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Abstract

The issue of forecast aggregation is to determine whether it is better to fore-

cast a series directly or instead construct forecasts of its components and then

sum these component forecasts. Notwithstanding some underlying theoretical

results, it is generally accepted that forecast aggregation is an empirical issue.

Empirical results in the literature often go unexplained. This leaves forecast-

ers in the dark when confronted with the option of forecast aggregation. We

take our empirical exercise a step further by considering the underlying issues

in more detail. We analyse two price datasets, one for the United States and

one for the Euro Area, which have distinctive dynamics and provide a guide to

model choice. We also consider multiple levels of aggregation for each dataset.

The models include an autoregressive model, a factor augmented autoregressive

model, a large Bayesian VAR and a time-varying model with stochastic volatility.

We find that once the appropriate model has been found, forecast aggregation

can significantly improve forecast performance. These results are robust to the

choice of data transformation.

JEL Classification: E17, E31, C11, C38.

Keywords: Aggregation, Forecasting, Inflation.
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Non-technical summary

The issue of forecast aggregation is to determine whether it is better to forecast a series
directly or instead construct forecasts of its components and then sum these compo-
nent forecasts. Notwithstanding some underlying theoretical results, it is generally
accepted that forecast aggregation is an empirical issue. We conduct empirical exer-
cises and relate our findings back to the properties of the dataset and the models used.
The exercise is conducted on both United States (US) and Euro Area (EA) inflation.
Although both datasets relate to inflation, these datasets have distinct characteristics
and we tailor the model to the properties of the data. In all the empirical exercises in
this paper, forecast aggregation leads to better forecasts. The aggregate forecast often
has the least satisfactory performance and this makes the argument for aggregation
more compelling given that multiple levels of aggregation are used.

The performance of the aggregated forecasts depends on the type of model used.
In particular, the model must capture the key characteristics of the data. There is
strong comovement in US inflation. Simple AR models do not perform very well in
this context but multivariate models such as factor models and BVAR models that
can capture this common movement or pick up feedback between the series have more
accurate forecasts. For the Euro Area inflation rate, there is far less commonality and
the series have more individual dynamics. Simple AR models tend to work well for
this type of dataset. They have more accurate forecasts than both the benchmark and
their multivariate counterparts.

The exercises are mainly based on multistep forecasts of year-on-year inflation rates.
For US inflation, we forecast the h-quarter price change for h = 1, ..., 8 and find the
results are robust to this change in the target forecast variable. We also introduce
a time-varying model with stochastic volatility where forecasts are constructed itera-
tively. The time-varying model in conjunction with forecast aggregation leads to further
improvements in forecast power. These robustness checks corroborate the main results
in favour of forecast aggregation. The paper provides a substantive endorsement of the
forecast aggregation approach, particularly in terms of inflation. The key to realising
gains in terms of forecast aggregation lies in the ability to uncover the appropriate
model for a particular dataset.
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1 Introduction

When forecasting economic variables, one is often faced with the choice of either fore-
casting an aggregate directly or forecasting its components and then summing the
component forecasts. This is frequently encountered when forecasting inflation, where
prices are commonly available for a large number of components series in addition to
the aggregate price index. The aggregation issue is a major practical consideration
when it comes to forecasting key economic indicators but frequently forecasters are in
the dark in terms of which approach is likely to yield the best results. There is a con-
siderable set-up cost when estimating models on disaggregate data if there are a large
number of component series so researchers are understandably reluctant to pursue this
strategy unless it is likely to yield benefits.

Arguably, the literature on forecast aggregation is at an impasse. The early con-
tributions focussed on deriving theoretical results but this approach was eventually
abandoned as the underlying assumptions were too restrictive. Empirical papers tend
to focus on a specific application. Competing sets of forecasts are constructed for a
given country or set of countries to see whether forecast aggregation helps. With the
exception of Hubrich (2003), few papers offer potential explanations of why the forecast
aggregation strategy was a success or failure so there is little guidance to forecasters
faced with the option of combining disaggregate forecasts.

We conduct empirical exercises but relate our findings back to the properties of
the dataset and the models used. The exercise is conducted on both United States
(US) and Euro Area (EA) inflation. Although both datasets relate to inflation, these
datasets have distinct characteristics and we tailor the model to the properties of the
data. In contrast to most previous studies, we consider multiple levels of aggregation
for each dataset. We find that, once the appropriate model is found for a dataset,
forecast aggregation always leads to improvements in forecast accuracy - the critical
issue is to find the appropriate model. Frequently, the forecast based on the aggregate
results in the worst forecast performance. This story is consistent with the theoretical
literature. By providing a detailed explanation for main factors driving results for
both datasets, we provide a greater understanding of the key issues relative to other
empirical papers. In the next section, we provide a summary of the main contributions
in both the theoretical and empirical side of the literature. Section 3 describes the data
used for the empirical exercises. Section 4 outlines the notation and the models used
in the paper with the results reported in section 5. Section 6 concludes the paper.

2 Literature Review

Early contributions in the area of forecast aggregation were mainly confined to the-
oretical results based on an assumed data generating process (DGP). Assuming that
the components are ARIMA processes, Rose (1977) examines the DGP and forecasts
for an aggregate of these models. Others including Tiao and Guttman (1980), Kohn
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(1982) and Luetkepohl (1984a, 1984b) followed this approach with the DGP or fore-
cast performance of the aggregated process related to an assumed structure for the
DGP of the components. Based on asymptotic theory, it is possible to state that the
disaggregate forecast will have a lower forecast error if the DGPs of all components
are known. Luetkepohl (1984a) acknowledges that the superiority of the disaggregate
forecast is no longer assured if the DGPs aren’t known and instead must be estimated.
In practice, DGPs are not known to forecasters so the results of these studies provide
the starting point to investigations of forecast aggregation but the question of forecast
aggregation has a strong empirical element.

European Monetary Union (EMU) revived interest in the topic of forecast aggrega-
tion but given the limited success of the theoretical approach, the literature changed
direction and empirical exercises became much more common. There have been two
distinct approaches adopted. The traditional approach, which is followed in this paper,
is to construct forecasts of the disaggregates and combine them. In a couple of recent
papers, Hendry and Hubrich (2006, 2010) suggest the alternative route of including
disaggregates directly in the model of the aggregate. These two papers consider both
predictability in population and forecastability in sample through both analytical and
empirical work. The first paper proposes the idea of using disaggregates in the equation
for the aggregate and shows through some theoretical results that including disaggre-
gates increases predictability. Whether this translates into greater forecast accuracy
depends on practical issues such as model selection, estimation uncertainty, structural
breaks and changing collinearity between disaggregate series. In the empirical section,
it is found that using disaggregate information does not help a great deal forecasting
euro area inflation, although the exercise is hampered somewhat by the shortness of
the data span available. In contrast, US results based on longer sample support the
inclusion of disaggregate data.

