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Abstract

The elasticity of substitution between domestic and imported goods is a central

parameter in macroeconomic models, but after decades of empirical studies there

is no consensus on its magnitude. Earlier literature using time series arrives at

low values, while more recent studies using panel-based econometric methods on

disaggregated data find higher values. We examine the econometric methodology

of this more recent literature, which follows the seminal work by Feenstra (1994),

looking in more detail at the effect on the results of the non-linear mapping between

reduced-form and structural parameters. Our main contribution is the use of boot-

strap methods, which offer more insight into the Feenstra method and can explain

why researchers applying it may tend to find high estimates. The bootstrap not only

allows us to obtain considerably less biased estimates of the structural elasticity pa-

rameter, but also to better characterize their accuracy, a point vastly overlooked by

the literature.

Keywords : Trade Elasticities, Elasticity of Substitution, Heterogeneity, Bootstrap

JEL classification: C14, C23, F14
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Non-Technical Summary

The elasticity of substitution between domestic and imported goods has been the ob-

ject of intense empirical study since the middle of last century. Decades of empirical

studies have however not delivered a consensus on its magnitude. The literature is di-

vided between “elasticity pessimism” stemming from the earlier literature based on time

series, and the “elasticity optimism” of the more recent studies that use panel-based

econometric methods on disaggregated data. In other words, studies in the earlier lit-

erature usually find very low elasticity estimates, while studies pertaining to the latter

arrive at much higher ones. We discuss the econometric methodology of this more re-

cent literature, looking in more detail at the sensitivity of the results to the non-linear

mapping between reduced-form and structural parameters used since the seminal work

by Feenstra (1994).

Feenstra proposed a method based on panel regressions on disaggregated (sector

level) data. The estimation equation, derived from economic theory is a function of two

estimable coefficients, which in turn are non-linear functions of the structural elasticity

parameter of interest. The theoretical derivation imposes restrictions on the regression

parameters, rendering a mapping function that is non-linear and discontinuous. The

irregular shape of this mapping function causes the elasticity estimates in some regions

of the parameter space to be biased. In particular, the higher the elasticity estimate, the

more likely it is to be biased. This bias stems from the parameter mapping itself, and

not from the estimates of the reduced-form parameters being biased – in other words, it

may be present even if the reduced-form estimator is consistent.

Applying bootstrap methods, we are able to identify, quantify and partly correct

for the aforementioned bias. We present results based on Monte Carlo experiments,

as well as estimation results based on bilateral sector-level trade data, finding that the

resulting bootstrap distributions can be very irregular as a consequence of the non-

linearity inherent in the estimation. The main insight provided by the bootstrap is

that the Feenstra method is likely to lead to high, and highly unstable, estimates for

the elasticity of substitution in some regions of the parameter space. If the sector level

elasticities are subsequently aggregated, this will jack up the resulting aggregate. In this

sense, we find that the method itself may lead to “elasticity overoptimism”. Furthermore,

the previous literature uses the delta method to derive the variance of the estimates, but

given the discontinuity in the mapping function, this method is not applicable. We find

that, indeed, it provides vastly underestimated measures of the variance of the elasticity

of substitution, thus leading also to overoptimism on the significance of results.
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Based on the outcome of our Monte Carlo experiments, we can discriminate be-

tween alternative measures of the elasticity of substitution. We find that, using robust

measures of central tendency of the bootstrap distributions, we are able to obtain con-

siderably less biased estimates in the problematic regions of the parameter space, where

the majority of the estimates are located. We tend to obtain the same estimates as those

that would be produced by the standard application of the Feenstra (1994) method (and

smaller standard deviations) in cases where the bootstrap-based diagnostics do not in-

dicate restrictions violations, but smaller ones in the cases where they do. Finally, we

also provide alternative measures of dispersion based on the bootstrap distribution. Our

proposed bias correction and improved characterization of the standard errors may sup-

port “elasticity realism”, leading to estimates that, though higher than those based on

time series, are distinctly lower than the more recent ones.
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1 Introduction

Empirical economists have tried to estimate the elasticity of substitution between domes-

tic and imported goods since the middle of the last century (see e.g. Tinbergen (1946),

Polak (1950), and in particular Orcutt (1950), Streeten (1954) and Preeg (1967) for early

uses of the terms “elasticity pessimism” and “elasticity optimism”). After decades of

empirical studies, however, no consensus has been reached on what magnitude should

be used for this central parameter in the calibration of macroeconomic models. Ear-

lier literature, based on time series, mainly arrives at low values, leading to “elasticity

pessimism”. More recent studies that use panel-based econometric methods on disaggre-

gated data find higher values, hence the recent “elasticity optimism” (see e.g. Feenstra

(1994), Broda and Weinstein (2006), Broda, Greenfield, and Weinstein (2006) and more

recently Imbs and Méjean (2009, 2011)). We examine the econometric methodology of

this more recent literature, which, following the seminal work by Feenstra (1994), relies

on the estimation of reduced-form parameters which are subsequently mapped into the

structural elasticity parameter of interest using a non-linear mapping function. In par-

ticular, our focus is on the sensitivity of the results to this non-linear mapping between

reduced-form and structural parameters, which generates a, sometimes considerable, bias

even in the case of consistently estimated reduced-form parameters.

The Feenstra method is based on panel regressions on disaggregated (sector level)

data. The estimation equation, derived from theory, is a linear function of two reduced-

form parameters, which in turn are some non-linear functions of the structural elasticities

of interest. Having obtained estimates of the reduced-form parameters, one can then

compute the elasticity of substitution. The theoretical restrictions on the elasticities

impose restrictions on the regression parameters, which in come cases may be violated.

In particular, in the case of a highly competitive market, and hence a high elasticity

of substitution, we face a risk of obtaining theory-inconsistent estimates. Moreover,

in these same cases, even if we do obtain a theory-consistent estimate, it is likely to

be biased due to the convexity of the mapping function in this particular part of the

parameter space. The bias we have in mind here stems from the parameter mapping

itself, and not from the reduced-form parameters being biased – in other words, it may

be present even in the case of consistent estimation.

Applying bootstrap methods, we are able to identify, quantify and partly correct for

the bias induced by the non-linearity of the function mapping the estimated reduced-

form coefficients into structural parameters. We present results based on Monte Carlo

experiments, as well as estimation results based on actual trade data. The results we
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present are obtained from estimations on German import data at the 4-digit ISIC level

covering the years 1995-2009. Our analysis leads to two main insights. First, the Feen-

stra method is likely to lead to too high and unstable estimates for the elasticity of

substitution in some frequently visited regions of the parameter space. If the sector-

level elasticities are subsequently aggregated, this will jack up the resulting aggregate.

Second, the previous literature uses the delta method to derive the variance of the esti-

mates, but given the functional form of the mapping function, which has a discontinuity,

this method is not applicable. We find that, indeed, it provides vastly underestimated

measures of the variance of the elasticity of substitution, thus leading to the significance

of results being overestimated.

Guided by our simulation results, we then propose alternative measures of the elas-

ticity estimate and an alternative measure of dispersion based on the bootstrap distri-

bution. Our preferred measures of central tendency, the median and the mode of the

bootstrapped distribution, are on average less biased than the estimates obtained from

original two-stage least squares (2SLS) estimator proposed by Feenstra (1994).

The rest of the paper is organized as follows. Sections 2 and 3 are devoted to

overviews of the literature and of the Feenstra method, respectively. In Section 4, we

discuss the estimation procedure. Section 5 contains the results of Monte Carlo experi-

ments, quantifying the bias of the alternative measures we test against each other, and

formally affirming the advantages of the bootstrap in our context. In Section 6, the

estimation results are discussed. Finally, Section 7 concludes.

2 Overview of related literature

Following the seminal paper by Feenstra (1994), a literature employing panel data meth-

ods for the estimation of elasticities of international substitution has emerged. It makes

use of the increasingly available sources of disaggregated trade data to produce structural

estimates of elasticities, at the good and at the macroeconomic level. Unlike the earlier

literature, dating as far back as the 1940s, the more recent literature applying panel

data estimation methods is able to address the endogeneity problem present whenever

quantities or volumes are regressed on prices. Furthermore, the use of disaggregated

data significantly reduces the aggregation bias problems related to the use of macro

time series. For a full discussion of the earlier literature employing macroeconomic time

series for the estimation of trade elasticities and elasticities of substitution, see the sum-

mary in McDaniel and Balistreri (2003) who discuss some of the main references in the

field. Other relevant references include Orcutt (1950), Houthakker and Magee (1969),
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Marquez (1990), and Gallaway, McDaniel, and Rivera (2003).

