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Abstract

Often, numerical simuations for dynamic, stochastic models in eco-

nomics are needed. Higher order methods can be attractive, but bear

the danger of generating explosive solutions in originally stationary

models. Kim-Kim-Schaumburg-Sims (2008) proposed pruning to deal

with this challenge for second order approximations. In this paper, we

provide a theory of pruning and formulas for pruning of any order. We

relate it to results described by Judd (1998) on perturbing dynamical

systems.

Keywords: pruning, numerical simulation, numerical economics, Taylor

expansion, perturbation methods

JEL codes: C63, C02, C62
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Non-technical summary

Solving exactly non-linear, dynamic, stochastic models for policy analysis

is currently not feasible, except for particularly simple models. Perturba-

tion methods have successfully being used in physics as well as in economics

to circumvent this problem and obtain approximate solutions. The seminal

work of Judd (1998) has generated considerable research directed at adapting

this method to economic problems. An apparent drawback of the proposed

perturbation technique is that it is not well suited for simulations and com-

putation of model-based statistics of interest. This is because the solution

consists of a non-linear state-space representation, which away from the point

of approximation, can generate non-stationary solutions, which in principle

could have nothing to do with the dynamic properties of the original problem.

In order to avoid this problem, Kim et al. (2008) have proposed a prac-

tical correction of the non-linear state-space representation that guarantees

stability of approximations up to second order of accuracy. This technique

consists of “pruning” the terms of the solution that can generate instability.

A number of papers have recently attempted to provide theoretical foun-

dations to the pruning approach. Our paper shows that if we represent the

dynamical system in terms of the perturbation parameter (typically the stan-

dard deviation of the shocks) and of variables invariant to this parameter,

a perturbation solution exists which has the property of being stationary as

long as the original system is stationary around the point of approximation.

We show that this perturbation approach is one of the approaches discussed

in Judd’s (1998) textbook (Chapter 13), as well as in a number of mathemat-

ical articles, and that this approach generates solutions that are identical to

those obtained under pruning. In this sense we provide a theory of pruning.

We derive general formulas for the computation of approximate solutions

to any order of accuracy. Hence, we believe that our contribution can offer
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a theory-based guide on higher order approximations of models useful for

policy analysis.
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1 Introduction

When both the true nonlinear model and the second-order approxi-

mate model are stationary and ergodic, and the true unconditional

expectation in question is a twice differentiable function of σ in

the neighborhood of σ = 0, then it is possible to estimate the ex-

pectation from long simulations of the approximate model, with

the estimates accurate locally in σ in the usual sense ( quoted

from Kim et al. (2008), p. 3410).

Solutions to dynamic stochastic equilibrium (DSGE) models can often be

thought of to take a recursive form, say

xt = g(xt−1;σ) + σεt (1)

In this equation, xt denotes the endogenous variables, εt a disturbance with

some given distribution, and σ controls the variance of εt. The law of motion

g(·) is not known: rather, it needs to be derived from the underlying equations

of the DSGE model. The same holds true for statistics of interests regarding

the resulting time series xt, such as moments which may be suitable for GMM

estimation.

Indeed, it is typically not possible to provide an exact or closed-form

expression for g(·) or these statistics. Instead, numerical approximation

methods need to be used, see Judd (1998). First-order approximations

are well-understood and popular, see e.g. Uhlig (1999). Following Jin and

Judd (2002), researchers have made increasing use of higher-order polyno-

mial approximations to g, obtained from a perturbation approach or Taylor

series around some steady state. These higher-order approximations con-

tain quadratic terms in xt−1. As Kim et al. (2008), henceforth KKSS, have

pointed out, these higher order terms can be problematic for simulations. In

essence, the quadratic terms generate an unstable dynamic, if the argument
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xt−1 is pushed sufficiently far away from the steady state, and it may be

hard or not practical to rule out such behavior. KKSS suggest “pruning”

to deal with this problem. Briefly put, higher-order terms get rewritten,

per relating them to lower- order terms, in order to render the simulations

stationary. While pruning has become popular, questions linger. One may

wonder whether there is a deeper rationale for this method or whether it just

works by “miracle” of good judgement. There is a debate in the literature

on how to generalize pruning to third and higher order, as well as to treat

constants. Furthermore, the method has come under some attack (see den

Haan and de Wind, 2012).