The second paper considers the impact of changing coefficients, mis-specification,
estimation uncertainty and measurement error. It builds on the first paper by putting
all the practical factors that impact on actual forecast performance in a theoretical
framework. This is further backed up by Monte Carlo simulations and empirical ex-
ercises featuring US data. This paper highlights the key role played by estimation
uncertainty in determining practical forecast performance and the consequent role for
model selection procedures. Luetkepohl (2010) includes practical exercises that also
follow the same approach as Hendry and Hubrich (2006, 2010). Systems of VARs are
estimated which include both aggregate and disaggregate information for employment
and inflation in the Euro Area. Luetkepohl finds that although taking disaggregate
information into account should theoretically improve forecasts, the inclusion of too
many disaggregates can result in estimation error and specification error which ulti-
mately leads to an efficiency loss.

This paper is concerned with the traditional approach, which is the focus of much
of the literature. Hubrich (2003) is one of the first studies to examine Euro Area
HICP inflation in this context. Forecasts are construced both directly and by summing
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forecasts for the five main subcomponents. Models used include random walk forecasts,
univariate forecasts and VAR forecasts. The study conculudes that there is litle benefit
to forecast aggregation but the data only span Jan ’92 - Dec ’01 so estimation error may
have played a role in this result. Benalal et al (2004) again examines HICP forecasts
for the Euro Area but this time forecasts are aggregated both by country and by
commodity group. Models include the random walk, ARIMA, exponential smoothing,
VAR and BVAR. The results do not show any systematic benefit to forecast aggregation
but the span of data is again quite short.

In country specific studies of HICP inflation, Duarte and Rua (2005), Bruneau et al
(2007) and Moser et al (2007) all find forecast aggregation leads to improved forecasts
for inflation for Portugal, France and Austria respectively. The models used in these
papers are again popular time series models but the spans of data available are longer
than those from the earlier Euro Area studies. While the different conclusions reached
are difficult to reconcile completely, the short span of data for the early studies could
be an important factor given the importance attributed to estimation error by Hendry
and Hubrich (2010).

Turning briefly to some other studies, forecast aggregation has also been examined
in the context of output forecasting. Zellner and Tobias (2000) forecast the aggregate
growth rate of 18 industrial countries using an aggregate and disaggregate approach.
They report improved forecasts from the disaggregate approach. Marcellino, Stock and
Watson (2003) forecast prices and three activity measures for the euro area directly
and by aggregating country specific models. They find forecasts are more accurate
when country specific models are aggregated. Thus, although there is not a full con-
census, the empirical work on forecast aggregation is broadly supportive of the idea
that aggregating forecasts can lead to improvements in accuracy.

The aim of this paper is to look into the issue of forecast aggregation in greater
detail than the existing literature. We utilise multiple levels of disaggregate data for
each dataset and a number of different models (autoregressive (AR), factor augmented
AR, Bayesian Vector Autoregression (VAR) with Minnesota priors and time varying
VAR). This allows us to explore the properties of the data which lead to benefits
in terms of forecast aggregation. By considering two separate dataset with different
characteristics, we are also able to highlight the importance that the selection of the
correct model type has on the results. These insights are valuable to other forecasters
contemplating the aggregation approach.

3 Data

3.1 US Data

The analysis in this paper draws on both US data and EA data. The US series are
NIPA data from the Bureau of Economic Analysis (BEA).1 The price series are personal

1Available at: http://www.bea.gov/national/nipaweb/SelectTable.asp
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consumption expenditures available quarterly from 1959Q1 - 2009Q4. The data are
already available at different levels of aggregation. This paper considers four different
levels of aggregation for the dataset. The first is a three item breakdown which includes
the prices of durable goods, non-durable goods and services. We next consider a fifteen
item breakdown. The price categories are still quite broad at this level of aggregation
and examples include food, housing and transport. A full list of price series for all levels
of aggregation is provided in the Table 1. The third breakdown consists of fifty different
price series The categories here are quite narrowly defined and again are presented in
Table 1. The final breakdown is based on 169 series. The series are too numerous to
list in the Table but a list of included items is available upon request.

As we wish to compare aggregated individual forecasts with the forecasts from the
overall PCE inflation rate, we must be able to construct the PCE inflation rate from
the individual inflation rates as a first step. This requires the weights of each item for
each level of aggregation. All data are taken from Tables 2.4.4U, 2.4.5U and 2.4.6U
on the BEA website. The price series are chained index values and their weights are
calculated according to the approximation provided in Dolmas (2006):

wi,t+1 =
1

2

Qi,tPi,t∑
Qi,tPi,t

+
1

2

Qi,t+1Pi,t∑
Qi,t+1Pi,t

The weight at time t+1 is equal to an average of the expenditure share of the product
at time t and its expenditure share had consumers bought the t + 1 quantity at time
t prices. In each case, the accuracy of this approximation was checked by constructing
the aggregate inflation rate from the components. The aggregate inflation rate was
recovered with a high level of precision, which ensures the validity of the empirical
exercise.

Figure 1 graphs the Year on Year (YoY) PCE inflation rate and its component infla-
tion rates for each of the four different levels of aggregation used in the paper. In each
graph, the thick blue line is the aggregate inflation rate. For the graph of the 3 items,
the individual items move in tandem with the PCE inflation rate. As the number of
items in each breakdown increases, the series obviously have more individual dynamics
although there is still quite noticeable comovement with the PCE rate, indicated by
the tight bunching of series around the PCE inflation rate.
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Figure 1: PCE Inflation and its Component Inflation Rates
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Figure 2: HICP Inflation and its Component Inflation Rates
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3.2 EA Data

The euro area data are price series for the Harmonized Index of Consumer Prices
(HICP). The series along with their weights are available on the Eurostat website.2

The series are disaggregated at three different levels with a 5-item, 12-item and 32-
item breakdown. The items included in each level of aggregation are also presented
in Table 1. The series are monthly and the sample period is from January 1996 to
December 2009. Although it is possible to get data at a more detailed level over the
latter part of the sample, it is not possible to do so for the entire sample so the 32-item
breakdown represents the most detailed available for our purposes.