Feenstra (1994) introduced a way of structurally estimating the elasticity of substi-

tution, by explicitly modeling both the supply side and the demand side of each market.

Under the assumption of equal substitutability of all varieties independently of their

origin, as in Armington (1969), the resulting system of equations can be estimated using

trade data only. Broda and Weinstein (2006) made the methodological contribution of

extending the Feenstra method to deal with estimates that do not yield theory-consistent

elasticities of substitution. Whenever the estimation generates a value which is inconsis-

tent with the theoretical model, a grid search is performed over the range of admissible

values, and the best among these is chosen.1

Mohler (2009) evaluates the sensitivity of estimates based on the Feenstra methodol-

ogy to changes in the estimation specification. He finds that the elasticities are estimated

quite robustly, using the original Feenstra (1994) estimator. However, as we will further

elaborate on below, Mohler uses a linear approximation to compute standard deviations

of the estimates, which in some cases can yield highly underestimated variance esti-

mates. Indeed, he does point out that the estimates sometimes react very sensitively to

different specifications, while at the same time exhibiting very low variances, without

however investigating the reason for this directly.

3 The Feenstra (1994) method

The main advantage of the Feenstra approach is that it explicitly models the supply

side of the economy in addition to the standard demand side specification which is

traditionally used when estimating elasticities of substitution. It exploits the panel

structure of the data to address the simultaneity issues present whenever quantities

are regressed on prices, since each is co-determined with the other. This is a clear

advantage compared to using IV methods, since instruments for prices and quantities at

the good level are hard to find.2 The identification strategy that the Feenstra method

hinges on stems from Armington (1969), who assumed that the substitutability between

two imported varieties of the same good is the same as the substitutability between

an imported variety and a domestic one. This assumption is what allows us to use

trade data only for the estimation of the elasticities of our interest; this is of crucial

1We discuss the advantages and drawbacks of this approach in Section 4 below.
2Erkel-Rousse and Mirza (2002) estimate elasticities for 27 ISIC sectors in 13 importing countries,

instrumenting the prices by relative wage and relative exchange rate indices. Their estimation requires
a panel, just as ours. The wage series they use are, however, much less detailed and comprehensive, and
less easily accessible than the data on trade flows.
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importance, since data on domestic production and consumption are not available at

the same level of disaggregation as trade data for a wide set of countries. Here we only

present a summary containing the main equations and underlying assumptions of the

Feenstra method. For details, see Appendix A.

3.1 Deriving the estimated equation

We begin by clarifying some concepts and definitions. The disaggregation level at which

we compute and estimate the elasticity of substitution will be the good level. We use

the terms sector and good interchangeably; in other words, the sector grouping is what

determines the definition of a good. A good, in turn, contains a number of varieties.

By variety, we refer to a good produced in a specific country. Hence, the definition of

good is based on some product characteristics other than its origin, and variety refers to

products of a specific origin belonging to some category of goods. This implies that we

have as many varieties of each good as there are trading partners in the specific sector.

The exact empirical definitions of goods and varieties will depend on the disaggregation

level and availability of the data.

A few words on notation are in place here; to make the formulas easy to read, we have

set all indices to the first letter of what they are meant to index. Hence, we denote the

country under study by c, the good (or sector) by g, the variety (or country producing

good g) by v, and the time period by t. If a variable denotes the aggregate across some of

the indices, a dot will appear in the place of the index across which we are aggregating.

In the case of parameters being assumed constant across some dimension, they will only

be denoted by the indices across which they vary.

Assuming a standard CES setting, we have the following demand function:

Ccgvt = β
σcg−1
cgvt

(

Pcgvt

Pcg.t

)−σcg

Ccg.t , (1)

where Ccgvt denotes the consumption of variety v, pertaining to good g, in country c at

time t and Ccg.t the total consumption of good g in country c at time t, and Pcgvt and

Pcg.t are the corresponding prices. The parameter βcgvt is a taste parameter specific to

each variety, good and country at each point in time. Finally, σcg denotes the elasticity

of substitution of good g in country c. This is our parameter of interest and it is assumed

to be equal over all varieties of good g, imported as well as domestically produced.3

3This is the Armington (1969) assumption, discussed above, upon which Feenstra’s identification
strategy hinges.
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Rewriting in terms of expenditure shares, taking logs and differencing, we can rewrite

(1) as

∆ ln s̃cgvt = (1− σcg)∆ ln P̃cgvt +Φcg.t + εcgvt . (2)

Here, ∆ denotes the difference over time or, in other words, the growth rate of a variable;

s̃cgvt ≡ PcgvtCcgvt∑
v 6=c

PcgvtCcgvt
denotes the observed expenditure share of variety v in country c’s

total imports of good g at time t; P̃cgvt is the observed price; Φcg.t is a term contain-

ing the variables that are common to all varieties; and εcgvt is an error-term capturing

unobserved trade costs and taste variables.4 Note that the error term is assumed id-

iosyncratic, allowing each variety to exhibit some characteristics specific to it alone. In

other words, it is assumed to be identically and independently distributed across time,

countries, sectors and varieties.

The supply equation is assumed to take on the following simple structure:

Pcgvt = τcgvt exp(vcgvt)C
ωcg

cgvt , (3)

where τcgvt is a measure of variety-specific multiplicative trade costs, vcgvt is a sector-

and country-specific technology shock, and ωcg ≥ 0 is the inverse of the price elasticity

of supply of good g in country c, assumed equal across varieties but allowed to differ

between goods. The assumption of equality across varieties is crucial for identification,

as this is what allows us to eliminate all terms common across varieties and thus express

the estimation equation in term of observable variables only. Rewriting in a similar

fashion as with demand above, the final supply equation becomes

∆ ln P̃cgvt = Ψcg.t +
ωcg

1 + ωcgσcg
εcgvt + δcgvt . (4)

The term containing variables common to all varieties is now denoted Ψcg.t, while the

idiosyncratic error term is given by δcgvt, also assumed to be i.i.d. across all dimensions.

In order to make identification of the system of equations given by (2) and (4)

possible, we need to make the assumption of no correlation between the error terms,5

4Note that the observed expenditure share differs from the true expenditure share due to the avail-
ability of data. As we only have data on international trade, and not on domestic consumption, the
observed share is expressed as a fraction of imports expenditures on good g instead of total expenditures
on good g. The import prices we observe are measured CIF (Cost, Insurance and Freight). This implies
that insurance, handling and shipping costs are all included; customs charges, however, are not (Radelet
and Sachs, 1998). For further details on the distinction between theoretical and observed prices and
shares, see Section A.1.1 in the Appendix.

5As discussed also in Feenstra (1994), Leamer (1981) demonstrates that this assumption in a time
series setting yields elasticity estimates that lie on a hyperbola defined by the second moments of the
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i.e.

E(εcgvtδcgvt) = 0 . (5)

Next, we eliminate the terms common to all varieties by subtracting from each equation

indexed v the same equation for some reference variety vr, obtaining

ε̌cgvt ≡ εcgvt − εcgvrt (6)

= [∆ ln s̃cgvt −∆ ln s̃cgvrt] + (σcg − 1)
[

∆ ln P̃cgvt −∆ ln P̃cgvrt

]

δ̌cgvt ≡ δcgvt − δcgvrt (7)

=
1 + ωcg

1 + ωcgσcg

[

∆ ln P̃cgvt −∆ ln P̃cgvrt

] ωcg

1 + ωcgσcg
[∆ ln s̃cgvt −∆ ln s̃cgvrt] .

By assumption (5), ε̌cgvt and δ̌cgvt are independent. We can hence multiply the above

equations for the differenced error terms, obtaining an expression for the i.i.d. variable

ucgvt in terms of combinations of expenditure shares and prices only – both variables

that we can observe. Rearranging, we arrive at the estimation equation

Ycgvt = θ1cgX1cgvt + θ2cgX2cgvt + ucgvt , (8)

where we have defined:

Ycgvt ≡
[

∆ ln P̃cgvt −∆ ln P̃cgvrt

]2
, (9)

X1cgvt ≡ [∆ ln s̃cgvt −∆ ln s̃cgvrt]
2 , (10)

X2cgvt ≡ [∆ ln s̃cgvt −∆ ln s̃cgvrt] ·
[

∆ ln P̃cgvt −∆ ln P̃cgvrt

]

, (11)

ucgvt ≡
1 + ωcgσcg

(1 + ωcg)(σcg − 1)
ε̌cgvtδ̌cgvt , (12)

θ1cg ≡
ωcg

(1 + ωcg)(σcg − 1)
, (13)

and

θ2cg ≡
ωcgσcg − 2ωcg − 1

(1 + ωcg)(σcg − 1)
. (14)

To sum up, our regression variables are the second moments of expenditure shares and

prices, once they have been differenced over time and with respect to a reference variety in

data. Using time series data, the estimate is not unique. With a panel, however, we are able to obtain
multiple hyperbolas – one for each trading partner, the intersection of which will yield a unique set of
elasticity estimates.
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order to eliminate any level dependence and good-specific shocks common to all varieties.