The literature has largely proceeded by proposing specific solutions and

checking numerical adequacy for specific examples. We seek to complement

this literature by, in essence, providing a theory of pruning. We show that

pruning can be understood as a standard Taylor approximation, when stat-

ing the variable of interest at date t as a function of the standard deviation

parameter σ as well as variables which are invariant to it. We show that

it is tightly related to an approach provided by Judd (1998) on perturb-

ing dynamical systems. A key contribution of this paper is to solidify the

appropriate third-order pruning scheme, to provide the forth-order pruning

scheme, and to provide an algorithm for computing schemes of any order.

The paper proceeds as follows. In section 2, we relate our contribution to

the existing literature. In section 3, we provide a short introduction to DSGE

models, their solutions and pruning. This will help to fix notation. It leads

into section 4, where we show that pruning can be understood as a standard

Taylor approximation, but for the “right” function. Section 5 contains our

key results and provides the formulas for pruning of any order. We explicitly

state the formulas for pruning of third and forth order. Section 6 shows that

pruning, in essence, has already been obtained in Judd (1998).
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2 Related literature

Following Judd’s (1998) seminal contribution on perturbation methods in

economics, a number of papers have discussed various aspects of this solu-

tion technique. Jin and Judd (2002) provide an earlier guide on the appli-

cation of perturbation methods to DSGE models, while the often cited work

by Schmitt-Grohé and Uribe (2004) further clarifies the technique, provides

computer codes to implement it, and discusses the role of risk in second-order

approximations.

One practical issue that remained unresolved in the literature consisted

in dealing with the inherent non-linearity of the state-space representation

of the higher-order solution obtained following these techniques.1 Lombardo

and Sutherland (2007) discuss an approach based on “order matching” for

second order approximations that generates a recursively-linear state-space

representation and, hence, avoids the problem of “spurious” explosive paths

in simulations. Their approach shares many formal similarities with the

method discussed here. Nevertheless, and contrary to our paper, they don’t

attempt to provide mathematical foundations to their approach, nor do they

link it to “pruning”.

KKSS address explicitly the problem of the non-linearity of the state-

space representation of a second-order perturbation-based solution. After

discussing the limitation of the prevalent perturbation approach (i.e. à la

Jin and Judd, 2002) they propose a practical solution consisting of “pruning”

the state-space representation, and thus turning it into a recursively-linear

system of equations. The details of this approach are discussed further below.

More recently, a number of papers have investigated the properties as

well as the foundations of the “pruning” technique. In particular den Haan

1While Schmitt-Grohé and Uribe (2004) don’t discuss this problem, their computer

codes apply “pruning” to second order.
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and de Wind (2012) emphasize the potential pitfalls of particular implemen-

tations of the “pruning” technique to higher orders of approximation, and

propose an alternative approach. Andreasen et al. (2013) extend the “prun-

ing” technique to higher order of approximation using an “order-matching”

argument. While their approach generates solutions that are formally similar

to ours, they don’t discuss the link between the proposed technique and the

perturbation approach studied in this paper and discussed in the mathemat-

ical literature (e.g. Holmes, 1995 and Murdock, 1987) and in Judd (Ch. 13

1998).2

An alternative, interesting approach is followed by Lan and Meyer-Gohde

(2013). Similarly to us, they show that pruning can be understood as a Taylor

expansion for a function in the appropriate domain. Contrary to us, they

base their approximation on an infinite moving average representation.

Finally our work is deeply linked to the exposition of the perturbation

approach provided by Kenneth Judd in Chapter 13 of his textbook (Judd,

1998). In his discussion of perturbation methods (e.g. see Section 13.3),

Judd refers to an approach widely studied in the mathematical literature (e.g.

Holmes, 1995 and Murdock, 1987) which we think provides the theoretical

foundations of KKSS’ “pruning” technique. Given the centrality of Judd’s

contribution to our analysis, we provide a more thorough comparison in

Section 6.

