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Abstract 

We decompose the squared VIX index, derived from US S&P500 options prices, into 

the conditional variance of stock returns and the equity variance premium. We evaluate a 

plethora of state-of-the-art volatility forecasting models to produce an accurate measure 

of the conditional variance. We then examine the predictive power of the VIX and its two 

components for stock market returns, economic activity and financial instability. The 

variance premium predicts stock returns while the conditional stock market variance 

predicts economic activity and has a relatively higher predictive power for financial 

instability than does the variance premium. 

 

JEL Classification: C22, C52, G12, E32 

Keywords: option implied volatility; realized volatility; VIX; variance risk premium; 

risk aversion; stock return predictability; risk-return trade-off; economic uncertainty; 

financial instability.  
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Non-Technical Summary 

The 2007-2009 crisis has intensified the need for indicators of the risk aversion of 

market participants. It has also become increasingly commonplace to assume that 

changes in risk appetites are an important determinant of asset prices. Not surprisingly, 

the behavioral finance literature (see e.g. Baker and Wurgler, 2007) has developed 

“sentiment indices,” and financial institutions have created a wide variety of “risk 

aversion” indicators (see Coudert and Gex (2008) for a survey). 

One simple candidate indicator is the equity variance premium, the difference 

between the squared VIX index and an estimate of the conditional variance of the stock 

market. The VIX index is the “risk-neutral” expected stock market variance for the US 

S&P500 contract and is computed from a panel of options prices. Well-known as a “fear 

index” (Whaley, 2000) for asset markets, it reflects both stock market uncertainty (the 

“physical” expected volatility), and a variance risk premium, which is also the expected 

premium from selling stock market variance in a swap contract. Bollerslev, Tauchen and 

Zhou (2009) show that an estimate of this variance premium predicts stock returns; 

Bekaert, Hoerova, and Lo Duca (2013) show that there are strong interactions between 

monetary policy and the variance premium, suggesting that monetary policy may actually 

affect risk aversion in the market place. The variance premium uses objective financial 

market information and naturally “cleanses” option-implied volatility from the effect of 

physical volatility dynamics and uncertainty, leaving a measure correlated with risk 

aversion.  

How to measure the variance premium is not without controversy however, 

because it relies on an estimate of the conditional variance of stock returns. In this article, 

we tackle several measurement issues for the variance premium, assessing a plethora of 

state-of-the-art volatility models and making full use of overlapping daily data, rather 

than sparse end-of-month data, which is standard. 

The conditional variance measure is of interest in its own right. First, there is a 

long literature on the trade-off between risk, as measured by the conditional variance of 

stock market returns, and the aggregate risk premium on the market (see e.g. French, 

Schwert and Stambaugh (1987) for a seminal contribution). This long line of research has 

mostly failed to uncover a strong positive relationship between risk and return (see Bali, 



 3

2008, for a summary). Second, stock market volatility can also be viewed as a market-

based measure of economic uncertainty. For example, Bloom (2009) shows that 

heightened “economic uncertainty” decreases employment and output. Interestingly, he 

uses the VIX index to measure uncertainty, so that his results may actually be driven by 

the variance premium rather than uncertainty per se.  

Using more plausible estimates of the variance premium and stock market 

volatility, we then assess whether they predict stock returns, economic activity, as well as 

financial instability, an economic outcome that has garnered considerable policy interest 

in the aftermath of the recent financial crisis. We find that the equity variance risk 

premium predicts stock returns while stock market volatility mostly does not. By 

contrast, stock market volatility predicts industrial production growth, a measure of 

economic activity, while equity variance premium has no predictive power for future 

economic activity. Moreover, conditional variance predicts financial instability more 

strongly than does the variance premium, especially at longer horizons.  
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1.   Introduction 

The 2007-2009 crisis has intensified the need for indicators of the risk aversion of 

market participants. It has also become increasingly commonplace to assume that 

changes in risk appetites are an important determinant of asset prices. Not surprisingly, 

the behavioral finance literature (see e.g. Baker and Wurgler, 2007) has developed 

“sentiment indices,” and financial institutions have created a wide variety of “risk 

aversion” indicators (see Coudert and Gex (2008) for a survey). 

One simple candidate indicator is the equity variance premium, the difference 

between the squared VIX index and an estimate of the conditional variance of the stock 

market. The VIX index is the “risk-neutral” expected stock market variance for the US 

S&P500 contract and is computed from a panel of options prices. Well-known as a “fear 

index” (Whaley, 2000) for asset markets, it reflects both stock market uncertainty (the 

“physical” expected volatility), and a variance risk premium, which is also the expected 

premium from selling stock market variance in a swap contract. Bollerslev, Tauchen and 

Zhou (2009) show that an estimate of this variance premium predicts stock returns; 

Bekaert, Hoerova, and Lo Duca (2013) show that there are strong interactions between 

monetary policy and the variance premium, suggesting that monetary policy may actually 

affect risk aversion in the market place. The variance premium uses objective financial 

market information and naturally “cleanses” option-implied volatility from the effect of 

physical volatility dynamics and uncertainty, leaving a measure correlated with risk 

aversion.  

How to measure the variance premium is not without controversy however, because it 

relies on an estimate of the conditional variance of stock returns. For example, the 

measure proposed in Bollerslev, Tauchen and Zhou (2009), BTZ, henceforth, assumes 

that the conditional variance of stock market returns is a martingale, an assumption which 

is not supported by the data, leading to potentially biased variance premiums. In this 

paper, we tackle several measurement issues for the variance premium, assessing a 

plethora of state-of-the-art volatility models and making full use of overlapping daily 

data, rather than sparse end-of-month data, which is standard. 

The conditional variance measure is of interest in its own right. First, there is a long 

literature on the trade-off between risk, as measured by the conditional variance of stock 
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market returns, and the aggregate risk premium on the market (see e.g. French, Schwert 

and Stambaugh (1987) for a seminal contribution). This long line of research has mostly 

failed to uncover a strong positive relationship between risk and return (see Bali, 2008, 

for a summary). Second, stock market volatility can also be viewed as a market-based 

measure of economic uncertainty. For example, Bloom (2009) shows that heightened 

“economic uncertainty” decreases employment and output. Interestingly, he uses the VIX 

index to measure uncertainty, so that his results may actually be driven by the variance 

premium rather than uncertainty per se.  

Using more plausible estimates of the variance premium and stock market volatility, 

we then assess whether they predict stock returns, economic activity, as well as financial 

instability, an economic outcome that has garnered considerable policy interest in the 

aftermath of the recent financial crisis. We find that the well-known results in BTZ 

exaggerate the predictive power of the variance premium for stock returns. However, the 

equity variance risk premium remains a reliable predictor of stock returns. Stock market 

volatility does not predict the stock market, but it is a much better predictor of economic 

activity than is the equity variance premium. It also predicts financial instability more 

strongly than does the variance premium, especially at longer horizons.  

The remainder of the paper is organized as follows. Section 2 discusses the 

econometric framework that we use to forecast volatility, and lays out our model 

selection procedure. Section 3 reports the results of our specification analysis and 

forecasting performance comparison. Section 4 uses the preferred estimates of the 

variance premium and stock market volatility to predict stock returns, economic activity 

and financial instability. Section 5 concludes.  