There is a strong seasonal pattern in some of the euro area data when month-on-
month growth rates are calculated. Seasonally adjusted data are not available. In
addition, the seasonal pattern is not stable over the sample and so it not possible to
estimate a consistent seasonally adjusted series. To mitigate this problem, estimation
is conducted using year-on-year growth rates. Seasonality is not an issue with the US
data as all series are seasonally adjusted.

Figure 2 graphs the YoY HICP inflation rate and the component rates at the three
levels of aggregation used. At the five item level, the series display more heterogeneous
dynamics relative to the US data. This pattern is repeated with the 12 and 32 item
datasets. Although there is bunching around the aggregate, these series have stronger
individual characteristics than the US data. This is probably due to the fact that the
US data are from one country whereas the EA data combines the inflation rates of
several difference countries.

4 Data Transformation and Models Specification

The empirical exercise in this paper is addressed in the following way: we construct
one set of forecasts by estimating models on the aggregate series and a second set
by using the same model to forecast the individual series prior to aggregation, then
we compare the accuracy of both approaches. The target variable is the aggregate,
annualized h period inflation, defined as πh

t = k log( Pt

Pt−h

), where the constant k is the

normalization term.3 Pt is the aggregate level of price index. Given a model m, we
perform a pseudo out-of-sample forecasting simulation. At time t, we estimate the
parameters of the model and compute the forecasts of the aggregate and disaggregate
inflation series at horizon h, then we update the sample with a new observation and, at
time t+1, we re-estimate the parameters of the model and compute again the forecasts
for time t + 1 + h. This pseudo out-of-sample forecasting exercise is iterated up to the
end of the sample for each type of model. This exercise is not a real time exercise.
However, as we only use inflation rates for each dataset, the series are all published
with the same lag. In addition, the inflation rates in both datasets are not subject

2Available at http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search database
3It is 400

h
in the case of quarterly data and 1200

h
in the case of monthly data.
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to a significant degree of revision. From this perspective, we argue that this exercise
provides a realistic appraisal of aggregate versus disaggregate forecasting.

Forecasts of the target variable at horizon h are denoted as π̂
h,m
a,t+h|t, when they are

computed directly on the aggregate inflation series, and as π̂
h,m
d,t+h|t =

∑Ns

j=1 wj,tπ̂
h,m
j,t+h|t

when they are computed by aggregating forecasts of disaggregate inflation series j.4

The first subscripts a or d denote if the forecast of the target variables is computed
with the aggregate or disaggregate inflation series respectively, while t + h|t refers to
the fact that, for horizon h, forecasts are computed by using information up to time t.
Finally, the first superscript h denotes the transformation adopted for prices, while m

refers to the model employed.

We will use the following models:
Atkeson Ohanian Model (AO) (2001)

πh
t+h = π4

t + ωh
t+h (1)

The forecast at t + h is computed as:

π̂
h,AO
a,t+h|t = π4

t (2)

AutoRegressive Model (AR)

For a generic inflation series j:

πh
j,t+h = αh

j + Bh
j (L)πh

j,t + εh
j,t+h (3)

where Bh
j (L) = Bh

j,0 + ... + Bh
j,sL

s is a polynomial in the lag operator L. Parameters
are estimated by Ordinary Least Squares (OLS). The forecast for a given horizon h is
computed as:

π̂
h,AR
j,t+h|t = α̂h

j + B̂h
j (L)πh

j,t (4)

Factor Augmented AutoRegressive Model (FAAR)

πh
j,t+h = νh

j + Ch
j (L)πh

j,t + γhFt + ζh
j,t+h (5)

This is the AR model of eq.(3) augmented with one factor. The factor is estimated
with the first principal component (Stock and Watson, 2002) computed on the most
detailed data set available. For example, the factor for the US dataset is computed on
the dataset of 169 series, while that for the Euro area is computed on the dataset of 32
series. Parameters of eq.(5) are estimated by OLS. The forecast at horizon h is given
by:

π̂
h,FAAR
j,t+h|t = ν̂h

j + Ĉh
j (L)πh

j,t + γ̂hF̂t (6)

4Ns is the number of series in the sth set of disaggregate series; s = {1, 2, 3, 4} in the case of US
dataset and s = {1, 2, 3} in the case of Euro area dataset.



13
ECB

Working Paper Series No 1365
August 2011

Bayesian VAR (BVAR)
This is a Bayesian VAR with the Minnesota prior as proposed by Banbura, Giannone
and Reichlin (2010). Let’s denote with Pj,t, the price level for series j ∈ Si, whereSi =
{1, ..., j, ..., ni}; the model is estimated on the log-level of the series denoted as pSi,t:

pSi,t = c + A1pSi,t−1 + ... + AppSi,t−p + vt (7)

where pSi,t is a (Si×1) vector of variables, c is a (Si×1) vector of constants, A1...Ap

are (Si × Si) matrices of coefficients and vt is a (Si × 1) vector of disturbances. The
estimation of the model for a large set of variables is unfeasible due to the curse of
dimensionality.

One solution is to impose restrictions (prior beliefs) on the parameters of the system.
Following Banbura, Giannone and Reichlin (2010) we impose Litterman (1986) priors.
The coefficients of a matrix Ai, i = 1, ..., p are normally distributed random variables
with the mean of the coefficient matrix on the first lag (matrix A1) equal to an identity
matrix ISi

and the mean of all the other coefficients equal to zero. The variance of the
parameters depends on a parameter τ which defines the tightness of the priors. A value
of τ equal to zero exactly imposes the random walk with drift model on the variables,
while a value of τ bigger than zero allows for some variability around the mean of
the coefficients and the random walk prior is not exactly imposed.5 We impose also
another type of prior, on the sum of coefficients of the matrices A1...Ap. This prior is
imposed by means of another parameter μ. If A1 + ... + Ap = Ini

the prior is imposed
exactly and the specification is equivalent to a VAR in first differences. This will imply
that the forecasts will converge to the variable’s growth rate.

