the case of inflation, several of the alternative 

combinations outperform the equal weighted one. The gains are most clearly evident 

for regression based combinations such as the projection on the mean, principal 

components combination as well as least squares and shrinkage based combinations 

(see also the detailed results reported in Table 3). However, several of the 

performance based strategies also outperform the benchmark, most noticeably the 

strategy of using the recent best forecaster. In a number of cases the relative gains 

from alternative combination strategies are both quantitatively important and 

statistically significant according to the DM statistic. At the 1- and 2-year ahead 

horizons the best models for inflation are, respectively, the least squares and the 

projection on the mean, both without any bias adjustment. Compared with the equal 

weighted combination, the best performing models deliver a quantitative reduction in 

the MSE that is greater than 40%. The relatively good performance of alternative 

combinations for inflation may link to the very persistent downward bias in the equal 

weighted combination over the sample period analysed as well as some evidence of 
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positive persistence in individual forecaster performance shown in Figure 4. In 

particular, the alternative combinations may better adjust for bias and better exploit 

observed persistence in forecaster performance relative to the equal weighted 

benchmark combination. Finally, the fact that so many of the alternative 

specifications outperform the benchmark in the case of inflation may be indicative 

that the results are not just a reflection of data snooping bias although we provide a 

more rigorous analysis of this question in Section 5.5 below.  

 

Finally, the corresponding results for the unemployment rate, in Figure 6(c), indicate 

a relatively low scope for achieving a quantitatively important improvement in 

forecast performance relative to the equal weighted combination. At both horizons 

only very few alternative combination methods have MSEs that are smaller than the 

equal weighted combinations. However, at the shorter horizon, the combinations 

based on shrinkage weights suggest some significant gains (see also Table 4). 

 

5.3 Sensitivity to definition of target variable  

Figure 7 provides the first of some robustness checks on the results discussed in 

Section 5.2 above. It reports the relative MSEs computed using the “current” 

(i.e. 2009:q3) vintage of outcome variables and compares them with those computed 

using the real-time or 1st vintages (as used in Figure 6). In general, the overall results 

do not appear excessively sensitive to the choice of target variable, although the 

performance of the alternative forecast combinations is generally slightly worse in the 

case of the GDP growth and unemployment rate forecasts when the more recent 

2009:q3 data vintage is used. At the same time, the best performing combination 

methods (shrinkage, constrained least squares or performance-based depending on the 

variable and horizon) continue to perform best when evaluated against the current 

vintage of the outcomes. The scope for improving on the equal weighted combination 

remains most evident for the case of inflation; indeed the performance of the various 

inflation combinations is broadly unaffected given that inflation was hardly revised 

during the evaluation period (as also seen from Figure 5). 

 

5.4 Sub-sample stability: 2008-2009 financial crisis effects  

Given the exceptional impact of the financial crisis on forecast performance as 

reflected in the summary statistics reported in Table 1, it may be insightful to examine 
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the sensitivity of the performance of alternative combinations to the inclusion of the 

crisis period in the evaluation sample. In particular, this will allow some assessment 

of whether the results obtained during times of normal business cycle fluctuations are 

also applicable during periods of exceptional macroeconomic volatility. It may also 

help identify combination strategies that offer superior performance during periods of 

exceptional economic change.  

 

Figure 8 summarises the results for the SPF sample which includes the last four 

observations from 2008:q3 to 2009:q4 and which is therefore strongly influenced by 

the financial crisis. Compared with Figure 6, it is indeed clear that the results are 

sensitive to the crisis period. One feature is that for GDP (at both horizons), there is 

some improvement in the relative performance of several alternative combinations 

when the sample is extended to include the crisis period. The best performing 

combination at the one year horizon is the recent best forecaster, although according 

to the DM test (P-value = 0.29) it is not significantly better than the benchmark. 