 

2.   Econometric Framework 

We define the variance risk premium as:  

 )22(

1

2

 tttt RVEVIXVP                (1) 

Here the VIX is the implied option volatility of the S&P500 index for contracts with a 

maturity of one month, and )22(

1tRV  is the S&P500 realized variance measured over the 

next month (22 trading days) using 5 minute returns. Note that 2)22(

1 tt VIXRV 
 is the 

return to buying variance in a variance swap contract. Therefore, technically speaking, 
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the variance risk premium refers to the negative of VP. Since that number is mostly 

negative, we prefer to define it as we did in equation (1). 

Economically, the squared VIX is the conditional return variance using a “risk-

neutral” probability measure, whereas the conditional variance uses the actual “physical” 

probability measure. The risk-adjusted measure shifts probability mass to states with 

higher marginal utility (bad states) and this implies that in many realistic economic 

settings, the variance premium will be increasing in the economy’s risk aversion. 

The unconditional mean of the variance premium is easy to compute by simply 

computing the average of )22(

1

2

 tt RVVIX . However, we are interested in the conditional 

variance premium as described in equation (1), which relies on the physical conditional 

expected value of the future realized variance. The common approach to estimate this 

uses empirical projections of the realized variance on variables in the information set, and 

subtracts this estimated expected variance from the 2VIX  to arrive at VP. Hence, the 

problem is reduced to one of variance forecasting. 

Our data start on January 02, 1990 (the start of the model-free VIX series)2 and covers 

the period until October 01, 2010. We have a total of 5208 daily, overlapping 

observations. The recent crisis period presents special challenges as stock market 

volatilities peaked at unprecedented levels, but at the same time the crisis represents an 

informative period during which uncertainty and risk aversion may have been particularly 

pronounced. Nevertheless, if we decompose the sample variance of the VIX time series in 

contributions by crisis and non-crisis observations, the former dominate despite 

representing a relatively small part of the sample. We deal with these challenges by 

considering both models that predict the level and the logarithm of realized variances, 

and by putting much emphasis on parameter stability in our model selection procedure. In 

addition, we focus on out-of-sample forecasting exercises where we conduct the in-

sample estimations mostly on non-crisis observations, so that the influence of the crisis 

on the parameter estimates and model selection is mitigated.   

 

                                                 
2 The CBOE changed the methodology for calculating the VIX, initially measuring implied volatility for the 
S&P100 index, to be measured in a model–free manner from a panel of option prices (see Bakshi, Madan 
and Kapadia, 2003, for details) only in September 2003. It then backdated the new model–free index to 
1990 using historical option prices.  
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Variance forecasting 

There is an extensive econometric literature on volatility forecasting. It is now 

generally accepted that models based on high frequency realized variances dominate 

standard models in the GARCH class (see e.g. Chen and Ghysels, 2012) and we therefore 

examine the state-of-the-art models in that class. These models stress the importance of 

persistence (using lagged realized variances as predictors), additional information content 

in the most recent return variances (Corsi, 2009), asymmetry between positive and 

negative return shocks (the classic volatility asymmetry, see e.g. Engle and Ng, 1993) and 

potentially differing predictive information present in jump versus continuous volatility 

components (Andersen, Bollerslev, and Diebold, 2007). We accommodate all of these 

elements in our model.  

In the finance literature, it has been pointed out as early as in Christensen and 

Prabhala (1998) that option prices as reflected in implied volatility should have 

information about future stock market volatility. This motivates using the VIX as a 

predictive variable. Recent articles using the VIX in similar forecasting exercises include 

Busch, Christensen and Nielsen (2011) who examine a number of variance forecasting 

models embedding option-implied volatility for bond, currency and stock markets, and 

Andersen and Bondarenko (2007) who mostly focus on measurement issues with the 

officially published VIX index. Of course, because the VIX also embeds a risk premium, it 

will not be an unbiased predictor of future realized volatility. Chernov (2007) argues that 

spot volatility is likely to have additional information about future volatility.  

Finally, it is well-known that estimation noise hurts out-of-sample forecasting 

performance. Simple models such as the martingale model may therefore outperform 

more complex models. We therefore also consider a number of non-estimated models that 

are special cases of our general framework.  

Our most general forecasting model can be represented as follows:  
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We want to forecast the monthly (22 trading days) S&P500 realized variance, denoted by 

)22(

tRV , and defined as the sum of daily realized variances RV over the 22 days, 
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



22

1
1

)22(

j
jtt RVRV . The daily realized variance sums squared five-minute intraday 

returns and the squared close-to-open return, with returns expressed in percentage form.3 

Our first independent variable is the VIX 2 (expressed in monthly percentages squared, i.e. 

VIX2/12 where VIX is the quoted VIX index level in annualized percent), and we expect 

 to be positive. The next six variables separate the realized variance into a continuous 

and a discontinuous (“jump”) component (at the monthly, weekly and daily frequencies), 

following Andersen, Bollerslev and Diebold (2007). To isolate the jumps contribution to 

daily quadratic variation, we use threshold bipower variation proposed by Corsi, Pirino 

and Renò (2010). Corsi et al. (2010) show that this threshold measure substantially 

reduces the small-sample bias that the standard bipower variation (Barndorff-Nielsen and 

Shephard, 2004) estimates exhibit.4 The daily jump, denoted as tJ , is defined as:  

  0,max ttt TBPVRVJ                (3) 

where TBPVt stands for threshold bipower variation defined in Corsi et al. (2010), 

equation (2.14). The continuous component of the daily quadratic variation is given by:  

ttt JRVC                  (4) 

Weekly (h=5) and monthly (h=22) variables are averaged, and we express all variables in 

monthly units so that: 



h

j
jt

h
t J

h
J

1
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)( 22  and 



h

j
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h
t C

h
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1
1

)( 22 .  

Finally, following Corsi and Renò (2012), we add negative returns over the past day, 

week and month, to incorporate a potential leverage effect (see Campbell and Hentschel, 

1992; Bekaert and Wu, 2000). To model the leverage effect at different frequencies, we 

define  0,min )()( h
t

h
t rr   where 




h

j
jt

h
t r

h
r

1
1

)( 22 . 

In addition to forecasting realized variance in levels, we also consider models that 

predict the logarithm of the realized variance. The logarithmic counterpart of the model 

                                                 
3 We use actual S&P500 returns. Other papers in the literature focused on S&P500 futures including, e.g., 
Andersen, Bollerslev and Diebold (2007) and Corsi, Pirino and Renò (2010). 
4 The upward bias in bipower variation leads to a continuous variation that is too large and a jump 
component that is too small, and thus potentially also biases estimates of the jumps coefficients in models 
such as (2). To obtain threshold bipower variation, we use equation (2.14) in Corsi et al. (2010), with the 
threshold function as defined in their equation (2.15) and the scale-free constant set to 3. The construction 
of the estimator of the local variance is described in Appendix B of their paper.  
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in (2) reads: 
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Because variances have right-skewed distributions, but logarithmic variances tend to have 

near Gaussian distributions, it may be easier to predict logarithmic variances with linear 

models. However, ultimately, we still need to identify the model that best forecasts the 

level of the realized variance. To this end, when we consider a logarithmic model, we 

assume log-normality to predict levels of monthly realized variances: 

     





  

)22(

1

)22(

1

)22(

1 var
2

1
exp ttttt rvrvERVE                      (6) 

where  )22(

1

)22(

1 ln   tt RVrv . We use the logarithmic model to compute the conditional 

expectation of )22(

1trv  and the sample variance of )22(

1trv  to compute the variance term. 