A forecast of the log level of series j at horizon h is then computed as:

p̂Si,t+h|t = ĉ + Â1p̂Si,t+h−1|t + ... + Âpp̂Si,t+h−p|t (8)

where p̂Si,t+h−i|t = pSi,t+h−i if i >= h. In practice, the forecast at time t + h is
computed recursively from the forecast at time t + 1. The estimates of the parameters
correspond to the median of the posterior distributions. For each series j ∈ Si, the
annualized h period inflation rate is computed as:

π̂
h,BV AR
j,t+h|t = (p̂j,t+h|t − pj,t)k (9)

The maximum lag length for the AR model is specified ex ante and the actual lag
length is chosen according to the Bayes Information Criterion (BIC), while the lag
specification for the BVAR is selected by choosing the number of lags that minimize
the squared forecast errors of the previous period, including a minimum of 5 lags for
the quarterly dataset and a minimum of 13 lags for the monthly dataset. The values of
the hyperparamters, μ and τ are chosen on a grid search so that the fitted model has
an R2 as close as possible to 50%. This ensures a reasonable in-sample fit but guards
against over-fitting, which leads to poor out-of-sample forecasts.

5A scale parameter, to fix the variance of the coefficients, is set by estimating the variance of the
residuals from a univariate model of order p on the single variables pj,t.
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Recursive Strategy for all Models
The first estimation sample (prior to data transformations) for US data is 1959:Q1-
1995:Q2 with forecasts beginning from 1995:Q2+1 to 1995:Q2+h. This is the earliest
sample for which weights are available. Final recursive forecasts are computed up to
2009:Q4. For the EA data, the first estimation sample is 1996:M1-2001:M12 and the
forecast begins in 2001:M12+1 to 2001:M12+h. The final recursive forecasts end in
2009:M12. Forecast accuracy is evaluated through the Mean Square Forecast Error
(MSFE) statistic, however, to facilitate the comparison, the accuracy of a model m is
compared (ratio) with that obtained by the Atkeson-Ohanian random walk model, used
as the benchmark. Finally, as already mentioned above, some series in the EA dataset
are characterized by strong seasonal patterns. To mitigate seasonality the exercise is
performed on the year-on-year data transformation. Eq.(3) for example is modified as
follows:

π4
j,t+h|t = α4

j + B4
j (L)π4

j,t + ε4
j,t+h

where the superscript 4 refers to the data transformation.6 It is not possible to sea-
sonally adjust the Euro Area dataset. The weights that are provided by Eurostat
could not be used to construct the aggregate from the component series if the series
are transformed. In addition, the seasonaly pattern of the series appears to change
over the sample and so a portion of the residuals of the seasonally adjusted series fail
standard statistical tests.

5 Results

5.1 AR

The numbers in Table 2 are ratios of the RMSE from the AR model relative to the
AO benchmark, with a value less than one indicating the forecast model outperforms
the benchmark at the specified horizon. The one and two star superscripts denote a
statistically significant improvement in forecast performance relative to the benchmark
at the 5% and 10% levels respectively. Due to the nested nature of the models, we
use the test statistic proposed by Clark and West (2007). The first part of the table
shows the results for the United States. When an AR model is used to forecast the
aggregate directly, it is only possible to improve upon the benchmark at the one-quarter
horizon. Forecast performance relative to the benchmark gets relatively worse as the
horizon increases. When AR models are applied to the disaggregates and combined,
the forecasts are improved. The AR model based on the 15-item aggregation provides
the best forecasts, as they outperform the benchmark up to 5 quarters ahead. This
information is also presented in graphical format in Figure 3. It clearly shows how
poorly the aggregate forecast performs relative to the disaggregates over most of the
horizon. Another feature evident from the graph is that the greatest gains in forecast
accuracy are given by the 3-item and 15-item breakdown. Forecast accuracy decreases,
particularly over longer horizons, when the 50-item and 169-item breakdown are used.

6As robustness check, in the last section of the paper, we report a set of results for an alternative
price transformation (for the US dataset).
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Considering the US AR model in isolation, any gains in forecasting the disaggregates
have already been exploited when the 15-item breakdown is used.

Figure 3: RMSFE of AR Models Figure 4: RMSFE of AR Models
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The second part of Table 2 presents the results for the Euro Area. The horizon is
now twelve months rather than eight quarters and there are only three levels of ag-
gregation rather than four. The results here differ from the US results in a number of
ways. The forecasts here are better than the US forecasts in the sense that improve-
ments relative to the benchmark are much greater. Furthermore, the greatest gains
relative to the benchmark are at the longer horizons for the Euro Area whereas the
US model forecasts have their greatest gains at the shorter horizons. This behavior is
largely explained by the performance of the benchmark. The HICP is not as persistent
as the PCE inflation rate. Consequently, the AO benchmark is not as good for the
Euro Area, particularly at longer horizons. The key messages are the same as for the
US however. The results in the table again show that the aggregate performs poorly
relative to the disaggregates. The 32-item breakdown results in the best forecasts.
The results are also graphed in Figure 4 and the difference in the performance of the
aggregate relative to the disaggregates is quite stark.

5.2 FAAR

The first section of Table 3 documents the forecast performance for the US when a
factor is included in the forecast equation. The aggregate now improves upon the
benchmark when forecasting up to three quarters in the future. The aggregate forecast
still has the least satisfactory performance however, which is also evident graphically in
Figure 5. The model based on 169 disaggregates now has the best forecast performance
over most horizons. The factor forecasts outperform the simple AR model so that the
best forecasts overall for US inflation come from the 169-item model. The EA results
with the FAAR are remarkably similar to those for the AR model. The aggregate
forecast is strongly outperformed by the disaggregates, with the 32-item breakdown
yielding the best results and this pattern is clearly evident in Figure 6. The results of
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Tables 2 and 3 are supportive of forecast aggregation, with the most accurate forecasts
coming from disaggregate models.

Figure 5: RMSFE of FAAR Model Figure 6: RMSFE of FAAR Model

versus AO (US-YoY) versus AO (EA-YoY)
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Table 4 documents the change in forecast accuracy when the factor is added to
the forecasting equation. There are universal improvements in forecast accuracy for
the US data. In addition, the forecasts based on the most detailed breakdown enjoy
the greatest improvements in forecast performance. In contrast, for the EA models,
the inclusion of the factor leads to virtually no change in the forecasts. To examine
the reasons for this, we examine the structure of the dataset to see if there is a large
common element to the series. Firstly, we regress the individual series on the factor
alone and report the average R2 in Table 5. We also calculate the average correlation
between the series. There is strong commonality in the US PCE dataset. One factor
explains 85% of the variation in the aggregate series. The average R2 declines in line
with the number of disaggregates but even at the 169-item level, the average R2 is 30%.
Similarly, the average correlation between the series is high at this level. Commonality
is much lower for the euro area inflation series. One factor only explains 37% of
the variation in the aggregate series. This drops to about 20% for the disaggregates.
Similarly, the average correlation between the series is low.