Based on the estimates from a regression on those variables, we are able to compute the

structural parameter of interest.

3.2 Consistency

Equation (8), estimated by OLS, will not yield consistent estimates since prices and

expenditure shares are correlated with the error terms, as discussed in Feenstra (1991,

1994). To deal with this problem, Feenstra suggests including country-specific fixed

effects as instruments, a method we also pursue. Denoting by Zcg the block-diagonal

matrix of instruments for good g imported to country c, and byXcg the matrix containing

the regressorsX1cg andX2cg, we estimate the coefficients θ̂cg from the following equation6

θ̂cg =
[

X′
cgZcg

(

Z′
cgZcg

)−1
Z′
cgXcg

]−1
X′

cgZcg

(

Z′
cgZcg

)−1
Z′
cgXcg . (15)

Our estimator yields consistent estimates of θ1cg and θ2cg, but not all such estimates are

theory-consistent, due to the restrictions imposed by the structural model on σcg. We

next discuss these theory-imposed restrictions.

Combining expressions (13) and (14), we obtain an expression for σcg in terms of θ1cg

and θ2cg. In order to derive the restrictions on the parameters, Feenstra (1994) rewrites

the above expressions in terms of the parameter ρcg, defined as

ρcg =
ωcg(σcg − 1)

1 + ωcgσcg
, (16)

instead of ωcg. This simplifies the derivations since both an upper and a lower

restriction can be obtained for ρcg, while ωcg is only bounded below by zero. Noting

that ρcg is increasing in ωcg, we obtain the lower bound ρcg = 0 by letting ωcg = 0. On

the other extreme, we have

ρcg|ωcg→∞
=

1
1
ρcg

∣

∣

∣

∣

∣

ωcg→∞

=
1

1+ωcgσcg

ωcg(σcg−1)

∣

∣

∣

∣

∣

∣

ωcg→∞

=
1

0 +
σcg

σcg−1

=
σcg − 1

σcg
< 1 . (17)

Hence, it holds that 0 ≤ ρcg <
σcg−1
σcg

< 1. Rewriting the expressions for θ̂1cg and θ̂2cg in

terms of ρ̂cg, next, yields

θ̂1cg =
ρ̂cg

(σ̂cg − 1)2(1− ρ̂cg)
(18)

6For details on the consistency of the estimator, see Feenstra (1991).
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and

θ̂2cg =
2ρ̂cg − 1

(σ̂cg − 1)(1 − ρ̂cg)
. (19)

Dividing the square of (19) by (18), and solving the resulting equation, yields the fol-

lowing expression for ρ̂cg

ρ̂cg =
1

2
±





1

4
− 1

4 +
(

θ̂22cg/θ̂1cg

)





1
2

, (20)

while from (19) we have

σ̂cg = 1 +
2ρ̂cg − 1

θ̂2cg(1− ρ̂cg)
. (21)

In order to insure that σ̂cg > 1,7 we must choose a value of ρ̂cg > 1
2 when θ̂2cg > 0,

and a value of ρ̂cg < 1
2 when θ̂2cg < 0. Knowing that ρ̂1cg and (1 − ρ̂1cg) must both be

positive, it follows from equation (18) that the restrictions on σ̂cg and ρ̂cg will be fulfilled

whenever θ̂1cg > 0 holds.8 Finally, if θ̂2cg → 0, then ρ̂cg → 1
2 and σ̂cg → 1 + θ̂

− 1
2

1cg .

These parameter restrictions imply that a negative value of θ̂1cg will generally not

yield theory-consistent estimates of the elasticity of substitution. In Feenstra’s original

paper, the sectors that yield theory-inconsistent estimates are discarded. More recent

papers applying the Feenstra (1994) method usually follow Broda and Weinstein (2006)

and perform a grid search over the interval of admissible parameter values.9 Specifically,

whenever a theory-inconsistent estimate is obtained, a search algorithm is used to locate

the best fit over the interval of admissible values of ρ̂kj and σ̂kj. However, there are

potential problems associated with this method, as one needs to limit the grid from

below and above, and determine its fineness in some arbitrary fashion. The possibility of

corner solutions then makes the estimates arbitrary as well, since they will depend on the

7An elasticity below unity is theoretically unappealing, as it would imply that all varieties are essential
for the consumer to achieve positive utility. This would also imply that no existing varieties could
disappear from the market, nor new ones be introduced. Hence, in line with previous literature, we
consider any estimate of σ̂cg < 1 to be theory-inconsistent.

8Note that it is possible that a slightly negative value of θ̂1cg yields a theory-consistent estimate if

θ̂1cg > −

θ̂22cg
4

,

even though the restriction on ρ̂cg will not be fulfilled. See Feenstra (1994) for derivations. This case
does occur from time to time in our estimations. In Feenstra (1994), it occurs for one out of the eight
sectors for which theory-consistent estimates are obtained.

9See Broda and Weinstein (2006) for a description of the method, and Imbs and Méjean (2009, 2011)
for examples of applications.
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Figure 1: A graphical representation of the functional form of the mapping from θ1 and
θ2 to σ.

specific choice of grid employed. Another important issue that, to our knowledge, has not

been debated in earlier work is the computation of standard deviations of the estimates.

The procedure proposed by Feenstra is to use a first-order Taylor approximation of

the expression for the elasticity of substitution around the coefficient estimates θ̂1cg

and θ̂2cg, and to use the variances and covariances of those to compute the variance of

the elasticity estimate. However, for an approximation of this sort to be appropriate,

the function mapping θ̂1cg and θ̂2cg into σ̂cg needs to be infinitely differentiable in the

neighborhood of the estimate. In our setting, this is not the case. This is best shown

graphically, as in Figure 1, which shows the function σ = f(θ1, θ2) in the relevant space

of θ1 and θ2. Moreover, as the approximation is of first order, it is likely to be inadequate

even in the parts of the parameter space where the function is continuous but has a high

curvature.
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It is easily seen from the figure that the mapping function is discontinuous and that

it explodes in some regions of the parameter space. Applying a linear approximation

despite this fact implies the risk of seriously overestimating the accuracy of the elasticity

estimates. This may also explain the apparent contrast between the non-robustness of

the point estimates and the low estimated standard errors observed by Mohler (2009).

4 Estimation procedure

In order to avoid the above mentioned problems, we propose a different method of esti-

mating the elasticity of substitution under the theory-imposed constraint, and of assess-

ing the accuracy of the estimates. We apply a bootstrap procedure to get a characteriza-

tion of the full distribution of the estimates for all of the country-sector combinations for

which we perform estimation. From this we can then obtain various measures of central

tendency and dispersion. As we expect the mean of the bootstrapped distribution to be

sensitive to outliers, we also consider the median and mode of the distribution as mea-

sures of central tendency. Moreover, we consider the interquartile range as an additional

measure of dispersion, expecting the same instability in the variance as in the mean of

the distribution.

In the well-behaved region of the mapping function, the robust central-tendency

measures (median and mode) of the coefficient estimates generated by our bootstrap

procedure are practically the same as the point estimates obtained from the original es-

timation. As will become clear from the results presented in Section 6, the results differ

substantially when the point estimate is located near the discontinuous region of the

mapping function. This is the case not only for theory-inconsistent estimates, but also

for high and mid-range estimates that are theory-consistent. Given the highly non-linear

form of the mapping function between the estimated coefficients and the parameters of

interest, we suspect that the bootstrapped distributions may be very irregular. For this

reason we take particular care in choosing measures of central tendency and dispersion.