Model selection procedure 

Our model selection procedure consists of comparing the out-of-sample forecasting 

performance of a set of 31 estimated and non-estimated models and examining their 

stability. The models are summarized in Table 1. For estimated models, we consider 14 

variants of the encompassing model in levels (equation (2)) and in logarithms (equation 

(5)), respectively. We estimate the models using OLS. Models 1 through 13 have fixed 

combinations of predictors. Models 14 for the level and the logarithmic specification, 

respectively, are models with a set of predictors selected by a general-to-specific (Gets) 

model selection procedure (using the full sample). While sequential Wald tests present 

problems in terms of selecting the size of tests (see e.g. Bhargava, 1987), we rely on the 

large body of work on model selection by David Hendry and co-authors, see e.g. 

Campos, Hendry and Krolzig (2003) and Hendry and Krolzig (2005). We use the recent 

implementation by Autometrics in the econometrics software package OxMetrics (see 

Doornik, 2009, for details) Thus, we estimate 28 models in total. In terms of practical 

implementation, we use 5% as the target size for our tests, the default value in the 

software; we also do not use indicator saturation techniques, but test for parameter 

instability separately. We use PcGive, version 13 (see Doornik and Hendry, 2009). 

In Table 2, we discuss the level and logarithmic models chosen by the Gets- model 

selection analysis. The standard errors below the parameters are computed using 44 
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Newey-West (1987) lags. The model selection yields models with monthly, weekly and 

daily continuous variation in both cases. In the level regression model, the general-to-

specific model selection procedure retains monthly jumps, in addition to negative returns 

at all three frequencies. In the logarithmic model, the squared VIX is chosen, along with 

the daily negative returns.  

In addition, we consider 3 non-estimated models: the lagged squared VIX (model 29); 

the lagged realized variance (model 30; this is the model used in BTZ); and 0.5 times the 

lagged squared VIX plus 0.5 times the lagged realized variance (model 31).  

We estimate the models using daily data between January 1, 1990 and July 15, 2005 

(representing about 75% of the full sample) and use the rest of the sample (till October 

01, 2010) to measure forecasting performance. The parameters are not updated.  

We examine five different criteria. We compute the root-mean-squared error 

(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE; the 

absolute error in percent of the actual realized variance). We evaluate whether the 

forecast error measures are significantly different among competing forecasting models 

through the Diebold and Mariano (1995) test (with standard errors computed using 44 

Newey-West lags), using a 10% significance level. We also compute the R2 of Mincer–

Zarnowitz (1969) forecasting regressions, that is, we compute the R2 in a regression of 

actual data on their forecasted values.5 The final criterion we examine is a simple joint 

Chow test for parameter stability over the last part of the sample versus the estimation 

part of the sample. Ericksson (1992) discusses formally how mean-squared-error 

minimization and parameter constancy are both necessary (but not sufficient) conditions 

to obtain a good forecasting model. We also produce the average correlation of the 

forecasts produced by a particular model with the forecasts produced by the winning 

model on each of the first 4 criteria. This gives a sense of how close different forecast 

models are economically. 

                                                 
5 We also computed two other statistics; the heteroskedasticity adjusted root-mean-squared error suggested 
in Bollerslev and Ghysels (1996) and the QLIKE loss function (see Patton, 2011). However, these statistics 
produce rankings very similar to the MAPE-criterion, so we do not discuss them further. Also note that the 
Diebold and Mariano test only uses the forecast errors and ignores the underlying model structure and 
estimation. While we could in principle use more complex statistics that take the model structure and 
estimation into account (see e.g. West, 2006), recent research suggests that the Diebold and Mariano test 
works well even in model-based out-of-sample forecasting comparisons (see Clark and McCracken, 2011; 
Diebold, 2013). 
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3.   Model Selection Results 

Table 3 produces the statistics and the average ranking of our 31 considered models 

according to the criteria discussed above. Recall that for the logarithmic models, we are 

predicting the level of the realized variance as discussed in Section 2. The first column 

reports whether the model is stable according to the Chow test (using 10% significance 

level). Stable models are bolded. In the second column, we report the in-sample RMSE 

(denoted RMSE*). In the next three columns, we report the out-of-sample RMSE, MAE 

and MAPE criteria.6 We note that the out-of-sample RMSE is considerably larger than its 

in-sample counterpart. This is also true for the MAE criterion, but it is not true for the 

MAPE criterion, where out-of-sample errors are often smaller than in-sample errors (not 

reported). Because the realized variance became very large during the crisis, which 

constitutes a substantial part of the out sample, it is not surprising to see larger (absolute) 

errors out of sample. However, the results for the MAPE criterion suggest that, in relative 

terms, the errors did not increase. We test for each model whether it generates a statistic 

significantly different from the statistic generated by the best ranked model (i.e., model 

14 for RMSE, model 8 for MAE, and model 4 for MAPE; all models in levels). When 

such a test fails to reject, the statistic is bolded. We view such tests as critical in model 

selection. A model may rank relatively low, but the criterion may have little power to 

distinguish different models and generate very similar forecast errors. For example, a 

quick glance at the table reveals that the RMSE criterion has little power to distinguish 

alternative models, while MAPE is the most distinguishing one. For the R2 criterion (in 

the 5th column), we view a difference of more than 5% with the winning model (model 

14) as a significant difference in economic terms. Model statistics similar in R2 to the 

winning model are bolded. The 6th column produces an average correlation, averaging the 

correlation of each model’s forecasts with the forecasts of the winning models in all four 

out-of-sample quantitative criteria (RMSE, MAE, MAPE, and R2). If a model were to be 

the top model on each criterion, it would get a correlation of 1. Finally, we rank models 

in each of the four categories (from 1, best, to 31, worst) and produce the average ranking 

score for each model in the last column of Table 3.  

                                                 
6 Although the Diebold-Mariano test uses the mean-squared error (MSE) rather than RMSE, we report the 
RMSE so that RMSE and MAE criteria have a comparable scale (both are in the realized variance units, 
monthly percentages squared). MAPE is expressed in percent of the realized variance and is thus scale-free. 
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Using this information, we winnow down our set of models by requiring a good 

model to be bolded in at least 3 out of 4 quantitative criteria. This leaves us with only 7 

models: level models 1, 4, 8, 10, 11, 13 and 14. Model 14 produces the best average 

ranking score (3.75) but is not stable. Indeed, only three of these seven models are stable: 

models 1, 8 and 11. Model 8 has the second best average score (4). It is also the only 

model which gets four bolds. Model 11 has the fourth best average score (6.5). 

Meanwhile, model 1 ranks only 16 in the average score. We therefore select models 8 and 

11 as the winning models. Model 8 is Corsi’s HAR model, supplemented with the 

squared VIX. Model 11 features continuous and jump variations at all three frequencies. 

More generally, the presence of realized variances (or their continuous components) at all 

three frequencies is important in delivering lower error statistics. In terms of R2, more 

complex models (level models 8, 9, 11, 13, 14 and logarithmic models 9 and 11) yield 

substantially higher values than the other models. 