The strong common element in the US dataset is picked up by the factor model.
The simple AR model which excludes the factor is, therefore, mis-specified via the
omission of a relevant variable. This will have the usual effect of creating a bias in
the coefficients, which will obviously impact the forecasts. Although not reported, the
correlation amongst the residuals for the US AR models was found to be far higher than
their EA counterparts, as the common factor was captured by the residuals and this
imparted much stronger correlation. As described earlier, higher correlation amongst
the disaggregate residuals is not good for forecasting, as it leads to forecast errors
bunching in a particular direction. This underlying structure in the datasets explains
why the factor needs to be included for the US models but not for the EA models.
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The one outstanding issue is why the forecasts based on more detailed data improve
to a greater extent. The aggregate and 3-item US FAAR models have very modest im-
provements in forecast power relative to their AR counterparts. The PCE aggregate
and the 3-item inflation rates are a weighted average of a large number of underlying in-
flation rates. Similarly, the factor is a weighted average of all inflation rates. Although
the factor weights are calculated to satisfy a maximum variance criterion, the aggregate
inflation rate and the 3-item inflation rates are much like factors as they pick up a lot
of the commonality in the data. Consequently, the aggregate and 3-item AR models
are effectively modelling the common component. Thus, improvements over the AR
model are relatively modest when the factor is added as the factor and AR series both
model the same component of the data. At the more detailed levels of aggregation,
the AR component can pick up the stronger individual dynamics while the factor picks
up the common element, which is still meaningful even for the 169-item breakdown.
The AR component and the factor are now modelling different behaviour. This is why
forecast improvements are greater for the detailed breakdown. This demonstrates the
interplay between model choice and the level of aggregation in the data.

5.3 BVAR

Table 6 presents the results of the BVAR model. The US results show that the BVAR
is also a fruitful way to exploit the dynamic properties of the data, with the forecast
errors again much smaller than those from the standard AR model, particularly for
short horizon forecasts. In comparison with the factor model, the BVAR tends to
perform better for the short horizons and the factor model does better over the longer
horizons. By averaging first by horizon and then by level of aggregation, we find that
the BVAR forecasts are equally accurate to the factor model forecasts. The exception
to this pattern is the 15-item BVAR, which outperforms the 15-item factor forecast
over all horizons. The best individual forecast of all forecast methods considered to
date is also the 15-item BVAR, which is 6% more accurate than the best FAAR model,
when averaged by horizon. This is the only model which is more accurate than the
benchmark at all horizons, although the improvement is not statistically significant at
quarter 8. Figure 7 graphs the performance of the BVAR models for the US and the
superiority of the 15-item specification is clear.

The best BVAR model for the EA is the 5-item model, which is depicted in Figure
8. However, the results for the EA show that the BVAR fails to improve on the
simple AR model. The strong individual dynamics of the series for the HICP means
that the simple AR model provides the best forecast. Any attempt to capture common
comovement or feedback between the series does not improve the forecasts. The BVAR
forecasts are also weaker than the factor model, due to a drop in accuracy for the longer
horizons but this is of less significance here as both are outperformed by the AR model.



18
ECB
Working Paper Series No 1365
August 2011

Figure 7: RMSFE of BVAR Model) Figure 8: RMSFE of BVAR Model

versus AO (US-YoY) Model versus AO (EA-YoY)
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In summary, we have found that the 32-item AR model works best for the Euro
Area. In the absence of strong comovement among the series, the AR model is appro-
priate as there is no omitted variable bias or tendency for the forecast errors to group
in the positive or negative directions. For the US, there is a need to model the com-
mon component of the series. Without this, there is omitted variable bias and forecast
errors will cluster, reducing the chances of getting off-setting errors. This is why the
factor model and BVAR models work. For low levels of aggregation, the factor models
don’t improve upon the AR model greatly given the collinearity between the factors
and the AR component. Once we allow for more a detailed breakdown of inflation,
the AR components and factor model different components and the common element
is modelled in a parsimonious way.

5.4 Alternative Model for US Data

As a robustness check, we consider one alternative model for the US. Given the season-
ality issues in the Euro Area dataset, our attention is limited to the US because this
model constructs forecasts iteratively using quarter-on-quarter growth. The final type
of model considered is a time-varying parameter AR model with stochastic volatility
(TV-AR). D’Agostino et al (2009) estimate a TV-AR model for three macro variables
in the U.S and find it does particularly well at forecasting inflation. The computational
cost of estimating the TV-AR model means that it is only likely to be applied to a
small number of items in practice. For this reason, we only conduct a partial exercise
in which we estimate the model for the 15-item breakdown. The BVAR with 15 items
is the most accurate model so it is instructive to use this as a comparator. We assume
that:

π1
j,t = δj,t + ρ1,tπ

1
j,t−1 + ... + ρ1

p,tπj,t−p + e1
j,t (10)

where δj,t is the time varying intercept, ρi,t with i = 1, ..., p are time varying coeffi-
cients and e1

j,t is a Gaussian white noise with zero mean and time-varying variance σ2
t .

We assume that σt evolves as geometric random walk, belonging to the class of models
known as stochastic volatility.
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log(σt) = log(σt−1) + ut (11)

Forecasts at time t + h are computed iteratively:

π̂1
j,t+h|t = δ̂j,t + ρ̂1,tp̂

1
j,t+h−1 + ... + ρ̂p,tp̂

1
j,t+h−p (12)

where π̂1
j,t+h−i = π1

j,t+h−i if i >= h. The estimates of the parameters correspond to
the median of the posterior distributions.7

A technical issue arises when we generate multi-step expectations; we have to eval-
uate the future path of drifting parameters. We follow the literature and treat those
parameters as if they had remained constant at the current level. See Sbordone and
Cogley (2008) for a discussion of the implications of this simplifying assumption.