3 DSGE models and pruning

The purpose of this section is to provide a quick introduction into pruning

and the key issues to set the stage for section 4. In order to keep notation

2Lombardo (2010), discusses how to follow this mathematical literature to obtain

recursively-linear state-space representations. Our paper replaces and extends his ear-

lier contribution.
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palatable, we will assume for now, that xt is real-valued, that x̄ is the non-

stochastic steady state, etc.. We provide results for the vector-valued case in

section 5.

We suppose that the equations characterizing the dynamics of an eco-

nomic model can be written as

0 = Et [H (xt−1, xt, xt+1, σεt;σ)] , t ≥ 1 (2)

where xt ∈ IR is an endogenous variable with a given initial value x0, εt is

an iid sequence of random variables εt ∼ F for some given distribution F

and with Et−1[εt] = 0, σ ≥ 0 is a parameter and Et is the expectation with

respect to the information given by (x0, . . . , xt, ε1, . . . , εt). The function H(·)
is a primitive of the model, and may depend on additional parameters.

We shall constrain our attention to the situation, where εt is the only

stochastic driving force3 and therefore constrain xt to be measurable with

respect to the σ-algebra or information Ft generated by ε1, . . . , εt. A solution

is a Ft-measurable stochastic sequence xt, satisfying (2). Conceptually, a

solution can be written as

xt = ft(ε1, . . . , εt;x0, σ) (3)

Obviously, obtaining the unknown function f(·) by analyzing (2) is typically

far from trivial, and we will not assume that f(·) is known. Often, one can

show that the solution takes a recursive form,

xt = g(xt−1, εt;σ) (4)

or even

xt = g(xt−1;σ) + σεt (5)

3Note that this implies that sunspot solutions must be functions of the exogenous

sequence εt.
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We shall assume that the second case (5) applies. Many researchers find

it convenient to work with the recursive form rather than (3). Once again,

obtaining the unknown function g(·) by analyzing (2) is typically far from

trivial, and we will not assume that g(·) is known. Often, however, it is

possible to obtain usefully accurate values for g and several orders of its

derivatives at some point x̄, see Judd (1998). For example, x̄ may be the

non-stochastic steady state of (2) and thus the value which satisfies

x̄ = g(x̄; 0) (6)

With this, one can obtain a Taylor expansion of g around (x̄; 0), up to some

order. A second order Taylor expansion delivers

xt = g(x̄; 0) + gx(x̄; 0)(xt−1 − x̄) + gσ(x̄; 0)σ

+
1

2

(
gxx(x̄; 0)(xt−1 − x̄)2 + gxσ(x̄; 0)(xt−1 − x̄)σ + gσσ(x̄; 0)σ2

)
+σεt +O(| xt−1 − x̄ |3, σ3)

where O(| xt−1 |3, σ3) denotes a term that is a bounded function of | xt−1−x̄ |3

and σ3 and therefore vanishes near (x̄, 0). For simplicity of exposition, let us

assume (6) and furthermore, that x̄ = 0. Schmitt-Grohé and Uribe (2004)

have shown that gσ(x̄; 0) = 0 and gxσ(x̄; 0) = 0 at the nonstochastic steady

state x̄. Dropping the argument (x̄; 0), the equation above can then be

written as

xt ≈ gxxt−1 +
1

2

(
gxxx

2
t−1 + gσσσ

2
)

+ σεt (7)

where “ ≈′′ here means up to a function O(| xt−1 |3, σ3).

As KKSS (2008) have pointed out, iteration on this equation can be

explosive, even with | gx |< 1, due to the presence of the quadratic term

gxxx
2
t−1. This can lead to problems, when simulating long samples from (7).

Their suggestion is to “prune” (7) for the purpose of simulations, and to

instead use

xt ≈ x̃
(2)
t (8)
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where

x̃
(1)
t = gxx̃

(1)
t−1 + σεt (9)

x̃
(2)
t = gxx̃

(2)
t−1 +

1

2

(
gxxx̃

(1)
t−1x̃

(1)
t−1 + gσσσ

2
)

+ σεt (10)

It is straightforward to see that x
(2)
t is stationary, provided that | gx |< 1.