Over the full sample, the resulting coefficients for models 8 and 11 (with 

heteroskedasticity-robust standard errors in brackets) are: 

         026.0117.0096.0072.0903.1

107.0330.0199.0108.0730.3 )1(
22

)5(
22

)22(
22

2
22

)22(
  ttttt RVRVRVVIXRV

         (7) 

             056.0262.0702.0064.0064.0237.0164.1

016.0327.0742.1223.0237.0212.0855.3 )1(
22

)5(
22

)22(
22

)1(
22

)5(
22

)22(
22

)22(
  ttttttt JJJCCCRV       (8) 

Table 3 also shows statistics of some popular simple models used in the literature: the 

squared VIX – realized variance model used in Bekaert, Hoerova, Lo Duca (2013) (our 

model 3), the martingale model of BTZ (model 30) and the AR(1) model of Londono 

(2011) (model 2). Compared to the top models, the martingale and simple autoregressive 

models perform an order of magnitude worse but the squared VIX – realized variance 

model delivers quite similar performance. Of the simpler models, Model 3 is best on all 

four criteria (only Model 1 does better on MAPE). It also has the best average score 

among the simpler models, and the sixth best average score overall.  

Additional exercises 

We performed two alternative exercises. First, we repeated our analysis with two 

alternative sample splits in the out-of-sample forecasting exercise. We estimated the 

models using data until June 16, 2003 (about 65% of the full sample) and until August 1, 
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2007 (about 85% of the sample), respectively. Results for the winning models 8 and 11 

are remarkably robust. For the 65% split, out-of-sample forecasting performance is 

uniformly better, with lower errors and higher R2, with the best model attaining an R2 of 

just over 59%, i.e., 2% higher than in the 75% split. The winning models are the same as 

in the 75% split: model 4 on MAPE, model 8 on MAE, and model 14 on R2 and RMSE. 

Models that get 3 bolds out of 4 are models 1, 3, 4, 8, 10, and 14 (all in levels), with 

models 4, 10 and 14 being unstable (as in the 75% sample split). Model 8 is again the 

only model that gets 4 bolds. For the 85% split, where all out-of-sample predictions are 

made over the period that includes the recent financial crisis, all models produce higher 

errors and lower R2. Model 8 is again the winning model on the MAE criterion, with 

level model 10 winning on MAPE and logarithmic model 11 on RMSE and R2. Models 

that get 3 bolds out of 4 largely overlap with those in the 75% split: models 4, 8, 9, 10, 

11, 13 and 14. Only models 8, 9 and 11 are stable, however. In sum, model 8 is 

consistently a top performer across all three sample splits. Model 11 does well in two of 

three sample splits, including the split that emphasizes performance during the financial 

crisis.7  

Second, we re-consider our forecasting exercise with end-of-month data. In most of 

the existing articles (including BTZ, Londono, 2011, and Busch, Christensen and 

Nielsen, 2011), end-of-month data are used to estimate conditional variance models. The 

use of daily data should lead to more efficient estimates, but the correlation between daily 

and monthly data induced by the overlapping data structure may make the increase in 

efficiency minor. We estimated all our models using end-of-the-month data till mid-2005, 

mimicking the 75% sample split used in our main forecasting exercise with daily data. 

We then use the obtained regression coefficients to construct daily out-of-sample realized 

variance forecasts for the remainder of the sample. Computing the usual criteria, we 

check whether we can accept the various models by looking for three bolds on our four 

quantitative criteria (MAPE, MAE, RMSE, and R2), and we verify the stability criterion.  

                                                 
7 We also verified that our winning models are overall stable. That is, using the monthly data set we 
conducted the standard unknown breakpoint test (Quandt-Andrews test; implemented in EViews 6), with 
10% trimming, and found no evidence of instability. The test points to June 2008 as the most likely break 
for both models 8 and 11 but it is not statistically significant.  
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With end-of-month data, the winning models in the four quantitative categories are 

the same as with the daily data (Model 4 on MAPE, Model 8 on MAE, and Model 14 on 

RMSE and R2). The winning models based on daily data beat those based on monthly 

data on all statistics with the exception of the MAPE criterion, where model 4 displays 

very comparable statistics (0.317 with end-of-month versus 0.318 with daily data). 

Models 1, 4 and 8 still get 3 bolds out of 4. However, model 4 is again unstable. 

Interestingly, model 8 based on monthly estimates does well relative to the best models 

based on the daily information. When estimated using the full sample, the monthly model 

puts less weight on the squared VIX and RV(22), and more weight on RV(5) and RV(1) than 

the daily model does. For the simpler models, model 3 (used in Bekaert, Hoerova, Lo 

Duca, 2013) and model 1 are stable, and get 3 bolds out of 4. However, model 3 does 

better on all four quantitative criteria than model 1. The more complex models, like our 

previously winning model 11, which include jumps and/or asymmetric volatility, are, not 

surprisingly, more difficult to identify with monthly data. The use of monthly estimation 

samples should therefore best be restricted to relatively simple models, where the loss of 

efficiency is not very costly. 

 

4.   Economics and Predictability 

Risk and risk aversion  

In Figure 1, we plot the daily series for the variance risk premium (VP henceforth; 

displayed in Panel A), which may potentially serve as a proxy for risk aversion, and the 

conditional (physical) variance of the stock market (CV henceforth; in Panel B), which 

may potentially serve as a measure of economic uncertainty. We show the two series 

obtained from the winning models 8 and 11 on one graph. The VP and CV series are 

positively correlated (correlation of 0.45 for model 8 and 0.27 for model 11) and display 

peaks at the expected times. The largest peaks for CV are observed during the Lehman 

aftermath in the recent crisis and at the time of the corporate scandals following the 

Enron debacle. Interestingly, the 1998 Russian crisis and the Gulf war did not generate 

much uncertainty, but these events do feature substantially elevated levels of VP. The 

Lehman event seems to have caused both massive uncertainty and massive risk aversion.  

When realized variances show extreme peaks, the VP series can become negative, 
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which happens more for model 11 than for model 8. This is a disadvantage of all these 

models. It is unlikely that during these periods of stress, there was a sudden increase in 

risk appetite. The more mundane explanation is that realized variances likely have 

different components with different levels of mean reversion. In a massive crisis, some of 

the realized variance movements should probably be allowed to mean-revert more 

quickly and not affect the conditional variance as much as they do now. The models with 

jumps could theoretically capture this by having negative coefficients on the jump terms. 

However, model 11 puts a large positive coefficient on the monthly and weekly jump 

components, and a very small negative one on the daily jump component. Overall, it is 

likely that a non-linear model may be better equipped to capture the behavior of CV and 

VP in severe crises.  

Predicting stock market returns  

The two components of the squared VIX index have been considered as separate 

potential predictors of stock market returns. Starting with French, Schwert and 

Stambaugh (1987), a large literature focuses on the relationship between aggregate stock 

market returns and their conditional variance. In a simple static CAPM model, the 

coefficient on the conditional stock market variance would be the wealth weighted risk 

aversion coefficient, but such a relationship need not hold perfectly in a dynamic model. 