Several other regression based methods also improve moderately on the GDP 

benchmark at both 1 and 2-year ahead horizons. A similar picture emerges from the 

unemployment rate forecasts where, once again, relative performance improves 

compared with the results from the sample period excluding the extreme volatility of 

end 2008 and 2009. In the case of inflation, the performance improvement relative to 

the benchmark - while nonetheless remaining significant - is lowered as a result of the 

inclusion of the crisis period.  

 

The above comparison of the results from the two samples tends to suggest that 

models which perform well during normal times may not be best suited to periods of 

exceptional macroeconomic volatility. This can be seen easily in Table 5a and 5b 

which reports the best performing combinations for each of the two samples. From the 

tables it can be seen that for no variable or horizon is it the case that the best 

performing specifications is unchanged when the sample period is extended to include 

the crisis. During the normal times the methods which tend to dominate are either 

constrained least squares, shrinkage or diversified performance based weighting. In 

contrast, during the crisis period, a number of the unconstrained least squares 

combinations as well as a strategy of picking the recent best forecaster tend to 

perform best. Such combinations in general allow more adaptability in the weights to 
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changing economic circumstances and this may partly explain their better 

performance during times of exceptional changes in the macroeconomic 

environment.22 For the sample strongly impacted by the crisis errors, it is noteworthy 

that a strategy of picking the recent best forecasters performed better than the 

benchmark for all three variables at the 1-year ahead horizon (see Figure 8). Such a 

result points to the gains that may arise from placing all the weight on the forecaster 

adapting his/her outlook to the crisis environment (and the losses which may arise if 

positive weights continue to be given to forecasters who have not adapted their 

outlook to the rapidly changing environment).  

 

5.5 The “reality check” for data snooping  

Table 5a and 5b also reports the results of the “reality check” procedure described in 

Section 4 to assess the relevance of possible data snooping bias in the empirical 

results. The results are reported in the form of P-values which provide an estimate of 

the likelihood that the best performing model does not outperform the equal weighted 

combination. The White P-values are reported together with the “Nominal” P-values 

from the standard DM tests taken from Tables 2, 3 and 4. Given the role of influential 

observations linked to the macroeconomic effects of the 2008-2009 financial crisis, 

we report the reality check for both the sample excluding (Table 5a) and including 

(Table 5b) these observations.  

In general, the reality check results highlight the major caveat applying to the 

apparent success of some models in forecast “horse races” of the type we have 

undertaken here, particularly in a context where the number of “horses” running in the 

race is quite large and the “course” (the sample period available) is relatively short. In 

particular, for both GDP and unemployment, the reality check suggests that 

significant gains identified by the DM test may be a reflection of data snooping bias. 

In the case of both variables the test indicates that it is more likely than not that the 

best performing models do not outperform the equal weighted combination. In the 

case of inflation, very much in line with the overall stronger evidence on the scope for 

improvements in relative performance as stressed in Section 5.2, the white P-values 

are considerably lower. Indeed for both the 1- and 2- year horizons, the reality check 
                                                 
22 From a practical point of view, an important question concerns the length of time needed to identify 
the recent best forecaster. As seen in Table 5b, the model with a 4 quarter window is best for the 
sample including the crisis although the performance based on a shorter window is almost equally as 
good as the latter for all three variables.   
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tends to confirm that the best performing models are more likely than not to 

outperform the equal weighted combinations even when we control for the effects of 

possible data snooping bias. This is also consistent with the evidence on the inflation 

forecasts in Table 3 showing a much larger fraction of alternative combination 

strategies outperforming the benchmark. However, only for the 1-year ahead inflation 

forecasts, is the reality check indicating a significant improvement of the best 

performing model relative to the benchmark at the 10% significance level.  

 

The above relatively strong result for inflation is only valid during “normal times”, 

however. When the sample period is extended to include the period of high 

macroeconomic volatility from end 2008 onwards (Table 5b), the improvements 

identified for all alternative combinations appear to “fail” the reality check at standard 

levels of significance. These findings are therefore more in line with the often 

reported result in the combination literature on the difficulty of being able to 

outperform an equal weighted combination in practice. They also tend to caution 

against any tendency to take a relatively good past performance among the alternative 

combination strategies as a strong indication of a likely better performance in the 

future.  