For each series j, forecasts are first cumulated to recover the h period inflation:

π̂
h,TV −AR
j,t+h|t =

1

h

h∑

s=1

π̂
1,TV −AR
j,t+s|t (13)

and are then aggregated to recover the forecast for the aggregate index:

π̂
h,TV −AR
d,t+h|t =

Ns∑

j=1

wj,tπ̂
h,TV −AR
j,t+h|t (14)

The results for this exercise are presented in the first two columns of Table 10. As
before, the first results column of the table shows the RMSE of the AO benchmark.
The second column shows the forecasts errors of the TV-AR relative to the AO, with
a value less than one indicating that the TV-AR has the better forecast. The third
column compares the TV-AR to the BVAR. The results in the second column show
that the forecast errors compare favourably to the benchmark over the entire forecast
horizon. When compared to the BVAR, the TV-AR has more accurate forecasts over
most horizons. The TV-AR does well for the short-term forecasts but its edge relative
to the BVAR steadily declines to the point where the BVAR does better for quarters 7
and 8. Taken on average however, the TV-AR has the better performance with forecasts
that are 6% more accurate on average over all horizons. The results demonstrate that
combining forecast aggregation with time variation in the parameters and allowing for
stochastic volatility can lead to even greater improvements in forecast performance.
As the comparison for the TV-AR models is based on 15-items, we graph the results of
the 15-item breakdown for all models in Figure 9.8 It shows that the AR model is not
appropriate for a dataset with these properties. There is a big improvement moving to
the factor model and further improvements when the BVAR and TV-AR models are
used.

7We fix λ1 = λ2 = 10e−02. These are the tightness parameters governing the amount of time-
variation in the coefficients and volatility respectively.

8Figure 9 is contained with other graphs at the end of the appendix.
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6 Summary and Conclusions

In this paper, we conduct an empirical exercise to test if it is possible to achieve gains in
forecast accuracy by forecasting the individual components of inflation and aggregating
the individual forecasts relative to forecasting the aggregate inflation rate directly. The
empirical exercise uses data on both United States and Euro Area inflation. These
datasets are quite distinct and require a different modelling approach. We consider
four levels of disaggregation for the United States and three for the Euro Area. In
all the empirical exercises in this paper, forecast aggregation leads to better forecasts.
The aggregate forecast often has the least satisfactory performance and this makes the
argument for aggregation more compelling given that multiple levels of aggregation are
used.

The performance of the aggregated forecasts also depends on the type of model
used. In particular, the model must capture the key characteristics of the data. There
is strong comovement in US inflation. Simple AR models do not perform very well
in this context but multivariate models such as factor models and BVAR models that
can capture this common movement or pick up feedback between the series have more
accurate forecasts. For the Euro Area inflation rate, there is far less commonality and
the series have more individual dynamics. Simple AR models tend to work well for
this type of dataset. They have more accurate forecasts than both the benchmark
and their multivariate counterparts. We also discuss the issue of estimation error. We
suggest that persistent series should be subject to low estimation error as they can be
parameterised parsimoniously.

The exercises are mainly based on multistep forecasts of year-on-year inflation rates.
For US inflation, we forecast the h-quarter price change for h = 1, ..., 8 and find the
results are robust to this change in the target forecast variable. We also introduce
a time-varying model with stochastic volatility where forecasts are constructed itera-
tively. The time-varying model in conjunction with forecast aggregation leads to further
improvements in forecast power. These robustness checks corroborate the main results
in favour of forecast aggregation. The paper provides a substantive endorsement of the
forecast aggregation approach, particularly in terms of inflation. The key to realising
gains in terms of forecast aggregation lies in the ability to uncover the appropriate
model for a particular dataset.
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Table 1: List of Items in each Aggregate
HICP Inflation Aggregates

5 Item List 12 Item List 32 Item List
Processed Food Food + beverages Food Health
Unprocessed Food Alcohol + Tobacco Non-alcoholic beverages Purchase of vehicles
Non-Energy Goods Clothing + Footwear Alcoholic beverages Vehicles operation
Energy Housing Tobacco Transport services
Services Furnishing Clothing Postal services

Health Footwear Telephone and telefax
Transport Rents for Housing Electronic Equipment
Communications Housing Maintenance Other durables for recreation
Recreation + culture Water supply + misc. services Recreation, garden and pets
Education Electricity, gas and fuels Recreation services
Restaurants + hotels Furniture and furnishings Reading and stationary
Miscellaneous Textiles Holidays

Appliances Education
Ware and Utensils Catering services
Tools and Equipment Accommodation services
Routine Maintenance Miscellaneous

PCE Inflation Aggregates
3 Item List 13 Item List 50 Item List
Durables Motor vehicles and parts New motor vehicles Exp. abroad by US residents
Non-Durables Durable household equipment Used motor vehicles Less remittances to nonresidents
Services Rec. goods and vehicles Vehicle parts Housing

Other durable goods Furniture and furnishings Household utilities
Food and bev off-premises Household appliances Outpatient services
Clothing and footwear Household utensils Hospital and nursing homes
Gas and other energy goods Equipment for house and garden Motor vehicle services
Other nondurable goods Video, audio and IT equipment Public transportation
Housing and utilities Sporting equipment Parks, theaters,museums etc
Health care Sports and recreational vehicles Audiovisual + IT services
Transportation services Recreational books Gambling
Recreation services Musical instruments Other recreational services
Food service + accomm Other durable goods Food services
Financial services Food+ non-alc. bev. off-premises Accommodations
Other services Alcoholic beverages off-premises Financial services

Food produced + consumed on farm Insurance
Garments Communication
Other clothes and footwear Education services
Gas + other energy goods Professional and other services
Pharmaceutical + medical products Personal care and clothing services
Recreational items Social serv + religious activities
Household supplies Household maintenance
Personal care products Foreign travel by US Residents
Tobacco Less Exp in US by nonresidents
Newspapers and magazines Nonprofit Institution Exp.

Note: Some categories have been abbreviation. The list for the 169-item breakdown is available upon request.
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Table 2: Forecast Errors for Standard AR Models
United States

Quarter AO Aggregate 3 Items 15 Items 50 Items 164 Items
1 0.35 0.74∗ 0.66∗ 0.69∗ 0.67∗ 0.67∗

2 0.73 1.02 0.86∗∗ 0.81∗∗ 0.84∗∗ 0.86∗∗

3 1.16 1.08 0.91∗∗ 0.85∗∗ 0.90∗∗ 0.91∗∗

4 1.63 1.22 1.01 0.94∗∗ 1.01 1.02
5 1.69 1.28 1.07 0.95∗∗ 1.08 1.08
6 1.56 1.41 1.20 1.09 1.29 1.29
7 1.48 1.53 1.32 1.26 1.50 1.52
8 1.32 1.62 1.49 1.50 1.79 1.84