In the literature on the risk–return relationship, estimates vary from positive to negative 

and the relationship is often insignificant. Lundblad (2007) suggests that the samples 

typically used are too short to uncover a relationship that is robustly and statistically 

significantly positive in the sample of over 150 years that he considers. Yet, the 

measurement of the conditional variance of stock returns may matter too. The bulk of the 

extant literature has considered GARCH-in-mean models to measure the conditional 

stock market variance, which likely induces substantial measurement error in the 

regression. Ghysels, Santa Clara and Valkanov (2005) recover a positive risk-return 

trade-off measuring the conditional variance with a flexible function of past returns, 

applying MIDAS modeling. However, Hedegaard and Hodrick (2013) dispute these 

results, mostly finding insignificant coefficients with either GARCH or (adjusted) 

MIDAS models to measure the conditional variance. 

BTZ recently showed that the variance risk premium has predictive power for future 
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stock returns, which is logical since it harbors information about aggregate risk aversion. 

As shown above, their measure implicitly uses a volatility model that is strongly rejected 

by the data. We therefore reconsider the predictive power of both the equity variance risk 

premium (“risk”) and the conditional variance of the stock market (“uncertainty”), using 

our improved measures of the conditional variance of stock market returns.  

We start with regressions using only the variance premium as a predictor of equity 

returns. Like BTZ, we rely on end-of-the-month observations but we consider various 

estimates of the variance premium.8 Table 4, Panel A contains the results. The left hand 

side variable is always excess stock returns (the S&P500 return in excess of the three-

month T-bill rate; expressed in annualized percentages). We use three different horizons, 

monthly, quarterly and annual (denoted by 1, 3 and 12, respectively), averaging returns 

over a quarter/year. The overlap in the monthly data creates serial correlation in the error 

term that must be corrected for in creating standard errors. We use a relatively large 

number of Newey-West lags, namely max{3, 2*horizon}, to do so, rather than create 

standard errors under the null of no predictability, as in Hodrick (1992). While the 

Hodrick estimator has very good size properties, selecting a large number of lags may 

improve power (see Sun, Phillips, and Jin, 2008). 

In the last specification in Panel A, we show that the squared VIX itself fails to predict 

stock returns. Just above, we repeat the BTZ specification that uses the past realized 

variance as the estimate of the conditional variance of stock market returns. The resulting 

variance premium proxy predicts stock market returns at all three horizons with the 

predictive power strongest at the quarterly horizon, both in terms of magnitude of the 

coefficient and the adjusted R2. The R2 for the martingale model in the quarterly 

regression increases from 7% in the original BTZ sample to 13% in our sample. Thus, 

including the financial crisis actually strengthens BTZ’s results. Compared to the 

predictability results when using the two best models - models 8 and 11 - to estimate the 

variance premium, BTZ’s martingale model maximizes the predictive power of the 

variance premium for returns. For the best models, there is only statistically significant 

predictive power at the longer horizons and the R2 drops from 13% to somewhere 

                                                 
8 We also performed all of our regressions using the BTZ sample, which ends in December 2007 and 
therefore conveniently excludes the crisis period. We mention any interesting differences between results 
with and without the crisis period.  
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between 2 and 4.5%.9 In unreported results, we find that the realized variance predicts 

stock returns with a negative sign at the monthly and quarterly horizon (significant at the 

10% and 5% level, respectively). However, the coefficients are an order of magnitude 

smaller than for the BTZ variance premium, and the R2 is just above 2% in the quarterly 

regression. 

This generates somewhat of a puzzle regarding the origin of the strong predictive 

power of the BTZ-variance premium. If the realized variance is not a strong predictor of 

stock market returns and the VIX itself does not predict them at all, why does their 

difference provide strong predictive power? The coefficient on the variance premium can 

be decomposed as follows: 

 
 

 
 VP

RV

VP

VIX
CVVIXVP var

var

var

var 2

2                (9) 

It turns out that the variance of the squared VIX is rather similar to the variance of RV, 

which is itself more than three times higher than the variance of the variance risk 

premium. Therefore, the variance premium coefficient at the quarterly frequency scales 

up the small positive coefficient on the VIX and the larger negative coefficient on stock 

market volatility by a factor of three.10  

Economically, it does appear that the variance risk premium uncovers a component in 

the VIX index that is related to future stock market returns, but the statistical evidence is 

not very strong. Apart from the small sample, one possible reason for this is the well-

known fact that equity risk premiums are likely driven by multiple state variables (see 

Ang and Bekaert; 2007, Menzly, Santos and Veronesi, 2004) so that the univariate 

regressions are necessarily mis-specified. In the consumption-based asset pricing model 

of Bekaert, Engstrom and Xing (2009), risk aversion and uncertainty are the two state 

variables driving time-variation in the equity risk premium.11  

We therefore investigate bivariate regressions using both the variance premium and 
                                                 
9 One possibility is that because we pre-estimate the conditional variance and BTZ do not, measurement 
noise affects our estimates. However, our measurement provides proxies for the variance premium and the 
conditional stock market variance closer to the true economic concepts. 
10 In the BTZ sample, neither the squared VIX nor the realized variance predict stock returns, with the VIX 
getting a positive insignificant coefficient and the realized variance a zero coefficient in the quarterly 
regressions. In that sample, the variance of the squared VIX is more than twice as high as the variance of the 
BTZ variance risk premium so that the positive coefficient on the VIX gets scaled up by a factor of two.  
11 Anderson, Ghysels, and Juergens (2009) also examine the impact of “risk” and “uncertainty”, but in their 
paper risk represents physical volatility and uncertainty disagreement among forecasters. 
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the conditional variance as predictors. The results are in Panel B of Table 4. The VP is 

overall the stronger predictor over the quarterly and annual horizons. The CV coefficients 

are (with one exception) negative and sometimes significantly so for models 8 and 11.12 

These results have implications for the consumption–based asset pricing literature, 

where there is a persistent debate about what economic mechanism generates a large 

equity premium, volatile stock market returns and long–horizon stock return 

predictability. In the Bansal–Yaron (2004) long-run risk model, time–variation in the 

equity premium comes from time–variation in economic uncertainty. Recent versions of 

the model (see e.g. Bansal, Kiku, Yaron, 2012) put more and more emphasis on the role 

of volatility and argue that substantial persistence in consumption volatility (which then 

generates high persistence in stock return volatility) is necessary to make the models fit 

the salient asset return features. However, our empirical results cast doubt on this 

economic mechanism. The persistence of the conditional variance (at the monthly level) 

is modest, varying between 0.63 and 0.71 across models. Moreover, the time-varying risk 

premium component in equity returns comes predominantly from the variance risk 

premium, not from time-varying economic uncertainty. The effects of economic 

uncertainty on risk premiums we do document seem short-lived. This suggests that the 

alternative class of models (see Campbell and Cochrane, 1999), which relies on counter-

cyclical changes in risk aversion to generate variation in risk premiums, has more chance 

of being the true economic mechanism explaining time-variation in equity risk premiums. 

In Panel C, we consider a multivariate regression including other well-known 

predictor-variables, namely the real 3-month rate (the three-month T-bill minus CPI 

inflation, denoted 3MTB), the logarithm of the dividend yield (denoted Log(DY)), the 

credit spread (the difference between Moody’s BAA and AAA bond yield indices, 

denoted CS) and the term spread (the difference between the 10-year and the 3-month 

Treasury yields, denoted TS); all variables expressed in annualized percentages. The 

addition of the other variables strengthens the predictive power of the variance premium 

for equity returns, with the coefficients uniformly increasing. However, the uncertainty 

coefficients are now smaller and mostly insignificantly different from zero.  