 

5.6 A recursive “meta” selection procedure  

Table 6 reports the results from the evaluation of the meta selection procedure 

described in Section 4 for both the out-of-sample evaluation periods, i.e. excluding 

and including the financial crisis period. For the period which excludes the impact of 

the crisis, quantitative improvements are identified for inflation at both one and two 

year horizons and for GDP growth at the 2-year horizon. For GDP at the 1-year 

horizon and the unemployment rate at both horizons, the meta selection rule performs 

worse than the equal weighted combination out of sample. According to the P-values 

from the Diebold Mariano tests, some of the improvements are also statistically 

significant for inflation (in line with the reality check result above).  When the sample 

is extended to include the crisis, the meta selection procedure generally performs 

worse, again in line with the reality check results. One exception is the inflation 

combination 1 year ahead which achieves a 5% improvement over the benchmark 

although this gain is not significant at the 10% level.  
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6. Concluding remarks  
In this paper we have reviewed the potential for forecast performance improvements 

through the application of forecast combination methods to the ECB Survey of 

Professional Forecasters. Our analysis is based on a pseudo out-of-sample comparison 

of four broad classes of linear combination methods and just over 30 alternative 

combination specifications compared with the equal weighted benchmark which is 

currently the headline indicator from the SPF that is reported to policy makers and the 

public.  

 

Our main findings can be summarised as follows: Over the sample period analysed, 

the equal weighted combination sets a reasonably high benchmark in the sense that it 

is shown to be quite informative when measured against other time series and Naïve 

forecasts. Notwithstanding the relatively good performance of the SPF benchmarks, a 

number of alternative combination strategies are shown to achieve quantitatively 

important gains relative to this benchmark in an out-of-sample “horse race” conducted 

over the five year period from 2004:q1 to end 2008:q3. Looking across variables, the 

scope for improvements from alternative combination strategies appears the most 

significant for inflation with smaller gains achievable for GDP and, especially, for the 

unemployment rate. The relatively good performance for inflation combinations links 

to a downward bias in the equal weighted combination as well as some evidence of 

positive persistence in individual forecaster performance which the alternative 

combination strategies are able to exploit. However, in general, our results do not 

identify any single combination approach which appears to dominate across either 

variables or at different horizons. Instead, depending on the horizon and the variable, 

the best performing combination methods include least squares, Bayesian shrinkage 

as well as more simple strategies where the weighting is determined only by relative 

past performance.  

 

We have also examined the sensitivity of the above results across a number of key 

dimensions. Firstly, in general, the findings are insensitive to the chosen vintage of 

the target variable used in the forecast evaluation. Moreover, when the sample is 

extended to include the most recent period of large macroeconomic volatility 

associated with the 2008/2009 financial crisis, some of the alternative combination 
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strategies (least squares, Bayesian shrinkage and the recent best forecaster) continue 

to perform better than the equal weighted benchmark. However, the best performing 

model for each variable and horizon differs when comparing the results including the 

crisis period with those covering periods of more normal business cycle fluctuations. 

During the crisis, it is noteworthy that a strategy of picking the recent best forecasters 

performed better than the benchmark for all three variables at the 1-year ahead 

horizon. In addition unconstrained least squares methods generally perform better 

during the crisis. Such results point to the possible gains that may arise from 

combination methods which allow the weights adapt most quickly in a context where 

there are large and persistent shocks to the macro economic environment. In such a 

context, for example, there may be gains associated with placing all the weight on the 

forecaster adapting his/her outlook to the crisis environment and a corresponding loss 

in performance which may arise if positive weights continue to be assigned to 

forecasters who have not sufficiently adapted their forecasts to the changing economic 

situation.  