We find that, while in some country-sector pairs the bootstrap distributions are quite

regular, very irregular ones do arise in a non-negligible fraction of cases. This yields

highly distorted measures of the standard deviations of the elasticity estimates, espe-

cially in those cases where restricted estimation is necessary, but also in case the point

estimate is high. As discussed above, this feature tends to severely overestimate the true

accuracy of the obtained estimates. Thanks to the increased transparency that the boot-

strap offers, we can provide a more complete and consistent picture of the information

contained in the data. We next describe our bootstrapping procedure in more detail.
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4.1 The bootstrapping procedure

We use a wild bootstrap resampling procedure to estimate the empirical distribution of

our estimates of the sectoral elasticities of substitution. The wild bootstrap is meant to

address the problem of heteroskedastic errors and was popularized by Liu (1988), who in

turn took the main idea from Wu (1986) and Beran (1986). The implementation we use

was proposed by Mammen (1993). Other studies discussing the properties of the wild

bootstrap are Flachaire (2005) and Davidson and Flachaire (2008). It was used, among

others, by Davidson and MacKinnon (2010) for instrumental variables regressions, and

by Cavaliere, Rahbek, and Taylor (2010a) and Cavaliere, Rahbek, and Taylor (2010b)

for cointegration regressions in the presence of conditional heteroskedasticity and non-

stationary volatility.

The basic idea of the wild bootstrap is to replicate a heteroskedastic structure in

resampling the residuals. Our chosen procedure works as follows. We estimate our

reduced-form parameters θ̂1cg and θ̂2cg once, using 2SLS as discussed above. We boot-

strap the residuals from equation (15), and then we reconstruct the dependent variable

applying the following transformation:

Y̆cgvt = θ̂1cgX1cgvt + θ̂2cgX2cgvt + ûcgvtε̆t , (22)

where ûcgvt is the residual from the 2SLS regression and ε̆t is white noise following a

distribution that is chosen to have expectation E(ε̆t) = 0 and variance E(ε̆2t ) = 1. We

use the following two-point distribution for ε̆t:

ε̆t =

{

−(
√
5− 1)/2 with probability p = (

√
5 + 1)/(2

√
5))

(
√
5 + 1)/2 with probability 1− p

(23)

To reconstruct the dependent variable, we use the initial point estimates and the data

for the regressors (treating them as fixed) and we re-estimate the equation 5 000 times.

Out of the 5 000 obtained combinations of estimated parameters, we only keep those for

which θ̂1cg > 0, and which hence yield theory-consistent elasticity estimates.10 The rest

are replaced by continuing the bootstrapping procedure until we have obtained a total of

5 000 admissible estimates, keeping track of the required number of draws as a measure

of plausibility of the imposed modeling assumptions for each country-sector pair. When

a very large number of draws is needed to generate our obtained final estimate, we take

10We also keep the combinations containing some negative value of θ̂1cg such that θ̂1cg > −θ̂22cg/4,
as these also provide us with theory-consistent estimates. The great bulk of the draws that we keep,
however, contain a positive θ̂1cg .

14



it as an indication that the model does not match the data for the country and sector

in question. Due to the discontinuity of the mapping function, however, we do expect

the total number of draws to exceed 5 000 somewhat for very high elasticity estimates,

even when the model assumptions are appropriate. The 5 000 draws that we keep form

a distribution of each of the parameters contained in θcg as well as σcg, the moments

of which can be used to measure the elasticity of substitution and of the accuracy with

which it is measured. We use the inter-quartile range of the bootstrap distribution as

our estimate of the dispersion of the elasticity of substitution (see Section 6).11 From the

bootstrap distribution, we also obtain various measures of central tendency that could

be used as estimates of the elasticity; specifically, we measure the mean, the median

and the mode of each generated distribution. With such irregular shapes as the ones

we encounter here, however, it is not obvious what the best measure of central tendency

for distributions is. Given the occurrence of outliers, sometimes even very extreme ones,

the mean is not a stable, nor a representative measure of the distribution, and the point

estimate not a particularly informative one. The median is more robust than the mean

to outliers, but can lie in a part of the distribution with relatively little probability mass.

To shed some light on these issues, we devote the following section to a more thorough

evaluation of the alternative measures of central tendency, based on which we choose

our preferred estimate of the elasticity of substitution.

5 Monte Carlo experiment

Before selecting our preferred measure of the elasticity of our interest, we wish to deter-

mine the accuracy of the different alternatives. In order to assess the severeness of the

presumed bias, however, we need to know the true value of σ in the data we are dealing

with, i.e. we need to know the underlying data generating process of our sample. To be

able to control this, we construct a Monte Carlo experiment, simulating the data and

running the exact same procedure as we do in our estimation.

We start by characterizing the joint distribution of our estimation data. Specifically,

using the moments from the data on trade shares and unit values which are used to

create the regressors X1 and X2, we generate data series of a sample size representative

for our data.12 We then pick a value of θ1, keeping θ2 fixed, and compute the true value

11For comparison purposes, we also report the estimates obtained using the standard 2SLS proce-
dure. The standard errors reported with these estimates are obtained following the linear-approximation
method used by Feenstra (1994), Imbs and Méjean (2009), and others.

12The results presented here are all based on a sample size of 72. We have, however, experimented
with other sample sizes as well. For markedly larger sample sizes, all measures perform better, just as
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of σ. For the results we present here, we have always used θ2 = 0.4, which approximately

equals the mean value of θ2 in our estimations.13 Using the residual moments from the

German import data estimations, the results of which are presented in the following

section, we generate a vector of residuals which, together with the regressor data and

the selected parameter values, is used to construct the data for Y . Using the data for X1,

X2 and Y , we then first estimate the θ coefficients and compute the implied elasticity

estimate, and then run the bootstrap exactly as we do in our actual estimations. Having

generated all of our candidate measures of central tendency, we use the true value of

σ to assess the bias in each of them. This procedure is then repeated 2 000 times for

each set of chosen parameter values; the results we report are averages over the 2 000

repetitions. In Figures 2 and 3, we present a summary of the results from the Monte

Carlo simulations, with the graphs corresponding to the bootstrap shown as dotted and

dashed lines, and the one corresponding to 2SLS as a solid line.
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Figure 2: Bias as percent of the true value of σ (entire space of θ1)

we expect them to. As the sample size in our estimations has an average of 82 for Germany and 60
for the cross-section of countries, and it very rarely goes above 100, we choose a sample size of 72 as
representative for our data.

13This is the case both when looking across German import data estimates, and across a larger sample
of countries with all sectors included. Note that the most critical measure for the size of the bias is the
magnitude of θ1, more specifically its proximity to 0. We have performed simulations for a grid of values
of θ2, spanning over the entire interval of encountered θ2 estimates in our data. The conclusions however
remain largely the same, why, in the interest of brevity, we choose not to present them here.
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Figure 3: Bias as percent of the true value of σ (problematic region)

Figure 2, first, plots the bias, for the entire span of θ1, expressed in percent of the

true value of σ, so that a bias of say 50% when σ = 4 means that the obtained estimate

was equal to 6. From the figure, it is clear that for a high value of θ1 or, equally, a low

value of σ, all of the analyzed measures perform well, just as expected as the mapping

function in this region of the parameter space displays no irregularities. Moving further

to the left in the figure, the bias of the bootstrap mean becomes quite volatile and

often extremely high, due to the sensitivity of the measure to extreme outliers. In what

follows, for visual clarity and since the measure performs too poorly to be interesting

for our purposes, we exclude the bootstrap mean from the graphs. Turning now to the

lowest part of the range of θ1, we see that the biases of the three remaining measures also

diverge. We next focus on this region of the parameter space, more clearly presented in

Figure 3. The figure shows that the bootstrap produces notably less biased measures

of the elasticity of substitution than the original 2SLS estimates. We further note that

none of the measures performs particulary well for extremely low θ1, i.e. extremely high

σ which is unsurprising in the light of the pronounced non-linearity of the mapping

function in that precise region.

These plots indicate that the bootstrap measures perform at least as well as the 2SLS

estimate – they are as good as or better in all of the parameter space. To be sure that this

difference is relevant in practice, using a large number of sector level estimates, we count
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how frequently we visit the regions in which the bootstrap and the 2SLS perform equally

well, the bootstrap performs better, or both measures perform poorly. We choose the

mid range of estimates conservatively; in order not to risk overstating the performance

of the bootstrap, we define the mid range to be 0.15 ≤ θ1 ≤ 0.4. Correcting for the

bias based on the Monte Carlo results, this yields the approximate elasticity interval

of 3.16 ≤ σ ≤ 10. We find elasticities in this interval in just above 56% of the cases,

elasticities higher than 10 in approximately 6% of the cases, and elasticities lower than

3.16 in the remainder of the cases.14 Indeed, the mid-range elasticities make up the

largest fraction of estimated elasticities, while, at the same time, we observe a large

bias in the 2SLS estimates of these. This leads us to conclude that the bootstrapped

estimates are preferable to the 2SLS point estimates, and that the difference in their

performance is non-negligible.