                                                 
12 In the BTZ sample, the CV coefficients are positive at the monthly, and negative at the quarterly and 
annual horizons, but mostly insignificant. 
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As to the other variables, the term structure variables are never significant. Both the 

real rate and the term spread have consistently positive coefficients. The credit spread 

obtains a negative coefficient that is not significantly different from zero, and the 

dividend yield is at best significant at the 10% level, mostly at the longer horizons. Here, 

the crisis adversely affected the predictive power of these variables. Excluding crisis data, 

the dividend yield and the credit spread are highly statistically significantly different from 

zero for all specifications (at all horizons in case of the dividend yield and at longer 

horizons in case of the credit spread), with the dividend yield having the expected 

positive coefficient, but the credit spread negatively affecting the equity premium.13  

The adjusted R2’s remains small at the one month horizon, but now becomes quite 

large at the quarterly (13 to 19% range) and annual horizons (around 27%). It is likely 

that this high explanatory power may partially reflect statistical bias (see Boudoukh, 

Richardson and Whitelaw, 2007).  

Given that our preferred VP and CV measures are based on the estimated models 8 

and 11, we conduct a robustness check which accounts for the sampling error in the VP 

and CV in our regressions. Specifically, we draw 500 alternative VP and CV series from 

the distribution of VP and CV estimates. To do so, we retain the coefficients from the 

forecasting projection together with their asymptotic covariance matrix. Then, we draw 

500 alternative parameter coefficients from the distribution of these estimates, generating 

alternative VP and CV estimates. We then feed these into our predictive regressions 

generating a distribution of coefficients, standard errors and t-statistics. As the first-stage 

projections are tightly estimated, the coefficients and standard errors are not materially 

affected, and our main inference regarding stock return predictability remains intact. 

Predicting the Real Economy and Financial Instability 

In Table 5, we examine the predictive power of the variance risk premium and stock 

market volatility for economic activity as measured by industrial production growth (the 

                                                 
13 There is no issue of multi-collinearity in the regression as the dividend yield–credit spread correlation is 
low (close to zero over the pre-crisis sample; and 0.2 over the full sample). While the negative credit spread 
coefficient may surprise some readers, BTZ also report negative coefficients for the credit spread in 
univariate excess return regressions. It is conceivable that the credit spread is a good indicator of economic 
prospects (for example, it is relatively highly correlated with economic uncertainty) and therefore helps 
cleanse the dividend yield from variation driven by cash flows, rather than risk premiums (see Golez, 2012 
for a recent interesting attempt to cleanse the dividend yield of cash flow effects in a predictability 
regression). 
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log-difference of the total industrial production index expressed in annualized 

percentages; growth over a quarter/year is averaged). Bloom (2009) shows that 

uncertainty shocks lead to a rapid drop and rebound in aggregate output and employment. 

In a model with adjustment costs to labour and capital, this occurs because higher 

uncertainty causes firms to temporarily pause their investment and hiring. In some of his 

empirical work, Bloom actually uses the VIX to help measure uncertainty shocks. Here, 

we investigate whether the VIX and/or its two components predict economic activity in a 

simple regression framework.  

The last specification shows that the squared VIX itself predicts economic activity 

with a negative sign at all horizons (significant at the 1% level). In terms of economic 

significance, a 1% (monthly) move in the VIX near the mean leads approximately to a 1% 

(annualized) drop in the industrial production growth over the next quarter. The bivariate 

regressions with its two components show that whatever predictive power the VIX has for 

future output, is coming from the uncertainty component. The coefficient on VP is 

negative at monthly and quarterly horizons, but it is always statistically insignificantly 

different from zero. The coefficient on CV is always negative and statistically significant 

at the 1% level for all three horizons. As with stock return regressions, we check 

robustness of our results to accounting for the sampling error in the VP and CV estimates. 

Our results are unaltered. We conclude that CV is a robust and significant predictor of 

economic activity.  

Our results here add to a rapidly growing literature on predicting economic activity 

with economic uncertainty measures.  For example, Stock and Watson (2012) argue that 

financial disruptions and heightened uncertainty helped produce the Great Recession. 

Allen, Bali, and Tang (2012) derive a measure of aggregate systemic risk using data on 

stock returns for banks and show that high levels of this measure predict future economic 

downturns. Bachmann, Elstner and Sims (2013) use survey expectations data to construct 

an empirical proxy for time-varying business-level uncertainty. They show that surprise 

movements in the uncertainty proxy lead to significant reductions in production. Finally, 

Gilchrist, Sim, and Zakrajsek (2010) analyze how fluctuations in uncertainty interact with 

financial market imperfections in determining economic outcomes. 

One economic outcome that has garnered considerable policy interest since the recent 
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global crisis is financial instability. In Table 6, we examine whether measures of the 

variance risk premium and stock market volatility have predictive power for financial 

instability. To measure financial instability, we use a financial stress indicator created by 

the European Central Bank (called CISS). The indicator is based on European Monetary 

Union (EMU) data, combining information from the money, equity, bond, and foreign 

exchange markets, and some financial intermediaries-related information. It mostly 

comprises realized volatilities for various return, currency or interest rate measures and it 

does not contain any implied volatility information (see Hollo, Kremer and Lo Duca, 

2012, for details). We regress the level of the CISS indicator 1, 3 and 12 months ahead on 

our VP and CV measures.  

The VIX itself has a high predictive power for the one- and three-months ahead 

indicators (significant at the 1% level). The R2 is over 40% at the monthly horizon and 

over 30% at the quarterly horizon. When both components of the VIX enter the 

regressions, the uncertainty component has a higher predictive power than the variance 

premium component. Uncertainty is significant at 1% level at all three horizons, and the 

magnitude of its coefficients is uniformly higher than for the VP, particularly at the 

quarterly and annual horizons. The VP coefficient is significant at the monthly horizon 

(at the 5-10% level) but not (with the exception of model 11) at the quarterly or annual 

frequency. These results are robust to accounting for the sampling error in the VP and CV 

estimates. Overall, a high predictive power of variables based on US data for a European 

financial stress indicator is noteworthy.14  

 

5.   Conclusions 

We decompose the squared VIX, the risk neutral expected stock market variance, into 

two components, the conditional (physical) variance of the stock market (CV) and the 

equity variance premium (VP), which is the difference between the two (VP=VIX2-CV). 

                                                 
14 We also considered three alternative financial stress indicators: a (proprietary) CISS indicator based on 
US data, an indicator developed by the Kansas Fed and an indicator developed by the St. Louis Fed. 
Results for the US CISS are very similar to those for the EMU CISS (the correlation between the two 
indicators is 0.8). For the Fed-developed indicators, results are similar with two qualifications. First, the 
coefficients on the VP component are now statistically significant at 1% level at both the monthly and 
quarterly frequency. This is not surprising as both indicators include the VIX itself as one of the 
components (unlike the CISS indicators). Second, the R2’s are higher at the monthly and quarterly 
frequency compared to the regressions with the EMU CISS indicator. VP and CV have a higher predictive 
power for financial stress in the US compared to Europe.  
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Because this decomposition critically depends on the accuracy of the model for CV, we 

first conduct an extensive analysis of state-of-the-art variance forecasting models, where 

we make sure to also consider the squared VIX itself as a potential predictor. Indeed, one 

of our winning models includes the VIX.  