 

Finally, we have also assessed the sensitivity of our analysis to possible data snooping 

bias using the reality check suggested by White (2000) together with a novel meta 

procedure rule that should be robust to data snooping critiques. In general, both of 

these “reality checks” highlight an important caveat applying to the apparent success 

of some models in forecast “horse races” of the type we have undertaken. In 

particular, given that we have applied a large number of combination models 

repeatedly on the same small evaluation sample, some of the quantitatively sizeable 

improvements identified relative to the SPF benchmark may be simply due to chance. 

In line with this, only for the 1-year ahead inflation forecasts, is the reality check 

indicating a robust improvement of the best performing model relative to the 

benchmark at the 10% significance level. For the other variables and horizons, the 

reality check highlights the difficulty of being able to statistically outperform an equal 

weighted combination in practice. Such results tend to caution against any assumption 

that the identified improvements relative to the equal weighted benchmarks would 

necessarily persist in the future.  

 

Overall, we would conclude from this study that there exists a reasonably good case 

to consider alternative combinations as a means of more optimally summarising the 
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information collected as part of the regular quarterly rounds of the ECB SPF. Among 

the range of models considered, it is notable for example that the equal weighted 

model is never the best performing model in the out-of-sample evaluation. However, 

the variation in the best performing specification through time, across target variables 

and across horizons together with the likely role of chance in explaining the success 

of some models in our sample would caution against any temptation to try and pick 

out a preferred or best combination method. Rather, our results would argue in favour 

of reporting a suite of alternative combinations which forecast users could draw on 

taking into account the historical track record of individual combination methods and 

the prevailing economic context.  
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Figure 1:  SPF Panel – Equal weighted forecasts and outcomes (alternative vintages) 
GDP (H=1) GDP (H=2) 

 

 

HICP (H=1) HICP (H=2) 

  
Unemployment (H= 1) Unemployment (H=2)  

  

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

19
99

Q
1

20
00

Q
1

20
01

Q
1

20
02

Q
1

20
03

Q
1

20
04

Q
1

20
05

Q
1

20
06

Q
1

20
07

Q
1

20
08

Q
1

20
09

Q
1

Error (based on first vintage)
Outcome (current vintage)
Outcome (first vintage)
SPF average

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

19
99

Q
1

20
00

Q
1

20
01

Q
1

20
02

Q
1

20
03

Q
1

20
04

Q
1

20
05

Q
1

20
06

Q
1

20
07

Q
1

20
08

Q
1

Error (based on first vintage)
Outcome (current vintage)
Outcome (first vintage)
SPF average

-1.0

0.0

1.0

2.0

3.0

4.0

19
99

Q
1

20
00

Q
1

20
01

Q
1

20
02

Q
1

20
03

Q
1

20
04

Q
1

20
05

Q
1

20
06

Q
1

20
07

Q
1

20
08

Q
1

20
09

Q
1

-3.0

-2.0

-1.0

0.0

1.0

2.0

Error (based on first vintage; RHS)
Outcome (current vintage)
Outcome (first vintage)
SPF average

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

19
99

Q
1

20
00

Q
1

20
01

Q
1

20
02

Q
1

20
03

Q
1

20
04

Q
1

20
05

Q
1

20
06

Q
1

20
07

Q
1

20
08

Q
1

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Error (based on first vintage; RHS)
Outcome (current vintage)
Outcome (first vintage)
SPF average

0.0

2.0

4.0

6.0

8.0

10.0

12.0

19
99

Q
1

20
00

Q
1

20
01

Q
1

20
02

Q
1

20
03

Q
1

20
04

Q
1

20
05

Q
1

20
06

Q
1

20
07

Q
1

20
08

Q
1

20
09

Q
1

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

Error (based on first vintage; RHS)
Outcome (current vintage)
Outcome (first vintage)
SPF average

0.0

2.0

4.0

6.0

8.0

10.0

12.0

19
99

Q
1

20
00

Q
1

20
01

Q
1

20
02

Q
1

20
03

Q
1

20
04

Q
1

20
05

Q
1

20
06

Q
1

20
07

Q
1

20
08

Q
1

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

Error (based on first vintage; RHS)
Outcome (current vintage)
Outcome (first vintage)
SPF average