The pruning formulas moreover share similarities with the quadratic approx-

imation (7): the formula for x
(2)
t is the same as in (7), except that the higher-

order terms are not in terms of its own past, but are in terms of the past of

x
(1)
t instead. While these properties are attractive, and while these formulas

have a good intuitive appeal, it is perhaps less clear on more formal grounds,

why x
(2)
t is close to the true stochastic process of the model. Moreover, while

the formulas are suggestive regarding their generalizations to higher orders,

one may debate exactly on how to proceed. Indeed, as pointed out in the

introduction, there is considerable debate in the literature already.

4 A different Taylor expansion

In order to provide a theory of pruning, we return to equation (3), i.e.

xt = ft(ε1, . . . , εt;x0, σ)

While we seek to calculate good approximations for xt at some given initial

condition x0 as well as some target value for σ, say, σ∗, there is some liberty

as to what initial condition one ought to assume at σ = 0, the point of

approximation. It turns out that the following assumption is particularly

convenient.

Assumption A. 1 The series xt = ft(ε1, . . . , εt;x0, σ) solves problem (2)

for the sequence of shocks ε1, ε2, . . ., σ and the the initial condition

x0(σ) = x̄+
σ

σ∗
(x0 − x̄) (11)
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where x̄ is the non-stochastic steady state.

As a result, x̄ is the initial condition at σ = 0 and x0 is the initial condition

at σ = σ∗. Moreover,

∂f0(x0, σ)

∂σ
=
∂x0(σ)

∂σ
=

1

σ∗
(x0 − x̄) (12)

We are now interested in characterizing the Taylor expansion for ft in

terms of σ. We shall do so by exploiting the properties of the recursive law

of motion (5). We will show that one obtains pruning naturally. For this,

perhaps the most important property of (3) can be stated as follows. Rewrite

that equation as

xt = ft(θt;σ) (13)

where

θt = (x0, ε1, . . . , εt) (14)

Note that θt is invariant with respect to σ. Therefore, when taking derivatives

with respect to σ, one does not have to “worry” about the endogenous impact

on θt. Compare (13) with (4): while formally similar, the argument xt−1 will

move with σ. It is for that reason that we need to start the analysis here

with (3) rather than (4).

We shall focus first on the case of a second-order Taylor expansion for ft.

Note that

x̄ = ft(θt; 0) (15)

For notational simplicity, assume that

x̄ = 0. (16)

Let

x
(j)
t =

∂jft
∂σj

|(θt;x̄,0)
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For a given θt, the second-order Taylor expansion of ft with respect to σ is

xt ≈ x̄+ x
(1)
t σ +

1

2
x

(2)
t (σ)2 (17)

where “≈” means up to a function O(σ3). For example, note that (12) implies

that

x
(1)
0 =

1

σ
(x0 − x̄) (18)

x
(j)
0 = 0, for j ≥ 2 (19)

We obtain the following result. It is a simple consequence of (5), the

chain rule as well as gσ(x̄; 0) = 0 and gxσ(x̄; 0) = 0.

Proposition 1

x
(1)
t = gxx

(1)
t−1 + εt (20)

x
(2)
t = gxx

(2)
t−1 + gxx

(
x

(1)
t−1

)2

+ gσσ (21)

Proof: The notation in the proof may look daunting, but it just writing

out the simple consequences of (5), the chain rule as well as gσ(x̄; 0) = 0 and

gxσ(x̄; 0) = 0, proceeding by induction. For a given θt and some arbitrary σ,

exploiting (5) and the chain rule delivers

∂ft
∂σ

(θt; x̄, σ) =
∂

∂σ
(g (ft−1(θt−1; x̄, σ);σ) + σεt) (22)

= gx(ft−1(θt; x̄, σ);σ)
∂ft−1

∂σ
(θt; x̄, σ) + gσ(ft−1(θt; x̄, σ);σ) + εt

for the first derivative with respect to σ and, taking the derivative again with

respect to σ,

∂2ft
∂σ2

(θt; x̄, σ) =
∂

∂σ

(
gx(ft−1(θt; x̄, σ);σ)