Finally, when comparing the bootstrap median and the bootstrap mode, we find

that the mode performs as well as or slightly better than the median in the bulk of the

parameter space. In the lowest region of θ1, where none of the measures is satisfactory,

we note that the mode performs slightly worse. As the mode is better for all but the

very lowest θ1, which we know do not occur very frequently, we propose to use the mode,

or to compare the median and the mode when they are very different.15

6 Estimation results

For each sector separately, we estimate the elasticity of substitution for imports, using

(8) as estimating equation. As the main point of this paper is methodological, we only

present estimates for the 106 manufacturing sectors in Germany, highlighting in practice

the point made above on the instability of the high estimates generated with the 2-stage

least squares (2SLS) estimator. The results are obtained using disaggregated 4-digit

ISIC data from the Eurostat COMEXT database, covering the years 1995-2009. The

same set of results for other EU countries are available upon request.16 Details on data

14The numbers presented here are based on the estimates for all available sectors in the EU15. For
Germany, the corresponding shares of the mid-range and high elasticity intervals are 60% and 5%,
respectively.

15In principle, choosing the best measure should depend on one’s purposes. The ultimate goal of
our estimations is to produce reliable measures of country-specific aggregate elasticities that are useful
for policy experiments. The mode is a good candidate because it is related to a high probability of
realization in the markets of interest. This is true for single-modal distributions. In cases of multi-
modality, however, the median is likely to produce a more representative measure, as it is not clear
which of the multiple modes to choose.

16In a companion paper, Corbo and Osbat (2012), we present estimation and aggregation results for
each of the 27 EU countries’ imports. In addition, we derive and estimate an analogous equation for
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Figure 4: Import elasticity estimates for Germany: the top panel includes all estimates,
the bottom panel excludes estimates larger than 20 to facilitate comparison.

and outlier cleaning are summarized in Appendix B.

We find that for Germany in our sample, the 2SLS and bootstrap estimates are

generally very close. The difference arises in a few sectors; for those sectors, however,

the implied estimate of σ will be very high, which will in turn lead to a high macro-level

estimate for Germany if the sector-level elasticities are aggregated (see Figure 4). The

problem here does not arise from high elasticities being implausible as such, but rather

from the shape of the mapping function which causes the very high estimates to be also

highly unstable, as discussed in Sections 4 and 5. The high values of σ̂ vary considerably

with even minor changes to θ̂, such as the ones caused by the resampling of residuals in

our bootstrapping procedure. Hence, and as confirmed by the Monte Carlo experiment,

applying the Feenstra method, high and imprecise estimates go hand in hand. The higher

the estimate of σ̂, the more imprecise it is, irrespective of the precision with which θ̂ is

estimated.

The bootstrap results make it very transparent that the extreme values shown in

Figure 4 do not come from problems in estimating the regression in equation (15), but

from the functional form itself. This conclusion is supported by comparing Figures 5 and

6. Figure 5 shows the bootstrap distribution for a sector (Food processing machinery)

exports, which however requires an additional assumption and a third level of differencing.
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Figure 5: Bootstrap distributions of θ̂1, θ̂2 and σ̂ for German food processing machinery,
ISIC code 2925.

where the restriction θ1 > 0 bites, while Figure 6 shows the same picture for a sector

(Starches) where none of the 5 000 replications generates an estimate that violates the

theoretical restrictions. The regression estimates have regular distributions for both sec-

tors, but the resulting distribution for σ is regular only for the Starches sector, where the

bootstrap distribution of the θ1 estimates is comfortably larger than zero (see Figure 6).

Moreover, in comparison with the grid search proposed in Broda and Weinstein (2006),

our proposed bootstrap-based approach to incorporating the theoretical restriction in

the estimation of the elasticity of substitution has a twofold advantage: it avoids relying

on ad hoc specifications of the grid and it provides a measure of dispersion that does not

rely on the (violated) assumption of continuity of the mapping function. Furthermore,

the simple count of instances of rejection of replications where the theoretical restrictions

are violated gives us an indication of the extent to which the data for each sector are

compatible with that restriction. The deviation from normality mostly manifests itself

in the form of very long tails. This is shown graphically in Figure 7. It displays the box

plots of the sectoral estimates for Germany, which are all strongly affected by outliers
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Figure 6: Bootstrap distributions of θ̂1, θ̂2 and σ for German starches, ISIC code 1532.

(indicated as red-colored tails in the charts). Figure 7 again shows that although the

largest 1% of observations was excluded from the plots in order to have legible charts,

it is clear, from the quantity of extreme outliers, that it is not appropriate to use the

mean as a measure of central tendency for many of them.

Whatever the choice of measure of central tendency, the point that is made clear by

looking at the full bootstrap distribution is that one must take into account very large

deviations from the normality assumption. The same applies to choosing a measure of

dispersion: the variance is very strongly affected by outliers. As discussed in Section 4,

we suggest using the interquartile range (IQR), but any quantile intervals can be used.

Detailed results are reported in Table 1, where the columns, in order, contain the

sector ISIC code, the size of the cross-section, the 2SLS point estimate, its standard

deviation, the number of replications needed to obtain 5 000 sets of estimates that yield

theoretically admissible values, the mean, median and mode of the bootstrap distribution

and its IQR.17 In the Gaussian distribution it holds that IQR = 1.349σ, so we also

17The mode is calculated using a kernel density estimator with positive support and a smoothing
parameter of 0.05. Experimentation has shown that in some cases, where multimodality prevails, the
choice of smoothing parameter makes a large difference on the position of the mode.
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Figure 7: Box plots of sectoral estimates for Germany

show the ratio IQR/1.349σ (IQRnorm in Table 1). For comparison, we further include

the standard deviation of the bootstrap distribution. Finally, the last two columns

contain the 25th and 75th percentiles. For sector 2330 (Processing of nuclear fuel), no

results are reported due to the sample size being too small. The presented results show

that the 2SLS estimation can yield very extreme results, but the Feenstra method can

be “robustified” by using the bootstrap and choosing the median or mode as point

estimates instead of the mean. Looking for example at sector 1721 (Made-up textile

articles, except apparel), whose 2SLS estimate is quite high (11.2) and estimated very

imprecisely, we see that in order to reach 5 000 theory-consistent estimate sets it was

necessary to run 5 010 replications altogether. The mean and standard deviation of

the resulting bootstrap distribution are also very high, but in the light of the above

discussion it is preferable to consider the median and the mode as measures of central

tendency (8.9 and 7.7 respectively). Furthermore, the IQR is also rather wide, with
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50% of the distribution included between 7.3 and 11.7. By contrast, looking at sectors

where none of the 5 000 replications is rejected, such as 1542 (Sugar), the 2SLS estimate

(2.9) coincides with the mean, median and mode of the bootstrap distribution. However,

while the standard deviation of the 2SLS estimate is 1.1, that of the bootstrap is only

0.3. This signals that our proposed procedure not only robustifies the estimation of the

elasticity of substitution using the Feenstra method, but it also reduces the estimated

variance in those cases where the 2SLS and bootstrap estimates coincide, which in turn

are the cases where the theoretical restrictions hold comfortably. Our proposed bias

correction and improved characterization of the standard errors may support “elasticity

realism”, leading to estimates that, though higher than those based on time series, are

distinctly lower than the more recent ones.