40
ECB
Working Paper Series No 1277
December 2010

 
Figure 2:  SPF Panel – Mean Forecast Errors ( 1999Q3-2009Q3) 
(percentage points) 

 
 
Note: The charts illustrate the distribution of mean errors across forecasters. Mean errors are calculated using the filtered 
SPF panel and the 1st estimate of the target variables as the actual outcome.  denotes the average mean error across 
individual forecasters where the error is defined as forecast value less the actual outcome. H indicated the horizon (1 or 2 
years) and N  the number of forecasters included in the filtered dataset 
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Figure 3:  SPF Panel – Root Mean Squared Forecast Errors (1999Q3-2009Q3)  
(percentage points) 

 
Note: The charts illustrate the distribution of root mean squared errors across forecasters (RMSEs). RMSEs are calculated 
using the filtered SPF panel and the 1st estimate of the target variables as the actual outcome.  denotes the average RMSE 
across individual forecasters. H indicated the horizon (1 or 2 years) and N the total  number of forecasters included in the 
filtered dataset Root MSE calculated using the filtered SPF panel and the 1st estimate of the target variables is the actual 
outcome.  denotes the average Root MSE across individual forecasters. 



42
ECB
Working Paper Series No 1277
December 2010

 
Figure 4:  SPF Panel:  Persistence in Root Mean Squared Error across sub-samples  
(percentage points)

 

Note: The Root MSE calculated using the filtered SPF panel and the 1st estimate of the target variables as the actual 
outcome.  provides the estimate slope parameter from a regression (including a constant) of the RMSE in the first half of 
the sample on the RMSE in the second half of the sample. A * indicates that the estimate of  is statistically different from 
zero. 
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Figure 5: Difference between 1st and 2009:Q3 vintages of outcomes for SPF variables 
(percentage points) 

  
 
 
Figure 6: Comparison of forecast performance for alternative combinations  
(Relative MSE; 1st vintage of target variable;2004:1 – 2008:Q3) 
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Figure 6: Comparison of forecast performance for alternative combinations  
(Relative MSE; 1st vintage of target variable;2004:1 – 2008:Q3) 

(b) Inflation 
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Figure 7: Alternative Combinations Relative MSE 

(a) GDP growth 
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Figure 7: Alternative Combinations Relative MSE 
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Figure 8: Alternative Combinations Relative MSE 
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Figure 8: Alternative Combinations Relative MSE 
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Table 1: Forecast performance statistics for the ECB SPF: Alternative samples  
Full sample Sample excluding 

financial turmoil
First half of the 

sample
2nd half of the 

sample
(1999:3-2009:3) (1999:3-2008:3) (1999:1-2003:4) (2004:1-2009:3)

GDP one-year ahead
Mean forecast value 1.9 2.1 2.2 1.6
Mean error -0.6 -0.3 -0.9 -0.7
RMSE 1.5 0.8 1.1 1.8
GDP two-year ahead
Mean forecast value 2.4 2.4 2.7 2.4
Mean error -1.3 -0.7 -1.9 -1.2
RMSE 2.3 1.8 2 2.7
Inflation one-year ahead
Mean forecast value 1.8 1.8 1.7 1.9
Mean error 0.4 0.6 0.5 0.1
RMSE 0.9 0.6 0.6 1.2
Inflation two-year ahead
Mean forecast value 1.8 1.8 1.8 1.9
Mean error 0.3 0.5 0.3 0.2
RMSE 0.9 0.6 0.4 1.1
Unemployment one-year
Mean forecast value 8.4 8.4 8.9 7.9
Mean error 0 -0.1 0.1 0.1
RMSE 0.7 0.2 0.3 0.8
Unemployment two-year 
Mean forecast value 8.1 8.3 8.5 7.9
Mean error 0.1 -0.1 0.6 0.1
RMSE 1.2 0.6 0.7 1.2
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Table 2: Evaluation of alternative SPF GDP combinations: 2004:Q1 – 2008:Q3 