We use these models to re-examine and expand the evidence on the predictive power 

of VP and CV for stock returns, economic activity (as measured by industrial production) 

and financial stress indicators (tracked by central banks). We find that the variance 

premium is a significant predictor of stock returns, but the conditional variance mostly is 

not. However, CV robustly and significantly predicts economic activity with a negative 

sign, whereas VP has no predictive power for future output growth. Lastly, CV has a 

relatively higher predictive power for financial instability than does the variance 

premium.  
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Table 1: Models considered 

Variables 2VIX  )22(C  )1()5( ,CC  )22(J  
)1()5( , JJ  )22(r  

 )1()5( , rr  

Estimated models 
(Log) Model 1 X       
(Log) Model 2  X      
(Log) Model 3 X X      
(Log) Model 4 X X  X    
(Log) Model 5  X  X    
(Log) Model 6 X X  X  X  
(Log) Model 7  X  X  X  
(Log) Model 8 X X X   
(Log) Model 9  X X     
(Log) Model 10 X X X X X   
(Log) Model 11  X X X X   
(Log) Model 12 X X X X X X X 
(Log) Model 13  X X X X X X 
(Log) Model 14 Outcome of the general-to-specific (Gets) model selection - see Table 2 
Non-estimated models 
Model 29 X       
Model 30  X      
Model 31 0.5* X 0.5*X   
 

Notes: Summary of variables included in estimated and non-estimated models. In models without 
jumps, the relevant realized variances (RV(22), RV(5) and RV(1)) are used instead of the continuous 
variations (C(22), C(5) and C(1)); i.e., in estimated (log) models 2, 3, 8, 9, and non-estimated models 30 
and 31.  
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Table 2: General-to-specific (Gets) model selection  

Model (1) (2) 

2VIX   0.456*** 
  [0.019] 

)22(C  -0.265 0.215*** 
 [0.267] [0.040] 

)5(C  0.282*** 0.184*** 
 [0.094] [0.039] 

)1(C  0.126*** 0.093*** 
 [0.047] [0.014] 

)22(J  2.052***  
 [0.635]  

)5(J    
   

)1(J    
   

)22(r  -0.955*  
 [0.536]  

)5(r  -0.318**  
 [0.138]  

)1(r  -0.211*** -0.002*** 
 [0.072] [0.0006] 
# daily observations 5208 5208 

 

Notes: Sample period January 02, 1990 – October 01, 2010. Column 1 reports estimates for the level 
model while column 2 reports estimates for the logarithmic model. The standard errors reported in 
brackets are computed using 44 Newey-West lags. ***, **, * denote significance at the 0.01, 0.05 and 
0.10-level. 
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Table 3: Model statistics and ranking 

Model RMSE* RMSE MAE MAPE R2 Correlations Average score 

Estimated level models 

Model 1 11.462 52.978 18.653 0.342 0.411 0.954 15.50 
Model 2 11.618 49.610 19.089 0.494 0.484 0.956 14.50 
Model 3 10.909 49.267 17.650 0.354 0.491 0.974 9.50 
Model 4 10.458 55.336 19.047 0.318 0.358 0.945 17.75 
Model 5 11.485 52.059 19.190 0.498 0.432 0.951 19.75 
Model 6 10.147 53.171 18.785 0.344 0.407 0.964 16.50 
Model 7 10.600 50.150 18.798 0.468 0.472 0.967 14.50 
Model 8 10.508 46.077 16.856 0.347 0.555 0.976 4.00 
Model 9 10.822 45.450 17.523 0.445 0.567 0.969 4.75 
Model 10 10.196 50.635 17.603 0.324 0.462 0.974 12.00 
Model 11 10.658 46.614 17.400 0.446 0.544 0.975 6.50 
Model 12 9.988 50.261 17.863 0.348 0.470 0.978 12.50 
Model 13 10.237 46.970 17.512 0.435 0.537 0.981 6.75 
Model 14 10.592 45.147 17.537 0.403 0.572 0.978 3.75 

Estimated logarithmic models  

Log Model 1 13.137 49.853 19.059 0.406 0.479 0.957 13.50 
Log Model 2 13.531 49.590 22.605 0.706 0.484 0.957 20.50 
Log Model 3 12.985 50.729 21.762 0.562 0.460 0.974 22.00 
Log Model 4 12.293 50.794 19.699 0.498 0.459 0.963 19.00 
Log Model 5 13.225 49.066 22.066 0.730 0.495 0.957 19.25 
Log Model 6 12.457 50.590 19.887 0.505 0.463 0.970 18.50 
Log Model 7 13.226 61.642 25.194 0.723 0.203 0.932 30.25 
Log Model 8 12.680 48.004 20.981 0.571 0.517 0.981 15.00 
Log Model 9 12.852 45.996 21.072 0.662 0.556 0.977 13.50 
Log Model 10 12.191 48.031 19.661 0.529 0.516 0.977 13.25 
Log Model 11 12.485 45.538 21.077 0.694 0.565 0.977 13.50 
Log Model 12 12.263 49.271 20.375 0.537 0.491 0.969 16.50 
Log Model 13 12.792 54.713 23.452 0.695 0.372 0.942 27.50 
Log Model 14 12.322 48.248 19.989 0.541 0.512 0.971 15.00 

Non-estimated models 

Model 29 25.774 55.359 29.940 1.055 0.357 0.954 30.50 
Model 30 12.548 53.276 22.254 0.500 0.405 0.956 24.25 
Model 31 16.265 52.051 24.310 0.717 0.432 0.974 25.75 

 

Notes: Selected model statistics based on the out-of-sample performance. Parameters are estimated using 
data between January 1, 1990 and July 15, 2005; the rest of the sample (till October 01, 2010) is used to 
assess forecasting performance. The 1st column reports the Chow stability test results (stable models 
bolded). The 2nd column shows the in-sample root-mean-squared error (RMSE*). The next four columns 
show the out-of-sample root-mean-squared error (RMSE), mean absolute error (MAE), mean absolute 
percentage error (MAPE), and Mincer-Zarnowitz R2 (see pp. 10-11 for the “bolding” criteria). The 7th 
column produces the average correlation of each model with the winning models in the RMSE, MAE, 
MAPE, R2 categories. The 7th column produces the average ranking score of each model in the RMSE, 
MAE, MAPE, R2 categories.  
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Figure 1: Variance premium and conditional variance 

Panel A: Variance premia 

Panel B: Conditional variances 

 

Notes: Daily series for the variance premium (VP) and the conditional variance (CV) from the winning 
models 8 and 11.  