Euro Area
Month AO Aggregate 5 Items 12 Items 32 Items

1 0.07 0.92∗ 0.76∗∗ 0.78∗∗ 0.75∗∗

2 0.18 0.92∗ 0.67∗∗ 0.71∗∗ 0.62∗∗

3 0.33 0.99 0.62∗∗ 0.69∗∗ 0.58∗∗

4 0.49 1.00 0.57∗∗ 0.65∗∗ 0.56∗∗

5 0.68 0.98 0.56∗∗ 0.64∗∗ 0.56∗∗

6 0.83 0.96 0.54∗∗ 0.60∗∗ 0.52∗∗

7 0.99 0.91∗ 0.54∗ 0.57∗∗ 0.50∗∗

8 1.18 0.87∗ 0.56∗ 0.54∗ 0.49∗

9 1.34 0.81∗ 0.57∗ 0.54∗ 0.50∗

10 1.51 0.75∗ 0.57∗ 0.52∗ 0.48∗

11 1.67 0.68∗ 0.57∗ 0.48∗ 0.47∗

12 1.84 0.64∗ 0.57∗ 0.47∗ 0.46∗

Note: The table presents ratios of RMSE for each model relative to the benchmark.
A value less than one indicates that the model has more accurate forecasts than the
benchmark. The RMSE of the Atkeson-Ohanian benchmark is in the first column.
Asterisks denote rejection of the null hypothesis of equal predictive accuracy between
each model and the AO at 5% (∗∗) and 10% (∗) significance levels.

Table 3: Forecast Errors for FAAR Model
United States

Quarter AO Aggregate 3 Items 15 Items 50 Items 164 Items
1 0.35 0.66∗ 0.63∗ 0.66∗ 0.64∗ 0.60∗

2 0.73 0.85∗∗ 0.79∗∗ 0.76∗∗ 0.75∗∗ 0.72∗∗

3 1.16 0.93∗∗ 0.87∗∗ 0.79∗∗ 0.78∗∗ 0.74∗∗

4 1.63 1.09 0.96∗∗ 0.86∗∗ 0.85∗∗ 0.81∗∗

5 1.69 1.16 0.98∗ 0.83∗∗ 0.84∗∗ 0.77∗∗

6 1.56 1.32 1.07 0.92∗ 0.95∗ 0.87∗

7 1.48 1.48 1.19 1.03 1.09 1.02
8 1.32 1.59 1.33 1.18 1.27 1.23

Euro Area
Month AO Aggregate 5 Items 12 Items 32 Items

1 0.07 0.94 0.78∗∗ 0.80∗∗ 0.77∗∗

2 0.18 0.95 0.68∗∗ 0.73∗∗ 0.63∗∗

3 0.33 1.00 0.63∗∗ 0.70∗∗ 0.58∗∗

4 0.49 1.00 0.58∗∗ 0.65∗∗ 0.57∗∗

5 0.68 0.97 0.56∗∗ 0.64∗∗ 0.56∗∗

6 0.83 0.95∗ 0.54∗∗ 0.59∗∗ 0.52∗∗

7 0.99 0.91∗ 0.54∗∗ 0.57∗∗ 0.50∗∗

8 1.18 0.87∗ 0.56∗ 0.54∗∗ 0.50∗∗

9 1.34 0.82∗ 0.57∗ 0.55∗ 0.50∗

10 1.51 0.75∗ 0.57∗ 0.52∗ 0.48∗

11 1.67 0.69∗ 0.57∗ 0.49∗ 0.47∗

12 1.84 0.64∗ 0.57∗ 0.47∗ 0.46∗

See Notes for Table 2 above.
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Table 4: Change in RMSE by Including Factor
United States

Quarter Aggregate 3-item 15-item 50-item 169-item
1 0.89∗∗ 0.95∗∗ 0.96∗∗ 0.95∗∗ 0.90∗∗

2 0.83∗∗ 0.92∗∗ 0.93∗∗ 0.89∗∗ 0.83∗∗

3 0.86∗∗ 0.95∗ 0.93∗∗ 0.87∗∗ 0.81∗∗

4 0.90∗∗ 0.95∗∗ 0.92∗∗ 0.84∗∗ 0.79∗∗

5 0.91∗∗ 0.91∗∗ 0.88∗∗ 0.78∗∗ 0.71∗∗

6 0.94∗ 0.89∗∗ 0.84∗∗ 0.74∗∗ 0.67∗∗

7 0.97 0.90 0.82∗∗ 0.73∗∗ 0.67∗∗

8 0.98 0.89 0.79∗∗ 0.71∗∗ 0.67∗∗

Euro Area
Month Aggregate 5 Items 12 Items 32 Items
1 1.02 1.02 1.02 1.03
2 1.03 1.02 1.03 1.03
3 1.01 1.02 1.01 1.01
4 1.00 1.01 1.01 1.01
5 0.99 1.01 1.00 1.00
6 0.99 1.00 1.00 1.00
7 1.00 1.00 1.00 1.00
8 1.00 1.01 1.00 1.00
9 1.01 1.00 1.00 1.00
10 1.01 1.00 1.00 1.00
11 1.01 1.01 1.01 1.01
12 1.01 1.01 1.01 1.01

Note: The table presents ratios of RMSE for AR models which include a factor to
those that don’t. It’s a measure of the change in forecast accuracy as a result of
including the factor in the model. A value less one means the model with the factor

more accurate forecasts. Star superscripts have same meaning as before.

Table 5: Commonality within Datasets
PCE Aggregate 3-item 15-item 50-item 169-item

R2 0.85 0.66 0.50 0.37 0.30
Ave. Corr. n/a 0.73 0.61 0.47 0.39

HICP Aggregate 5-item 12-item 32-item

R2 0.37 0.21 0.18 0.21
Ave. Corr. n/a 0.16 0.12 0.11

Note: The individual inflation rates are regressed on the factor only. R2 is the average for

level of aggregation. The second row is average correlation between the inflation rates.
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Table 6: Forecast Errors for BVAR Model
United States

Quarter AO 3-item 15-item 50-item 169-item
1 0.35 0.50∗∗ 0.51∗∗ 0.50∗∗ 0.50∗∗

2 0.73 0.71∗∗ 0.67∗∗ 0.70∗∗ 0.69∗∗

3 1.16 0.85∗∗ 0.77∗∗ 0.82∗∗ 0.81∗∗

4 1.63 0.99∗ 0.85∗∗ 0.93∗∗ 0.92∗∗

5 1.69 1.05 0.83∗∗ 0.96∗∗ 0.93∗∗

6 1.56 1.13 0.85∗∗ 1.06 1.00
7 1.48 1.19 0.87∗∗ 1.14 1.09
8 1.32 1.31 0.93 1.27 1.23