MSE P-Value MSE P-Value
Benchmarks
Equal Weighted SPF 1.00 0.50 1.00 0.50
Random Walk 1.86 0.93 1.04 0.59
NAÏVE 1.95 0.95 1.75 0.89
AR(1) 1.80 0.95 3.35 0.96
Recent Best
v = 1 quarter 1.25 0.97 0.98 0.42
v = 4 quarters 1.26 0.98 1.30 1.00
Trimmed means
Symmetric Trim (5%) 1.03 0.78 0.98 0.24
Median (50%) 1.03 0.80 0.97 0.02
Recursive Performance (RP)
 = 1.0 1.01 0.85 0.99 0.04
 = 0.95 1.00 0.81 0.99 0.07
 = 0.85 1.00 0.58 1.00 0.22

Rolling Performance (RP)
v = 1 quarter 1.06 0.73 0.87 0.01
v = 4 quarters 1.00 0.58 1.00 0.68
v  = 8 quarters 1.01 0.79 1.00 0.26
Projection on Mean (PM)
PM 1.05 0.66 1.91 0.95
PM (w 0,h  = 0) 1.02 0.61 1.75 0.84
Principal Components (PC)
PC (p = 1) 1.42 0.87 1.00 0.50
PC (p  = 2) 1.39 0.86 1.02 0.53
PC (p = 3) 1.79 0.96 1.03 0.55
Least Squares (LS)
LS (c = 2, w 0,h  = 0) 0.95 0.39 1.58 0.81
LS (c = 2 ) 0.90 0.26 5.80 0.96
LS (c = 2,  w 0,h  = 0,   w i,h  =1.0) 0.89 0.06 1.09 0.72
LS (c = 2,   w 0,h  = 0,  0  w i,h 1.0 ) 0.95 0.10 1.76 0.87
LS (c = 3, w 0,h  = 0) 1.33 0.85 1.38 0.75
LS (c = 3) 1.47 0.99 3.25 0.96
LS (c = 3,   w 0,h  = 0,    w i,h  =1.0) 1.30 0.95 1.05 0.68
LS (c = 3,   w 0,h  = 0, 0  w i,h 1.0) 0.97 0.13 2.47 0.99
Shrinkage Weights (SW)
SW ( w 0,h  = 0, c =2,  = 4) 0.98 0.40 1.25 0.86
SW ( w 0,h  = 0, c =3,  = 4) 1.18 0.97 1.03 0.71
SW ( w 0,h  = 0, c =2,  = 6) 1.02 0.62 1.11 0.87
SW ( w 0,h  = 0, c =3,  = 6) 1.08 1.00 0.98 0.04
SW (c =2,  = 4) 0.95 0.21 1.33 0.90
SW (c =3,  = 4) 1.16 0.98 1.03 0.63
SW (c =2,  = 6) 1.00 0.45 1.01 0.54
SW (c =3,  = 6) 1.07 0.99 1.02 0.78

H = 1 Year Ahead H = 2 Years Ahead

 
Note: denotes the discount factor applied to past forecast errors; v the length of window used for rolling performance 
weighting;  p the number of principal components; w0,h and wi,h the constant and slope parameters in the forecast 
regressions; c the number of clusters;  denotes the degree of shrinkages. 
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Table 3: Evaluation of alternative SPF Inflation combinations: 2004:Q1 – 2008:Q3 

MSE P-Value MSE P-Value
Benchmarks
Equal Weighted SPF 1.00 0.50 1.00 0.50
Random Walk 0.76 0.00 0.78 0.01
NAÏVE 1.02 0.56 0.74 0.05
AR(1) 0.93 0.16 1.12 0.85
Recent Best
v = 1 quarter 0.82 0.08 1.08 0.84
v = 4 quarters 0.85 0.02 1.03 0.89
Trimmed means
Symmetric Trim (5%) 1.03 0.99 0.99 0.11
Median (50%) 1.02 0.96 1.01 0.83
Recursive Performance (RP) 0.00
 = 1.0 0.98 0.00 0.96 0.01
 = 0.95 0.98 0.00 0.96 0.01
 = 0.85 0.98 0.01 0.95 0.01