 
 
 
 
 
 
 



 31

Table 4, Panels A and B: Stock return regressions 1 

Panel A: Monthly, quarterly and annual regressions with variance premium 

Horizon 1 3 12 1 3 12 1 3 12 1 3 12 
VP 8 0.311 0.426** 0.241**          
 [0.293] [0.175] [0.114]          
VP 11    0.304 0.289 0.169*       
    [0.256] [0.184] [0.092]       
VP 30       0.527*** 0.575*** 0.168***    
       [0.121] [0.073] [0.055]    
VIX2          -0.030 0.019 0.061 
          [0.166] [0.139] [0.045] 
constant -1.045 -3.069 0.841 -0.907 -0.574 2.148 -4.633 -5.408* 2.273 5.835 3.954 2.829 
 [5.285] [4.148] [4.861] [5.434] [4.066] [4.379] [3.439] [3.167] [3.809] [5.538] [4.666] [4.344] 
Adj. R2 0.005 0.042 0.045 0.008 0.025 0.029 0.037 0.130 0.034 -0.004 -0.004 0.012 

Panel B: Monthly, quarterly and annual regressions with variance premium and conditional variance 

VP 8 0.593* 0.688*** 0.287***          
 [0.330] [0.145] [0.092]          
CV 8 -0.358** -0.333*** -0.058          
 [0.155] [0.061] [0.062]          
VP 11    0.421 0.362** 0.171**       
    [0.260] [0.180] [0.084]       
CV 11    -0.296* -0.183** -0.005       
    [0.177] [0.089] [0.051]       
VP 30       0.478*** 0.564*** 0.211***    
       [0.174] [0.109] [0.080]    
CV 30       -0.060 -0.013 0.052    
       [0.078] [0.054] [0.060]    
constant 1.505 -0.696 1.258 3.324 2.045 2.214 -2.433 -4.918 0.383    
 [4.760] [3.968] [4.981] [4.637] [4.286] [4.651] [4.434] [3.976] [5.112]    
Adj. R2 0.024 0.095 0.046 0.024 0.043 0.025 0.035 0.127 0.042    
 2 
Notes: Sample period January 1990 – September 2010. All regressions are based on monthly observations. The standard errors reported in brackets are computed 3 
using max[3, 2*horizon] Newey-West lags. ***, **, * denote significance at the 0.01, 0.05 and 0.10-level. 4 

5 
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Table 4, Panel C: Stock return regressions 1 

Monthly, quarterly and annual regressions with variance premium, conditional variance and other predictors 

Horizon 1 3 12 1 3 12 1 3 12 
3MTB 3.618 3.261 3.549 3.141 3.432 3.563 3.641 3.296 3.636 
 [3.146] [3.344] [3.070] [3.091] [3.765] [3.147] [3.365] [3.440] [3.109] 
Log(DY) 19.160 21.023 18.900* 22.876 23.141* 19.578* 19.367 21.236 18.857* 
 [14.411] [12.904] [10.510] [14.267] [13.490] [10.502] [14.468] [12.951] [10.510] 
CS -15.022 -17.702 -6.335 -15.847 -17.936 -6.432 -10.290 -12.540 -5.120 
 [17.119] [13.153] [4.708] [18.529] [14.901] [5.151] [16.258] [12.602] [4.862] 
TS 1.944 2.095 3.983 1.649 2.255 4.004 1.806 1.953 4.008 
 [3.892] [4.272] [3.554] [3.910] [4.479] [3.599] [3.961] [4.287] [3.563] 
VP 8 0.674** 0.796*** 0.304***       
 [0.276] [0.146] [0.100]       
CV 8 -0.153 -0.110 0.054       
 [0.211] [0.091] [0.051]       
VP 11    0.560** 0.515** 0.234***    
    [0.237] [0.201] [0.075]    
CV 11    -0.110 0.025 0.087*    
    [0.201] [0.085] [0.051]    
VP 30       0.533*** 0.639*** 0.238*** 
       [0.174] [0.105] [0.075] 
CV 30       0.066 0.130 0.124** 
       [0.124] [0.096] [0.052] 
constant -10.604 -12.335 -19.198 -10.258 -11.792 -19.057 -16.851 -19.132 -20.682 
 [16.083] [12.982] [12.433] [17.434] [14.004] [12.265] [15.829] [12.700] [12.530] 
Adj. R2 0.039 0.171 0.276 0.041 0.131 0.267 0.046 0.192 0.273 
 2 
Notes: Sample period January 1990 – September 2010. All regressions are based on monthly observations. The standard errors reported in brackets are computed 3 
using max[3, 2*horizon] Newey-West lags. ***, **, * denote significance at the 0.01, 0.05 and 0.10-level. 4 

5 
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Table 5: Industrial production regressions 2 

Monthly, quarterly and annual regressions with variance premium and conditional variance 

Horizon 1 3 12 1 3 12 1 3 12 1 3 12 
VP 8 -0.066 -0.028 0.025          
 [0.052] [0.042] [0.025]          
CV 8 -0.088*** -0.113*** -0.060***          
 [0.020] [0.009] [0.012]          
VP 11    -0.084 -0.046 0.007       
    [0.054] [0.036] [0.018]       
CV 11    -0.078*** -0.106*** -0.053***       
    [0.020] [0.006] [0.013]       
VP 30       -0.040 -0.027 0.014    
       [0.034] [0.030] [0.019]    
CV 30       -0.083*** -0.087*** -0.033***    
       [0.019] [0.010] [0.011]    
VIX2          -0.080*** -0.084*** -0.031*** 
          [0.019] [0.018] [0.009] 
constant 5.009*** 4.815*** 2.758** 5.132*** 4.995*** 2.935*** 4.451*** 4.287*** 2.416** 5.109*** 5.204*** 3.145*** 
 [0.884] [0.689] [1.110] [0.892] [0.691] [1.047] [0.856] [0.699] [1.172] [0.817] [0.675] [0.960] 
Adj. R2 0.120 0.276 0.086 0.119 0.272 0.082 0.130 0.296 0.096 0.123 0.258 0.056 
 3 
Notes: Sample period January 1990 – September 2010. All regressions are based on monthly observations. The standard errors reported in brackets are computed 4 
using max[3, 2*horizon] Newey-West lags. ***, **, * denote significance at the 0.01, 0.05 and 0.10-level. 5 

6 
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Table 6: Financial instability regressions 2 

Monthly, quarterly and annual regressions with variance premium and conditional variance 

Horizon 1 3 12 1 3 12 1 3 12 1 3 12 
VP 8 0.222* 0.176 -0.054          
 [0.121] [0.137] [0.122]          
CV 8 0.301*** 0.288*** 0.200***          
 [0.048] [0.031] [0.044]          
VP 11    0.154* 0.191* -0.015       
    [0.080] [0.110] [0.093]       
CV 11    0.345*** 0.284*** 0.187***       
    [0.055] [0.034] [0.036]       
VP 30       0.216** 0.134 -0.010    
       [0.090] [0.092] [0.087]    
CV 30       0.277*** 0.256*** 0.119***    
       [0.042] [0.036] [0.031]    
VIX2          0.274*** 0.249*** 0.112*** 
          [0.040] [0.043] [0.037] 
constant 3.816** 5.071** 11.470** 4.121** 4.886** 11.021** 4.400** 6.443*** 12.300** 3.455** 4.562*** 10.317*** 
 [1.744] [2.052] [4.575] [1.682] [1.884] [4.347] [1.927] [2.116] [4.823] [1.401] [1.679] [3.969] 
Adj. R2 0.422 0.349 0.090 0.446 0.350 0.093 0.426 0.369 0.092 0.422 0.346 0.067 
 3 
Notes: Sample period January 1990 – September 2010. All regressions are based on monthly observations. The CISS indicator was scaled by a factor of 100. The 4 
standard errors reported in brackets are computed using max[3, 2*horizon] Newey-West lags. ***, **, * denote significance at the 0.01, 0.05 and 0.10-level. 5 
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