∂ft−1

∂σ
(θt; x̄, σ) + gσ(ft−1(θt; x̄, σ);σ) + εt

)
= gx(ft−1(θt; x̄, σ);σ)

∂2ft−1

∂σ2
(θt; x̄, σ)

+gxx(ft−1(θt; x̄, σ);σ)

(
∂ft−1

∂σ
(θt; x̄, σ)

)2

+2gxσ(ft−1(θt; x̄, σ);σ)
∂ft−1

∂σ
(θt; x̄, σ) + gσσ(ft−1(θt; x̄, σ);σ) (23)
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Evaluate these expressions at σ = 0 and exploit gσ(x̄; 0) = 0 and gxσ(x̄; 0) = 0

to obtain (20) and (21) •

Equations (20) and (21) may already look rather similar to (9) and (10).

To make the comparison easier, we introduce the additional notation

x̂
(j)
t = x

(j)
t σj/j! (24)

We obtain

x̂
(1)
t = gx(·)x̂(1)

t−1 + σεt (25)

x̂
(2)
t = gx(·)x̂(2)

t−1 +
1

2

(
gxx(·)x̂(1)

t−1x̂
(1)
t−1 + gσσ(·)σ2

)
(26)

We approximate

xt ≈ x̂
(1)
t + x̂

(2)
t

per (17). Already, x̂
(1)
t here is equal to x

(1)
t in (9). It remains to show that

x̂
(1)
t + x̂

(2)
t here equals x

(2)
t in (10), provided this is true initially. But this

follows now easily by complete induction.

Proposition 2 Suppose that

x̂
(1)
t = x

(1)
t (27)

for t = 0 and that

x̂
(1)
t + x̂

(2)
t = x

(2)
t (28)

for t = 0. Then (27) and (28) hold true for all t ≥ 0.

Proof: This is true for t = 0 by assumption. Suppose this is true for

both equations for t − 1. It is then trivial to see that (27) is true for t and

it is a simple calculation to see that it is true for (28) as well. In words:

the second-order Taylor expansion here coincides with the pruned solution
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of KKSS, when using the same initial conditions. •

We therefore obtain pruning as an exact Taylor expansion of second order

to f(θt;σ) in σ at σ = 0. This is a key insight of this paper. It may be worth

noting that the starting point for the pruning simulation here is

x̂
(1)
0 = x0

x̂
(2)
0 = 0

as a consequence of (18) and (24).

5 Higher-order pruning

In this section we derive a general formula for the x
(m)
t terms, with m ∈

N∪{0}. We follow the strategy of the proof for proposition 1, but expanding

the Taylor series to length m rather than 2. More specifically, we compare

the coefficients of the m-th order Taylor expansion of xt = ft(σ) to the chain-

rule induced Taylor expansion of xt = g(ft−1(σ);σ) + σεt. To do the latter,

we proceed in three steps:

1. take the n-th order Taylor expansion of g(xt−1, σ) in xt−1 and σ around

x̄ and 0, respectively;

2. replace the terms in (xt−1 − x̄)j, j = 0, . . . , n, with the n-th order

Taylor expansion of ft−1 in σ,

3. match coefficients in σ to obtain the terms of interest.

For the first two steps, we can draw on the well-known expressions for bi-

variate Taylor expansions and multinomial formulas.
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Proposition 3 Suppose that x̄ = 0, wlog. Then,

xt ≈
m∑
i=1

x̂
(i)
t (29)

where x̂
(i)
t satisfy the recursion

x̂
(i)
t = 1i=1 σεt +

∑
(k,j,v1,...,vi)∈Ci

gjkσ
k

k!v1! . . . vi!

∏
1≤p≤i

(
x̂

(p)
t−1

)vp

(30)

where

Ci = {(k, j, v1, . . . , vi) | k +
i∑

p=1

pvp = i,

i∑
p=1

vp = j}

and where

gj,k ≡
∂j+kg(xt−1, σ)

∂xjt−1∂σ
k

|(x̄,0)

Proof: The m-th order Taylor expansion for xt = ft(σ) is

xt ≈
m∑
i=1

1

i!
x

(i)
t σ

i (31)

or

xt ≈
m∑
i=1

x̂
(i)
t

where

x̂
(i)
t =

1

i!
x

(i)
t σ

i

The m-th order Taylor expansion of g delivers

xt ≈ σεt +
m∑
j=0

m−j∑
k=0

(j+k)!
j!k!