Rolling Performance (RP) 0.13
v = 1 quarter 1.04 0.85 0.98 0.27
v = 4 quarters 0.99 0.13 0.95 0.00
v  = 8 quarters 0.97 0.02 0.95 0.00
Projection on Mean (PM)
PM 0.71 0.04 0.78 0.01
PM (w 0,h  = 0) 0.61 0.10 0.56 0.04
Principal Components (PC)
PC (p = 1) 0.68 0.02 0.67 0.02
PC (p  = 2) 0.67 0.01 0.67 0.02
PC (p = 3) 0.66 0.01 0.66 0.02
Least Squares (LS)
LS (c = 2, w 0,h  = 0) 0.65 0.10 0.62 0.05
LS (c = 2 ) 0.74 0.04 0.80 0.00
LS (c = 2,  w 0,h  = 0,   w i,h  =1.0) 0.92 0.16 0.93 0.15
LS (c = 2,   w 0,h  = 0,  0  w i,h 1.0 ) 0.62 0.10 0.89 0.40
LS (c = 3, w 0,h  = 0) 0.54 0.09 0.61 0.04
LS (c = 3) 0.67 0.04 0.76 0.01
LS (c = 3,   w 0,h  = 0,    w i,h  =1.0) 0.97 0.36 0.90 0.11
LS (c = 3,   w 0,h  = 0, 0  w i,h 1.0) 0.61 0.09 0.67 0.09
Shrinkage Weights (SW)
SW ( w 0,h  = 0, c =2,  = 4) 0.71 0.05 0.78 0.07
SW ( w 0,h  = 0, c =3,  = 4) 0.73 0.08 0.88 0.09
SW ( w 0,h  = 0, c =2,  = 6) 0.80 0.08 0.87 0.08
SW ( w 0,h  = 0, c =3,  = 6) 0.86 0.11 0.99 0.07
SW (c =2,  = 4) 0.80 0.02 0.91 0.04
SW (c =3,  = 4) 0.84 0.07 0.94 0.07
SW (c =2,  = 6) 0.88 0.05 0.95 0.07
SW (c =3,  = 6) 0.93 0.13 0.99 0.04

H = 1 Year Ahead H = 2 Years Ahead

 
Note: denotes the discount factor applied to past forecast errors; v the length of window used for rolling performance 
weighting; p the number of principal components; w0,h and wi,h the constant and slope parameters in the forecast regressions; 
c the number of clusters;  denotes the degree of shrinkages.  
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Table 4: Evaluation of alternative SPF Unemployment combinations: 2004:Q1 – 2008:Q3 

MSE P-value MSE P-value
Benchmarks
Equal Weighted SPF 1.00 0.50 1.00 0.50
NAÏVE 2.82 0.96 2.92 0.99
AR(1) 2.58 0.96 2.67 0.99
Recent Best
v = 1 quarter 1.10 0.84 1.18 0.96
v = 4 quarters 1.25 0.86 1.40 0.93
Trimmed means
Symmetric Trim (5%) 1.04 0.87 1.12 0.99
Median (50%) 1.06 0.96 1.07 0.98
Recursive Performance (RP)
 = 1.0 1.01 0.81 1.02 0.92
 = 0.95 1.01 0.88 1.02 0.95
 = 0.85 1.03 0.92 1.05 0.97