Table 1: Sector level results for the German economy

2SLS Bootstrap
Sec #Partn σ̂ Std(σ̂) #Reps Mean Median Mode IQR IQRnorm Std 25% 75%

1511 68 4.3 5.3 5000 4.3 4.2 3.9 1.1 0.9 0.9 3.6 4.8
1512 103 7.0 12.8 5000 5.7 5.5 5.2 1.5 1.0 1.2 4.8 6.4
1513 118 4.0 4.1 5000 3.9 3.9 3.8 0.7 1.0 0.5 3.6 4.2
1514 91 2.6 1.6 5000 2.5 2.4 2.4 0.5 1.1 0.3 2.2 2.7
1520 48 1.9 1.1 5003 2.1 2.0 1.9 0.5 0.7 0.5 1.7 2.3
1531 77 4.0 4.0 5000 4.1 4.0 3.9 0.7 0.9 0.6 3.6 4.4
1532 46 3.2 2.0 5000 3.2 3.2 3.1 0.5 1.0 0.4 2.9 3.4
1533 49 2.9 1.6 5000 2.8 2.8 2.7 0.3 1.0 0.3 2.6 2.9
1541 69 2.4 1.4 5000 2.5 2.4 2.3 0.6 0.9 0.5 2.2 2.8
1542 46 2.9 1.1 5000 2.9 2.9 2.9 0.4 0.9 0.3 2.7 3.1
1543 84 3.6 3.7 5000 3.7 3.5 3.4 0.9 0.9 0.8 3.1 4.1
1549 96 8.4 18.9 5000 9.2 7.2 6.7 2.7 0.0 73.5 6.1 8.9
1551 81 3.2 3.3 5000 2.9 2.8 2.7 0.6 0.9 0.5 2.5 3.1
1552 73 3.5 3.0 5000 3.2 3.2 3.1 0.6 1.0 0.4 2.9 3.5
1553 61 6.8 8.3 5000 6.6 6.1 6.0 1.7 0.7 1.7 5.4 7.1
1554 75 3.9 6.6 5000 3.7 3.6 3.4 1.0 0.9 0.8 3.2 4.1
1600 52 6.4 10.9 5000 5.3 5.0 4.6 1.7 0.9 1.5 4.3 6.1
1711 107 3.8 3.6 5000 3.7 3.7 3.6 0.6 0.9 0.5 3.4 4.0
1721 109 11.2 27.1 5010 11.7 8.9 7.7 4.4 0.1 30.8 7.3 11.7
1722 86 3.7 3.4 5000 3.5 3.5 3.5 0.7 1.0 0.5 3.2 3.9
1729 77 3.8 3.8 5000 3.5 3.5 3.3 0.7 0.9 0.5 3.2 3.8
1730 103 5.0 0.4 5000 4.5 4.4 4.3 0.8 0.9 0.6 4.1 4.8
1810 147 3.1 2.3 5000 3.1 3.1 3.1 0.5 1.0 0.4 2.9 3.3
1911 75 6.4 12.1 5000 5.2 5.0 4.6 1.5 0.8 1.3 4.3 5.8
1912 97 27.9 280.2 5164 26.4 11.0 8.5 9.3 0.0 17.0 7.8 17.2
1920 91 5.5 6.5 5000 5.4 5.2 5.0 1.4 0.9 1.1 4.6 5.9
2010 93 3.5 2.6 5000 3.3 3.3 3.3 0.6 1.0 0.5 3.0 3.6
2021 68 1.5 0.4 5000 1.6 1.5 1.5 0.2 0.8 0.2 1.4 1.6
2022 80 3.8 3.7 5000 3.7 3.6 3.5 0.6 1.0 0.5 3.3 4.0
2023 91 2.6 2.1 5000 2.5 2.5 2.5 0.4 1.0 0.3 2.3 2.7
2029 122 3.0 2.1 5000 2.9 2.9 2.9 0.4 1.0 0.3 2.7 3.1
2101 72 2.7 1.3 5000 2.6 2.6 2.6 0.2 1.0 0.2 2.5 2.7
2102 85 3.5 3.3 5000 3.4 3.3 3.3 0.6 0.9 0.5 3.1 3.7
2109 82 2.5 1.4 5000 2.4 2.4 2.4 0.3 0.9 0.2 2.3 2.6
2211 98 3.9 3.1 5000 3.8 3.8 3.7 0.6 1.0 0.5 3.5 4.1
2212 71 4.1 3.4 5000 4.0 3.9 3.9 0.9 1.0 0.7 3.5 4.4
2221 94 3.5 3.7 5000 3.1 3.1 3.0 0.4 1.0 0.3 2.8 3.3
2222 67 4.4 6.4 5000 4.1 4.0 3.8 1.0 0.9 0.8 3.6 4.5
2310 19 2.7 0.3 5000 2.7 2.7 2.7 0.6 1.0 0.4 2.4 3.0
2320 40 2.4 0.1 5000 2.4 2.4 2.3 0.4 0.9 0.3 2.2 2.6
2330 8 - - - - - - - - - - -
2411 105 2.1 1.0 5000 2.1 2.1 2.0 0.2 0.9 0.2 1.9 2.2
2412 41 2.4 1.4 5000 2.5 2.4 2.4 0.4 1.0 0.3 2.2 2.6
2413 78 4.7 0.6 5000 4.7 4.6 4.5 1.1 1.0 0.9 4.1 5.2
2422 63 3.3 2.9 5000 3.2 3.2 3.2 0.5 1.0 0.4 3.0 3.4
2423 76 3.1 3.7 5000 3.0 2.9 2.7 0.8 0.8 0.7 2.5 3.3
2424 92 3.2 2.0 5000 3.0 3.0 2.9 0.4 0.9 0.3 2.8 3.2
2429 103 3.0 0.3 5000 2.9 2.8 2.7 0.5 0.9 0.4 2.6 3.1
2430 63 3.8 3.6 5000 3.7 3.6 3.4 0.9 1.0 0.7 3.2 4.1
2511 74 3.4 4.1 5000 3.0 2.9 2.9 0.7 0.9 0.6 2.6 3.3

Continued on next page
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2SLS Bootstrap
Sec #Partn σ̂ Std(σ̂) #Reps Mean Median Mode IQR IQRnorm Std 25% 75%