(j + k)!
gj,kx

j
t−1σ

k

where we note that g0,0 = 0 per our assumption that x̄ = 0. Replace xt−1

on the right hand side with the m-th order Taylor expansion (31), lagged by
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one period, and exploit the usual multinomial formulas to calculate powers

of sums to obtain

xt ≈ σεt +
m∑
j=0

m−j∑
k=0

(j+k)!
j!k!

(j + k)!
gj,k

(
m∑
p=1

1

p!
x

(p)
t−1σ

p

)j

σk

≈ σεt +
m∑
j=0

m−j∑
k=0

∑
v1+...+vm=j

gj,k

(j+k)!
j!k!

(j + k)!

j!

v1! . . . vm!

∏
1≤p≤m

(
1

p!
x

(p)
t−1σ

p

)vp

Sorting coefficients and then comparing the coefficients for σ1 to σm to the

coefficients in (31) delivers the result (where it may be useful to note that

the formula above also contains terms involving powers of σ higher than m:

we do not compare those). In particular, any combination of coefficients

(k, j, v1, . . . , vm) with the property that k +
∑m

p=1 pvp = i delivers a term

for σi. Note, that therefore vi+1 = 0, . . . , vm = 0: we only need to specify

v1, . . . , vi. With that, we obtain the set Ci. •

It is instructive to explicitly write out the expansion up to order four.

Taking into account that g1,0 = gσ(x̄; 0) = 0 and g1,1 = gxσ(x̄; 0) = 0, the

expressions for x̂
(1)
t and x̂

(2)
t are given by (25) and (26), i.e., they deliver the

usual second-order pruning as shown above. For the third expansion term,

we obtain

x̂
(3)
t =

g(0,3)σ
3

6
+
x̂

(1)
t−1 g(1,2)σ

2

2
+

(x̂
(1)
t−1)

2
g(2,1)σ

2
+ x̂

(2)
t−1 g(1,1)σ

+ x̂
(3)
t−1 g(1,0) + x̂

(1)
t−1 x̂

(2)
t−1 g(2,0) +

(x̂
(1)
t−1)

3
g(3,0)

6
(32)
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For the forth term, we obtain

x̂
(4)
t =

g(0,4)σ
4

24
+
x̂

(1)
t−1 g(1,3)σ

3

6
+
x̂

(2)
t−1 g(1,2)σ

2

2
+

(x̂
(1)
t−1)

2
g(2,2)σ

2

4
(33)

+ x̂
(3)
t−1 g(1,1)σ + x̂

(1)
t−1 x̂

(2)
t−1 g(2,1)σ +

(x̂
(1)
t−1)

3
g(3,1)σ

6
+ x̂

(4)
t−1 g(1,0)

+

(
x̂

(1)
t−1 x̂

(3)
t−1 +

(x̂
(2)
t−1)

2

2

)
g(2,0) +

(x̂
(1)
t−1)

2
x̂

(2)
t−1 g(3,0)

2
+

(x̂
(1)
t−1)

4
g(4,0)

24

The formulas we have provided deliver the additional terms for pruning

of higher order. Pruning to second order is

xt ≈ x̂
(1)
t + x̂

(2)
t ,

pruning to third order is

xt ≈ x̂
(1)
t + x̂

(2)
t + x̂

(3)
t ,

pruning to forth order is

xt ≈ x̂
(1)
t + x̂

(2)
t + x̂

(3)
t + x̂

(4)
t

and so forth.

While (32) may feel like a rather natural extension of (26), and while the

literature has already suggested this particular third-order pruning scheme,

we find it less plausible that the specifics of equation (33) are easy to guess.

It naturally arises out of our algorithm, however. A key contribution of this

paper is to solidify the appropriate third-order pruning scheme, to provide

this forth-order pruning scheme, and to provide an algorithm for computing

schemes of any order.