Rolling Performance (RP)
v = 1 quarter 0.97 0.39 1.26 1.00
v = 4 quarters 1.07 0.91 1.07 0.96
v  = 8 quarters 1.05 0.88 1.04 0.96
Projection on Mean (PM)
PM 2.84 0.98 2.64 0.95
PM (w 0,h  = 0) 1.69 0.81 1.05 0.59
Principal Components (PC)
PC (p = 1) 2.89 0.97 2.36 0.95
PC (p  = 2) 2.87 0.97 2.40 0.94
PC (p = 3) 2.92 0.97 2.59 0.96
Least Squares (LS)
LS (c = 2, w 0,h  = 0) 1.64 0.79 1.94 1.00
LS (c = 2 ) 2.14 0.91 2.72 0.96
LS (c = 2,  w 0,h  = 0,   w i,h  =1.0) 0.99 0.47 1.95 1.00
LS (c = 2,   w 0,h  = 0,  0  w i,h 1.0 ) 1.66 0.80 1.06 0.96
LS (c = 3, w 0,h  = 0) 1.60 0.78 2.48 0.99
LS (c = 3) 2.19 0.93 3.05 0.97
LS (c = 3,   w 0,h  = 0,    w i,h  =1.0) 0.96 0.42 2.08 0.99
LS (c = 3,   w 0,h  = 0, 0  w i,h 1.0) 1.66 0.80 0.99 0.00
Shrinkage Weights (SW)
SW ( w 0,h  = 0, c =2,  = 4) 0.81 0.23 1.28 0.99
SW ( w 0,h  = 0, c =3,  = 4) 0.76 0.06 1.07 0.94
SW ( w 0,h  = 0, c =2,  = 6) 0.77 0.07 1.04 0.91
SW ( w 0,h  = 0, c =3,  = 6) 0.95 0.21 0.96 0.06
SW (c =2,  = 4) 1.98 0.89 1.60 0.93
SW (c =3,  = 4) 1.45 0.81 1.26 0.91
SW (c =2,  = 6) 1.55 0.83 1.24 0.89
SW (c =3,  = 6) 1.10 0.69 0.96 0.06

H = 1 Year Ahead H = 2 Years Ahead

 
Note: denotes the discount factor applied to past forecast errors; v the length of window used for rolling performance 
weighting; m the number of principal components; w0,h and wi,h the constant and slope parameters in the forecast 
regressions; c the number of clusters;  denotes the degree of shrinkages. 
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Table 5a): White “Reality Check”- Sample excluding the financial crisis (2004:Q1 – 2008:Q3) 
Variable Best Model MSE
GDP (H=1) OW (c = 2,  w 0,h  = 0,   w i,h  =1.0) 0.89 0.06 0.68
GDP (H=2) RP (v = 1 quarter) 0.97 0.01 0.79
INF (H=1) OW (c = 3, w 0,h  = 0) 0.54 0.09 0.05
INF (H=2) PM (w 0,h  = 0) 0.56 0.04 0.25
Unemployment (H=1) SW ( w 0,h  = 0, c =3,  = 4) 0.76 0.06 0.93
Unemployment (H=2) SW (c =3,  = 6) 0.96 0.06 0.71

DM P-Value White P-Value

 
 
Table 5b): White “Reality Check” – Sample including the financial crisis (2004:Q1 – 2009:Q3) 
Variable Best Model MSE
GDP (H=1) Recent Best (v  = 4) 0.80 0.15 0.54
GDP (H=2) PC (p = 3) 0.89 0.13 0.93
INF (H=1) Recent Best (v  = 4) 0.87 0.02 0.67
INF (H=2) OW (c = 3) 0.91 0.04 0.33
Unemployment (H=1) OW (c = 2 ) 0.66 0.31 0.96
Unemployment (H=2) SW (c =2,  = 6) 0.56 0.15 0.45

DM P-Value White P-Value

 
 
 
 
 
Table 6: Evaluation based on “meta” selection of combination with best historical performance 

MSE P-value MSE P-value
GDP (H=1) 1.06 0.81 1.01 0.60
GDP (H=2) 0.91 0.17 0.99 0.34
INF (H=1) 0.68 0.01 0.95 0.36
INF (H=2) 0.91 0.03 1.15 0.77
Unemployment (H=1) 2.06 0.98 1.39 0.98
Unemployment (H=2) 1.22 0.98 1.07 0.88

2004:1-2008:3 2004:1-2009:3
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