2519 79 3.2 2.4 5000 3.0 3.0 3.0 0.4 1.0 0.3 2.8 3.2
2520 122 4.0 5.3 5000 3.8 3.7 3.6 0.7 0.9 0.6 3.3 4.1
2610 99 3.1 3.8 5000 2.9 2.8 2.7 0.7 0.9 0.6 2.5 3.2
2691 100 3.2 2.2 5000 3.0 3.0 2.9 0.3 1.0 0.2 2.8 3.1
2692 57 3.3 1.6 5000 3.2 3.2 3.2 0.4 1.0 0.3 3.0 3.4
2693 55 3.2 3.0 5000 3.1 3.0 2.8 0.8 1.0 0.6 2.7 3.5
2694 38 3.0 1.3 5000 2.9 2.9 2.9 0.3 1.0 0.2 2.7 3.0
2695 54 2.5 1.7 5000 2.4 2.4 2.4 0.4 0.9 0.3 2.2 2.6
2696 81 2.1 0.9 5000 2.1 2.0 2.0 0.1 1.0 0.1 2.0 2.1
2699 75 2.6 1.7 5000 2.5 2.4 2.4 0.4 0.9 0.3 2.3 2.7
2710 87 3.3 2.8 5000 3.1 3.1 3.0 0.5 1.0 0.4 2.8 3.3
2720 102 3.8 3.2 5000 3.8 3.8 3.8 1.0 1.0 0.7 3.3 4.3
2811 81 3.0 2.5 5000 3.0 3.0 2.9 0.5 1.0 0.4 2.7 3.2
2812 62 4.5 7.7 5000 4.0 3.8 3.5 1.1 0.7 1.1 3.3 4.4
2813 38 3.8 5.4 5000 3.8 3.6 3.3 1.3 0.9 1.1 3.0 4.3
2893 109 3.8 5.0 5000 3.7 3.6 3.5 1.0 0.8 0.8 3.2 4.1
2899 122 3.2 2.0 5000 3.1 3.1 3.1 0.4 1.0 0.3 2.9 3.3
2911 84 7.9 25.7 5000 6.4 5.8 5.3 2.0 0.6 2.4 5.0 7.0
2912 113 2.4 1.9 5000 2.4 2.4 2.4 0.4 1.0 0.3 2.2 2.6
2913 99 15.9 93.9 5032 14.3 10.0 8.3 6.1 0.1 30.1 7.8 13.9
2915 73 3.3 2.8 5000 3.3 3.2 3.1 0.7 0.9 0.5 3.0 3.6
2919 107 7.6 20.7 5002 7.3 6.4 5.9 2.6 0.4 4.5 5.3 7.9
2921 64 2.4 1.8 5000 2.4 2.3 2.3 0.5 1.0 0.4 2.1 2.6
2922 76 3.1 3.6 5000 3.1 2.9 2.7 0.8 0.7 0.8 2.6 3.4
2923 54 3.9 4.6 5000 3.7 3.6 3.4 0.8 0.9 0.7 3.2 4.0
2924 88 3.6 3.3 5000 3.4 3.4 3.4 0.5 1.0 0.4 3.2 3.7
2925 75 5.9 1.6 5011 6.9 5.4 4.5 3.1 0.2 12.2 4.3 7.4
2926 81 3.3 3.8 5000 3.0 2.9 2.8 0.6 0.9 0.5 2.6 3.2
2927 48 2.4 2.1 5000 2.2 2.2 2.1 0.3 0.9 0.2 2.0 2.3
2929 105 4.7 8.9 5000 4.4 4.1 3.9 1.2 0.8 1.2 3.6 4.9
2930 72 6.5 16.3 5000 6.0 5.6 5.3 2.0 0.8 1.8 4.8 6.8
3000 132 4.2 8.0 5000 3.8 3.7 3.6 0.8 0.9 0.6 3.3 4.1
3110 117 1.9 0.1 5000 1.8 1.8 1.8 0.2 0.9 0.1 1.7 1.9
3120 100 6.7 12.7 5014 9.1 6.7 5.4 4.5 0.1 22.6 4.8 9.3
3130 71 3.2 0.2 5000 3.2 3.1 3.0 0.7 0.9 0.6 2.8 3.5
3140 39 2.2 2.2 5000 2.2 2.2 2.2 0.4 1.0 0.3 2.0 2.4
3150 83 8.2 2.9 5036 10.9 6.1 5.5 4.2 0.1 27.3 5.1 9.2
3190 77 2.4 2.6 5000 2.5 2.4 2.3 0.6 0.7 0.7 2.1 2.8
3210 71 9.4 4.1 5716 21.0 5.8 4.6 4.3 0.0 25.7 4.4 8.7
3220 100 2.9 2.0 5000 2.8 2.8 2.8 0.3 1.0 0.2 2.7 2.9
3230 84 2.5 2.7 5000 2.4 2.4 2.4 0.3 1.0 0.2 2.3 2.6
3311 93 5.7 15.3 5005 6.1 4.9 4.0 2.8 0.2 10.0 3.8 6.6
3312 115 6.2 22.1 5056 8.7 5.0 4.2 2.9 0.0 77.1 4.0 6.9
3313 62 5.5 13.8 5000 4.5 4.0 3.6 1.5 0.5 2.4 3.4 4.9
3320 92 2.4 2.4 5000 2.2 2.1 2.1 0.5 0.9 0.4 2.0 2.4
3410 102 68.1 1599.8 6114 35.7 14.4 12.2 10.3 0.0 77.6 11.0 21.4
3420 67 3.1 2.8 5000 3.1 3.1 3.0 0.7 1.0 0.5 2.7 3.4
3430 123 2.4 2.1 5000 2.4 2.3 2.3 0.3 1.0 0.2 2.2 2.5
3511 44 5.3 4.9 5000 4.7 4.7 4.6 0.9 1.0 0.7 4.3 5.2
3520 52 3.4 0.5 5000 3.3 3.2 3.0 0.9 0.9 0.7 2.8 3.7
3530 86 16.0 63.9 5293 27.7 10.7 8.5 9.0 0.0 93.1 8.1 17.1
3610 128 6.6 12.7 5000 5.5 5.2 4.9 1.4 0.8 1.2 4.6 6.1
3691 136 2.0 1.4 5000 1.9 1.8 1.8 0.2 0.9 0.2 1.8 2.0
3693 69 5.5 8.0 5000 4.8 4.6 4.3 1.3 0.9 1.1 4.1 5.3
3694 89 3.9 7.3 5000 2.9 2.7 2.6 0.7 0.7 0.7 2.5 3.2
3699 116 5.5 8.1 5000 5.2 5.1 4.9 1.3 0.9 1.0 4.5 5.8
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7 Conclusions

The elasticity of substitution plays a central role in the calibration of open-economy

macro models designed to analyze the response of international trade to changes in

relative prices. However, the empirical evidence on the magnitude of the elasticity of

substitution is polarized between “elasticity pessimism” and “elasticity optimism”. The

latter is mostly related to studies that apply a structural sectoral estimation method

initially proposed by Feenstra (1994) and refined by Broda and Weinstein (2006), which

tend to find much higher estimates than previous studies based on time series estima-

tion. We propose a modification of the Feenstra (1994) method based on the bootstrap,

which sheds light on some “built-in” problems with the usual structural estimation. The

bootstrap-based estimation produces more robust central estimates whenever the esti-

mated elasticity is in the mid range, i.e. whenever it is higher than 3 and lower than 10,

approximately, which it is in the majority of cases. For estimates of around 3 and lower

both estimation procedures perform well, and for estimates higher than 10, which are

rarely found, none of them performs entirely satisfactorily. The bootstrap also yields

better measures of dispersion, and gives an indication of the extent to which the data

do not seem to conform to the the theoretical restrictions embedded in the Feenstra

(1994) method. In terms of magnitude, we partially reconcile the two poles of the em-

pirical literature, in that our bootstrap-based analysis shows that the application of the

Feenstra (1994) 2SLS structural estimation tends to produce upward-biased estimates

in country-sector pairs where the elasticities are not in the lowest range, thus leading to

high and unstable aggregate elasticities. In fact, we tend to obtain the same estimates

as 2SLS (and much smaller standard deviations, obtained by a method appropriate to

the nonlinear estimation) in cases where the true elasticities are low, but smaller ones

in the cases of higher true elasticities.
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A Computational appendix

A.1 The Feenstra (1994) method

A.1.1 Demand side

Assuming a CES setting, demand at time t is obtained by maximizing the consumption

index

Ccg.t =





∑

v∈Vcg.t

(βcgvtCcgvt)
σcg−1

σcg





σcg

σcg−1

(A.1)

with respect to Ccgvt, subject to expenditures

∑

v∈Vcg.t

PcgvtCcgvt = Zcg.t . (A.2)

Note that we denote by V the entire set of varieties v imported by c. Rearranging the

first-order condition, we obtain the following demand function for variety v of good g in

country c at time t:

Ccgvt = β
σcg−1
cgvt

(

Pcgvt

Pcg.t

)−σcg

Ccg.t . (A.3)

Defining the expenditure share of variety v in country c’s total consumption of good g

at time t as

scgvt ≡
PcgvtCcgvt

Pcg.tCcg.t
=

PcgvtCcgvt
∑

i∈Icg
PcgvtCcgvt

, (A.4)

we can rewrite demand equation (A.3) as

scgvt = β
σcg−1
cgvt

(

Pcgvt

Pcg.t

)1−σcg

. (A.5)

As discussed in Feenstra (1994), it is convenient to express demand in terms of expendi-

ture shares instead of volumes since this reduces the problem of correlated measurement

pointed out by Kemp (1962). The import prices we observe are measured CIF (Cost,

Insurance and Freight), i.e.

P̃cgvt = PCIF
cgvt = Pcgvt , (A.6)

where P̃cgvt is the observed price. The price of our interest is the model-implied price,

which is the destination or consumer price,18 and which here coincides with the price we

18The destination and the consumer price may not exactly coincide, due to distribution costs in the
importing country etc. Here we take the two prices to be the same, which however does not change
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observe due to the prices being measured CIF. Since our data set offers us no information

on domestically produced goods but only imported ones, observed expenditure shares

are given by

s̃cgvt ≡
P̃cgvtCcgvt

∑

v 6=c P̃cgvtCcgvt

=
PcgvtCcgvt

∑

v 6=c PcgvtCcgvt
. (A.7)

In terms of true expenditure shares scgvt, this can be written as

s̃cgvt =
PcgvtCcgvt

∑

v 6=c PcgvtCcgvt

·
∑

v 6=c PcgvtCcgvt
∑

v∈Vcg
PcgvtCcgvt

·
∑

v∈Vcg
PcgvtCcgvt

∑

v 6=c PcgvtCcgvt

=
PcgvtCcgvt

∑

v∈Vcg
PcgvtCcgvt

·
∑

v∈Vcg
PcgvtCcgvt

∑

v 6=c PcgvtCcgvt

= scgvt ·
Pcg.tCcg.t

∑

v 6=c PcgvtCcgvt

= scgvt µcgt

= β
σcg−1
cgvt

(

Pcgvt

Pcg.t

)1−σcg

µcgt . (A.8)

Note that

µcgt ≡
Pcg.tCcg.t

∑

v 6=c PcgvtCcgvt
= 1 +

PcgctCcgct
∑

v 6=c PcgvtCcgvt
> 1 (A.9)

is just a fraction of two sums that do not vary with v, and is hence common across all

varieties. Taking logs of equation (A.8), yields

ln s̃cgvt = (σcg − 1) ln βcgvt + (1− σcg) lnPcgvt − (1− σcg) lnPcg.t + lnµcgt . (A.10)

Letting

∆ ln s̃cgvt = ln

(

s̃cgvt
s̃cgv,t−1

)

= ln s̃cgvt − ln s̃cgv,t−1 , (A.11)

we can rewrite demand as follows:

∆ ln s̃cgvt = (1− σcg)∆ ln P̃cgvt + (σcg − 1)∆ ln .Pcg.t

+ ln∆µcgt + (σcg − 1) ln∆βcgvt (A.12)

our estimated equation in any way. Given that the trade costs are variety specific, they will not be
identifiable, and hence any multiplicative trade cost term will end up in the residual of the estimated
equation.
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Defining the term that contains all variables that are common across varieties as

Φcgt ≡ (σcg − 1)∆ lnPcg.t + ln∆µcgt , (A.13)

and the error term of the equation that captures the unobserved trade-cost and taste

variables as

εcgvt ≡ (σcg − 1) ln∆βcgvt , (A.14)

we finally arrive at demand equation (2) in the main text.