Corollary 1 Suppose that xt ∈ IRn and εt ∈ IRn rather than IR. Then, replace

(34) in proposition 3 by

x̂
(i)
t = 1i=1 σεt +

∑
(k,j,v1,...,vi)∈Ci

gjkσ
k

k!v1! . . . vi!

(
x̂

(1)
t

)⊗v1

⊗ . . .⊗
(
x̂

(i)
t

)⊗vi︸ ︷︷ ︸
i

(34)
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where, as customary,

x⊗nt ≡ xt ⊗ . . . ⊗ xt︸ ︷︷ ︸
n

and where gjk is a matrix, with each row collecting the nj partial derivatives

of order k with respect to σ and of total order j with respect to entries in

xt−1 sorted in the same way as x⊗nt .

Proof: The extension to the multivariate case is straightforward. •

6 Relationship to Judd (1998)

The expressions of proposition 1 and their logic turn out to be close to the

derivations provided by section 13.3 in Judd (1998). There, Judd shows how

to do a Taylor expansion for an continuous-time initial value problem indexed

by a parameter σ (which he denotes by ε: we switch the notation for better

comparison). The initial value problem in his equation (13.3.1) is

ẋ ≡ ∂x(t;σ)

∂t
= g(x, t;σ) (35)

Like us, he supposes that an exact solution as well as all derivatives can be

obtained at σ = 0, allowing for the Taylor series in equation (13.3.3) or

x(t;σ) ≈
n∑
k=0

ak(t)
σk

k!
(36)

He shows that

ȧ1(t) = gxa1 + gσ (37)

ȧ2(t) = gxa2 + gxxa
2
1 + gxσa1 + gσσ (38)

ECB Working Paper 1696, July 2014 18



see his equations (13.3.4) and (13.3.5). Comparing (37) and a1(t), a2(t) to

equations (21) and x
(1)
t , x

(2)
t shows a remarkable degree of similarity. As

Judd remarks in his section, it is not hard to generalize his formulas to the

discrete-time case. In essence here, stochastic terms as well as a treatment of

the initial condition get introduced as well, but we do not wish to exaggerate

the differences. Indeed, one might come to the conclusion that pruning has

already been developed in Judd (1998), and that the formulas in KKSS are

just versions of the formulas in Judd (1998), as we have shown above.

Of course, Judd (1998) also derives Taylor expansions of the value func-

tion as well as of the policy function in his chapter 13.5, which are functions of

the state, and give rise to the non-pruned solutions. Judd’s book provides so-

lutions to well-posed questions, and that is its purpose. However, it does not

seem to highlight the issue that for the objective of simulation, the approach

in section 13.3 is more appropriate than the approach in section 13.5. This

is not meant to take away from his contribution, but to put it into context.

KKSS deserve credit for raising awareness, that issues arise for the objective

of simulation, if a solution is obtained from a higher-order Taylor expansion

of the policy function, and for proposing pruning as a work-around.

Our paper finally connects these two perspectives. To our knowledge,

this has not been done before. In essence, we point out that the answer

to the explosiveness issue raised in KKSS can be solved by posing the ap-

propriate problem, namely, how to find a path for the variables of interest

approximating the true path, per Taylor expansion around the path given

by the constant steady state. Once the problem is posed in this manner,

standard Taylor expansion or a version of Judd (1998), section 13.3 provide

the answer.
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7 Conclusions

Kim-Kim-Schaumburg-Sims (2008) have proposed pruning to deal with the

challenge of finding stationary simulations, when utilizing a second order ap-

proximation for the recursive law of motion. In this paper, we have provided

a theory of pruning. More specifically, we have shown that pruning can be

understood as a standard Taylor approximation, when stating the variable

of interest at date t as a function of the standard deviation parameter σ as

well as variables which are invariant to it. A key contribution of this paper is

to solidify the appropriate third-order pruning scheme, to provide the forth-

order pruning scheme, and to provide an algorithm for computing schemes

of any order. We have established the connection between pruning and the

approach provided by Judd (1998) on perturbing dynamical systems.
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