Euro Area
Month AO 5 Items 12 Items 32 Items

1 0.07 0.67∗∗ 0.75∗∗ 0.81∗∗

2 0.18 0.55∗∗ 0.58∗∗ 0.61∗∗

3 0.33 0.55∗∗ 0.56∗∗ 0.57∗∗

4 0.49 0.54∗∗ 0.55∗∗ 0.57∗∗

5 0.68 0.55∗∗ 0.55∗∗ 0.58∗∗

6 0.83 0.56∗∗ 0.56∗∗ 0.59∗∗

7 0.99 0.60∗∗ 0.62∗∗ 0.65∗∗

8 1.18 0.62∗ 0.65∗∗ 0.70∗

9 1.34 0.65∗ 0.68∗∗ 0.73∗

10 1.51 0.67∗ 0.69∗ 0.75∗

11 1.67 0.69∗ 0.71∗ 0.77∗∗

12 1.84 0.72∗ 0.72∗ 0.80∗∗

Note: The table presents the performance of the BVAR. As this is a
is a multivariate model, there are no results to report for the aggregate
alone. Star superscripts have same meaning as before.

Table 7: US Time-Varying AR Model Based on 15 Items
Pt+h − Pt

Quarter AO TV-AR/AO TV-AR/BVAR
1 0.35 0.78 0.88
2 0.73 0.75 0.87
3 1.16 0.74 0.87
4 1.63 0.73 0.89
5 1.69 0.69 0.90
6 1.56 0.72 0.94
7 1.48 0.79 1.03
8 1.32 0.88 1.11

Note: The second results column shows the RMSE of the 15-item TV-AR

while the third column is the ratio of the RMSE of the 15-item TV-AR to

the 15-item BVAR.
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Appendix 1: Alternative Data Transformation

As a robustness check, we perform the forecasting exercise for a different price trans-
formation, the h-level change in log prices pt+h − pt. This is analyzed only for the
US dataset, given that the seasonal issues with the EA data makes it difficult to look
at alternative data transformations beyond the year-on-year inflation rate, which is
analyzed in the main body of the paper. At a given horizon h, the AR and FAAR
forecasting equations are exactly those of eq.(3) and eq.(4) respectively. Forecasts with
the BVAR model are computed exactly as before, but the log-level of price at time
t is then subtracted by the forecast of pt+h in order to recover the h-level change of
log-prices.

Appendix Table A1 presents the results for the standard AR model. The aggregate
does not perform well, as it beats the benchmark only for the one-period forecast.
The 3-item and 15-item forecasts are both more accurate than the benchmark up to
five quarters. The results are presented graphically in Figure 9. The pattern mimics
the year-on-year results, where the 3-item and 15-item forecasts are far better than
the benchmark. Table A2 presents the results with the factor included. In further
agreement with the year-on-year results, the aggregate still has the worst average per-
formance and the 169-item model now has the most accurate forecasts. Figure 10
plots the results and it demonstrates how quickly the performance of the aggregate
deteriorates over the forecast horizon from a strong starting position. Table A3 shows
that the BVAR models also improve significantly on the AR specification, especially in
relation to the long-range forecasts. The performance of the BVAR models is graphed
in Figure 11. For the multistep forecasts in the previous section, the 15-item BVAR is
the only breakdown which is clearly better than its factor comparator. For the fore-
casts considered here, the 3-item BVAR also outperforms the 3-item factor model due
to good performance at the short horizons. Thus, when we compare the two model
types averaged by all their forecasts, the BVAR is more accurate than the factor model
by approximately 7%. As before, the best BVAR model is still based on 15 items.
Overall, these results strongly mirror those of the year-on-year specification. In this
exercise, the aggregate model never provides the best forecasts and often provides the
worst. The key properties of the data affect the disaggregate forecasts in the same way
irrespective of the data transformation.
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Table A1: Errors for AR model Forecasts of Pt+h − Pt
United States

Quarter AO Aggregate 3 Items 15 Items 50 Items 164 Items
1 3.09 0.90 0.92 0.92 0.90 0.93
2 2.27 1.05 0.96 0.92 0.93 0.96
3 1.82 1.16 0.98 0.96 0.99 1.04
4 1.63 1.17 0.98 0.99 1.06 1.09
5 1.42 1.14 0.99 0.98 1.09 1.15
6 0.98 1.29 1.10 1.15 1.35 1.48
7 0.77 1.45 1.23 1.37 1.65 1.85
8 0.62 1.54 1.35 1.65 2.02 2.35

Note: The table presents ratios of RMSE for each model relative to the benchmark.
Only applies to US data.

Table A2: Errors for FAAR Model Forecasts of Pt+h − Pt

United States
Quarter AO Aggregate 3 Items 15 Items 50 Items 164 Items

1 3.09 0.85 0.93 0.91 0.88 0.89
2 2.27 0.97 0.96 0.90 0.87 0.84
3 1.82 1.09 1.00 0.92 0.90 0.85
4 1.63 1.11 1.01 0.93 0.91 0.84
5 1.42 1.09 1.01 0.88 0.88 0.81
6 0.98 1.28 1.09 0.91 0.94 0.86
7 0.77 1.46 1.19 1.00 1.05 0.97
8 0.62 1.54 1.27 1.09 1.17 1.10

Note: The table presents ratios of RMSE for each model relative to the benchmark.
Only applies to US data.

Table A3: Errors for BVAR Model Forecasts of Pt+h − Pt

United States
Quarter AO 3-item 15-item 50-item 169-item

1 3.09 0.84 0.89 0.90 0.91
2 2.27 0.81 0.86 0.92 0.92
3 1.82 0.81 0.86 0.94 0.95
4 1.63 0.80 0.82 0.92 0.94
5 1.42 0.78 0.76 0.91 0.93
6 0.98 0.88 0.76 0.92 0.92
7 0.77 0.97 0.76 0.93 0.93
8 0.62 1.10 0.79 0.96 0.93

Note: The table presents the performance of the BVAR. As this is a
is a multivariate model, there are no results to report for the aggregate
alone.



29
ECB

Working Paper Series No 1365
August 2011

Figure A1: RMSFE of AR Model Figure A2: RMSFE of FAAR Model

versus AO (US) versus AO (US)
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Figure A3: RMSFE of BVAR Model Figure 9: RMSFE of the AR, FAAR, BVAR

versus AO (US) and TV-AR Models versus AO (US - 15 items)
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