A.1.2 Supply side

Following Feenstra (1994), we adopt the following simple supply structure:

Pcgvt = τcgvt exp(vcgvt)C
ωcg

cgvt (A.15)

where τcgvt is a measure of variety-specific multiplicative trade costs, vcgvt is a sector-

and country-specific technology shock, and ωcg ≥ 0 is the inverse of the price elasticity of

supply, assumed equal over exporters but allowed to differ between sectors.19 Inserting

equation (A.3) into equation (A.15), and rewriting in terms of observed prices, yields

P̃cgvt = τcgvt exp(vcgvt)β
ωcg(σcg−1)
cgvt

(

P̃cgvt

Pcg.t

)−ωcgσcg

C
ωcg

cg.t . (A.16)

Taking logs and rearranging,

ln P̃cgvt = ln τcgvt + vcgvt + ωcg(σcg − 1) ln βcgvt

−ωcgσcg ln P̃cgvt + ωcgσcg lnPcg.t + ωcg lnCcg.t

=
1

1 + ωcgσcg

[

ln τcgvtvcgvt + ωcg(σcg − 1) ln βcgvt (A.17)

+ωcgσcg lnPcg.t + ωcg lnCcg.t

]

.

19As can be seen from the below derivations, the assumption of equality is crucial for identification.
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Differencing,

∆ ln P̃cgvt =
1

1 + ωcgσcg

[

ωcgσcg∆ lnPcg.t + ωcg(σcg − 1)∆ ln βcgvt

+ωcg∆ lnCcg.t +∆ ln τcgvt +∆vcgvt

]

=
ωcg

1 + ωcgσcg
[σcg∆ lnPcg.t +∆ lnCcg.t] +

ωcg

1 + ωcgσcg
εcgvt (A.18)

+
1

1 + ωcgσcg
[∆ ln τcgvt +∆vcgvt] .

Letting

Ψcgt ≡
ωcg

1 + ωcgσcg
[σcg∆ lnPcg.t +∆ lnCcg.t] (A.19)

denote the term containing the variables that are common across varieties, and

δcgvt ≡
1

1 + ωcgσcg
[∆ ln τcgvt +∆vcgvt] (A.20)

denote the error term of the equation, capturing the unobserved trade-cost and tech-

nology variables, we get the final supply equation as given by equation (4) in the main

text.

A.1.3 Deriving the estimated regression

Following section IV in Feenstra (1994), we start by eliminating the terms common

across all varieties from equations (2) and (4) in the main text, by subtracting from each

of them the same equation for a source of reference vr.

ε̌cgvt ≡ εcgvt − εcgvrt

= [∆ ln s̃cgvt −∆ ln s̃cgvrt] + (σcg − 1)
[

∆ ln P̃cgvt −∆ ln P̃cgvrt

]

(A.21)

δ̌cgvt ≡ δcgvt − δcgvrt

=
[

∆ ln P̃cgvt −∆ ln P̃cgvrt

]

− ωcg

1 + ωcgσcg
[εcgvt − εcgvrt] (A.22)

=
1 + ωcg

1 + ωcgσcg

[

∆ ln P̃cgvt −∆ ln P̃cgvrt

]

− ωcg

1 + ωcgσcg
[∆ ln s̃cgvt −∆ ln s̃cgvrt]
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Since, ε̌cgvt and δ̌cgvt are independent, we can multiply equations (A.21) and (A.22) to

obtain

ε̌cgvtδ̌cgvt = − ωcg

1 + ωcgσcg
[∆ ln s̃cgvt −∆ ln s̃cgvrt]

2

+
(1 + ωcg)(σcg − 1)

1 + ωcgσcg

[

∆ ln P̃cgvt −∆ ln P̃cgvrt

]2
(A.23)

+

(

1 + ωcg

1 + ωcgσcg
− ωcg(σcg − 1)

1 + ωcgσcg

)

[∆ ln s̃cgvt −∆ ln s̃cgvrt] ·
[

∆ ln P̃cgvt −∆ ln P̃cgvrt

]

.

Dividing through by
(1+ωcg)(σcg−1)

1+ωcgσcg
and rearranging,

[

∆ ln P̃cgvt −∆ ln P̃cgvrt

]2
=

ωcg

(1 + ωcg)(σcg − 1)
[∆ ln s̃cgvt −∆ ln s̃cgvrt]

2

+
ωcgσcg − 2ωcg − 1

(1 + ωcg)(σcg − 1)
[∆ ln s̃cgvt −∆ ln s̃cgvrt] ·

[

∆ ln P̃cgvt −∆ ln P̃cgvrt

]

(A.24)

+
1 + ωcgσcg

(1 + ωcg)(σcg − 1)
ε̌cgvtδ̌cgvt

Finally, defining Ycgvt, X1cgvt, X2cgvt, ucgvt, θ1cg, and θ2cg as in equations (9)-(14) in the

main text, we can write expression (A.24) as expression (8) in the main text.

33



B Data Appendix

Our data is obtained from the Eurostat’s COMEXT database, which contains monthly

observations on values and quantities of imports and exports reported by all EU countries

from and to up to 270 trading partners. The full database is available at a disaggregation

level of 8 digits in the Combined nomenclature (CN), based on the Harmonized System,

which however only goes up to 6 digits (HS-6). For each country-partner-sector triplet

at each point in time, COMEXT provides information on the value of each monthly

transaction in ECU-EUR, the quantity in 1 000 Kg and, if available, the corresponding

Special Units (which vary by sector and can be items, liters, meters, etc). The reporting

of quantities is not always consistent, so that often values without a corresponding

quantity are observed. These end up as missing values in our sample, because one of

our main variables is the unit value of imports, which we obtain by dividing the value

by the quantity. The unit values at the 8-digit level of disaggregation are the variable

we use to clean the data from outliers, which are an endemic feature of this database.

We use a cross-sectional benchmark to identify outliers in the data. For each sector,

we take all observations on import unit values of all 27 declarants from all partners; the

outliers are those observations that lie “too far” from the median of this cross-section.

Note that this procedure can only make sense at a very disaggregated level, when the

unit values refer to goods that are as similar as it gets when dealing with trade data.

As a metric of distance we use the absolute deviation from the median (mad), which

is much more robust to outliers than the standard deviation around the mean. We

aim at eliminating a small percentage of observations, so that we progressively increase

the number of mad around the median if we see that the procedure tends to eliminate

too many observations. We start off with a distance of (2 ∗ 1.4785 ∗mad), but if more

than 3 percent of observations are classified as outliers, we increase the cutoff from

(2 ∗ 1.4785 ∗ mad) to (3 ∗ 1.4785 ∗ mad) and so on. We alternate between raising and

lowering the cutoff by fractions of (cutoff ∗ 1.4785 ∗mad) for at most 100 times. If after

100 runs the percentage of classified outliers is still very high, we accept this as a sign

of high variability and accept the algorithm’s decision, keeping track, for every sector-

year pair, of the percentage of outliers. Note that these extreme cases tend to occur

in sector-year pairs with very few observations, which will in any case drop out of our

analysis due to a low number of bilateral transactions.

We choose not to use the highest level of disaggregation, facing a tradeoff between

high disaggregation and low data availability, and the opposite. Taking into account both

aspects, we choose to aggregate our data into 4-digit ISIC sectors yearly observations.
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